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Abstract

We investigate numerically dynamical behaviour of the Wang model, which describes the rhythmic activities of tha-
lamic relay neurons. The model neuron exhibits Type I excitability from a global view, but Type II excitability from a
local view. There exists a narrow range of bistability, in which a subthreshold oscillation and a suprathreshold firing
behaviour coexist. A special firing pattern, integer multiple firing can be found in the certain part of the bistable range.
The characteristic feature of such firing pattern is that the histogram of interspike intervals has a multipeaked structure,
and the peaks are located at about integer multiples of a basic interspike interval. Since the Wang model is noise-free,
the integer multiple firing is a deterministic firing pattern. The existence of bistability leads to the deterministic integer
multiple firing depending on the initial state of the model neuron, i.e., the initial values of the state variables.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Exploring the mechanism of neuronal information encoding is one of central problems in neuroscience. Since the
shape of action potentials, i.e. spikes, is stereotyped, it hardly bears any information. Whereas only spikes have ability
to propagate to the postsynaptic neuron, nowadays, it has been widely accepted that the time series of neuronal dis-
charges, namely, the spike trains carry information about the process that generates the spikes. Moreover, the neural
information is contained within the interspike interval (ISI) time series, which is the time interval between consecutive
spikes [1–3]. They can highlight structure in the spike train that may not be obvious to casual observation. For exper-
imenters, the ISI time series is easy to obtain, therefore, ISI data are often recorded in neurophysiological experiments.

There are a number of firing patterns observed in experiments. Among them, integer multiple firing (IMF) has re-
ceived much attention from researchers all over the world [4–18]. An interesting feature of such firing pattern is that ISIs
are roughly, but not exactly, integer multiples of a basic interspike interval. This leads to multimodal distribution of
interspike intervals, and is just the reason of nomenclature of integer multiple firing. The corresponding return map
exhibits a lattice structure which appears symmetric about the 45� line, an indication that there is no apparent corre-
lation between successive ISIs [5]. There exists two distinct points of view about the mechanism underlying this kind
of firing pattern: the one is stochastic resonance, the other is deterministic chaos [6–8]. According to the dynamical
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mechanisms of neural excitability, neurons can be classified into two major types, i.e. Type I and Type II, although
there are a huge number of biophysical mechanisms [19,20]. The IMF has been shown to occur in a neuron of Type
II, which undergoes a Hopf bifurcation from the quiescent state to firing, driven by noise, with and without periodic
stimulation [7–15]. Actually, a neuron of Type I, for whom the dynamical mechanism of excitability is a saddle-node
bifurcation on invariant cycle, can also exhibit the IMF driven by periodic stimulation and noise [6]. The period of the
stimulation is just the basic interspike interval. Here, the IMF is regarded to be induced by noise and related to stochas-
tic resonance phenomenon. At present, it has been widely considered that stochastic resonance could play a constructive
role in the neural information encoding process [4–15]. From theoretical and experimental studies, however, some neu-
rons subjected only to periodic stimulation demonstrate the firing pattern of IMF, which is understood as a result of
chaotic subthreshold dynamics [16–18].

It is very interesting that a deterministic IMF occurs in the Wang model without periodic stimulation and without noise.
This point is completely different from the aforementioned IMF. In this paper, we investigate numerically the dynamical
behaviour of the Wang model in detail, and, in particular, focus our attention on the IMF generated in this model.

The paper is organized as follows. In Section 2, we give the mathematical expressions of the Wang model and param-
eters used by us. Section 3 presents a global and local bifurcation diagrams of the Wang model as a function of the
applied current Iapp and shows numerical simulations of firing patterns at different values of Iapp. In Section 4 shows
a narrow bistable range of Iapp, in which subthreshold and suprathreshold oscillatory states coexist. In the bistable
range, there is a narrower region where the Wang model neuron exhibits the IMF; nevertheless this firing pattern of
IMF depends on initial state due to bistability. At the end, some conclusions are drawn in Section 6.
2. The Wang model

The Wang model is a system of autonomous and noise-free four-dimensional ordinary differential equations, and
describes the firing activities of thalamic relay neurons [21]. The equations are given by
Cm
dV
dt
¼ �IT � Ih � INa � IK � INaðpÞ � IL þ Iapp;

dh
dt
¼ /hðh1ðV Þ � hÞ

shðV Þ
;

dH
dt
¼ /H ðH1ðV Þ � HÞ

sH ðV Þ
;

dn
dt
¼ /nðn1ðV Þ � nÞ

snðV Þ
;

where V denotes the transmembrane voltage, h, H, n are three gating variables.
Here
IT ¼ gT S3
1ðV Þ � h � ðV � V CaÞ

Ih ¼ gh � H 2 � ðV � V hÞ
INa ¼ gNa � m3

1ðrNa; V Þ � ð0:85� nÞ � ðV � V NaÞ
IK ¼ gK � n4 � ðV � V KÞ
INaðP Þ ¼ gNaðP Þ � m3

1ðrNaðPÞ; V Þ � ðV � V NaÞ
IL ¼ gL � ðV � V LÞ
S1ðV Þ ¼ 1=½1þ expð�ðV þ 65Þ=7:8Þ�
h1ðV Þ ¼ 1=½1þ expððV � hhÞ=khÞ�
H1ðV Þ ¼ 1=½1þ expððV þ 69Þ=7:1Þ�
n1 ¼ an=ðan þ bnÞ
m1 ¼ am=ðam þ bmÞ
shðV Þ ¼ h1ðV Þ exp½ðV þ 162:3Þ=17:8� þ 20:0

sH ðV Þ ¼ 1000=½expððV þ 66:4Þ=9:3Þ þ expð�ðV þ 81:6Þ=13Þ�
sn ¼ 1=ðan þ bnÞ
anðrK ; V Þ ¼ �0:01ðV þ 45:7� rKÞ= exp½�0:1ðV þ 45:7� rKÞ � 1�
bnðrK ; V Þ ¼ 0:125 exp½�ðV þ 55:7� rKÞ=80�
amðrNa; V Þ ¼ �0:1ðV þ 29:7� rNaÞ=½expð�0:1ðV þ 29:7� rNaÞÞ � 1�
bmðrNa; V Þ ¼ 4 exp½�ðV þ 54:7� rNaÞ=18�
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The parameter values used in our calculation are
Cm = 1, VK = �80, VCa = 120, Vh = �40, VL = �70, VNa = 55, /h = 2, /n = 200/7, /H = 1, gh = 0.04, gK = 30,

gNa = 42, gNa(P) = 9, gL = 0.12, gT = 1, rNa = 6, rNa(P) = �5, rK = 10, kh = 5, hh = �79.
The applied current Iapp is chosen as the control parameter. All conductances are in mS/cm2 and voltages in mV; the

capacity is lF/cm2 and Iapp in lA/cm2. The unit of time is millisecond.
3. Bifurcation diagrams of the Wang model

Here, a continuation algorithm of predictor–corrector method is used to compute a sequence of points, which
approximate the desired branches including steady solutions and limit cycles. Presently, there are many excellent soft-
ware packages to calculate numerically bifurcation diagrams, such as MATCONT, AUTO and XPPAUT. We have
used the XPPAUT to verify the accuracy of our computational results.

They are shown in Fig. 1. The change in membrane potential, that is, transmembrane voltage as a function of Iapp is
demonstrated. From Fig. 1(a), a global structure of bifurcation can be seen clearly, although some values of Iapp have
no significant physiological meaning. Evidently, the stable and unstable steady states approach each other, merge and
disappear at Iapp = 2.189 or so, where a saddle-node bifurcation occurs. Since saddle-node bifurcation is also called fold
bifurcation, tangent bifurcation, limit point bifurcation, or turning point bifurcation, hereafter, therefore, we use the
word �fold� to indicate it in the figures for short. After this bifurcation point, the neuron exhibits periodic spiking,
and this situation persists to Iapp = 27.180, where a subcritical Hopf bifurcation occurs, as seen in Fig. 1(a). At
Iapp = 62.830 the stable and unstable limit cycles meet and annihilate one another, that is, a saddle-node bifurcation
of limit cycles, which is sometimes termed fold bifurcation of limit cycles, appears. For the convenience of denotation,
we still use �fold� to show it in the figures. Consequently, a stable steady state coexists with a stable limit cycle from
Iapp = 27.180 to Iapp = 62.830. In fact, the left end of the branch of the stable limit cycle terminated at Iapp = 2.154,
thus, there is a bistable region ranging between Iapp = 2.154 and Iapp = 2.189, where a stable steady state and a stable
limit cycle coexist. In the rectangle of Fig. 1(a), the bifurcating behaviour is comparatively complicated. If the rectangle
is magnified, it is shown in Fig. 1(b). It can be seen that the steady state loses stability via a subcritical Hopf bifurcation
at Iapp = �1.959. Actually, a fold bifurcation of limit cycles happens at Iapp = �1.962, and a period-doubling bifurca-
tion occurs at Iapp = �1.943. These information is not seen clearly or not indicated at all in Fig. 1(b). The right Hopf
bifurcation of Fig. 1(b) with Iapp = �0.422 is supercritical, as seen clearly in Fig. 1(c). A subthreshold oscillation is elic-
ited, and with increasing intensity of hyperpolarization, the amplitude of the oscillation grows. At Iapp = �0.472 there is
a fold bifurcation of limit cycles. In Fig. 1(b) and (c), it is evident to see that the branches of unstable limit cycles ter-
minated at the unstable branch of the steady state. In practice, the neuron displays intricate firing patterns between the
two Hopf bifurcations in Fig. 1(b) (not shown). At first, let us investigate the firing behaviour between the left Hopf
bifurcation and the fold bifurcation of limit cycles in Fig. 1(b), as shown in Fig. 2. As for the firing behaviour in
the region ranging from the fold bifurcation of limit cycles to the right Hopf bifurcation in Fig. 1(c), it will be stressed
in the rest of the paper.

Fig. 2 shows the projection of the attractor in the h–V phase plane and time series of membrane potential corre-
sponding to the left and right column, respectively, for different applied currents. It is clear that they are periodic burst-
ing, which means many fast spiking riding at the crest of the slow oscillation. It is learned from Fig. 2 that the interburst
interval (IBI) is prolonged with the strength of hyperpolarization increasing, that is, the bursting oscillation slows down
when the degree of hyperpolarization is enhanced.

As described above, the Wang model exhibits the Type I excitability from a global view, however, it behaves Type II
excitability from a local view. It is very exciting that two types of excitability concur in a neuron.
4. Bistability of membrane potential oscillation

We further consider neuronal activities of the Wang model between the fold bifurcation of limit cycles and the Hopf
bifurcation, as shown in Fig. 1(c). To assure the part of Iapp covered by these two bifurcation points to fall the region in
question, allow us take a range of Iapp from �0.5 to �0.4. Firstly, with Iapp = �0.5 being the starting point, the oscil-
latory amplitude of the membrane potential, which implies the maximum minus minimum of the membrane potential, is
calculated till Iapp = �0.4 with a stepsize of 10�4 along the decreasing direction of hyperpolarization. Secondly, with
Iapp = �0.4 being the starting point, the same quantity is computed up to Iapp = �0.5 with a stepsize of �10�4 along
the increasing direction of hyperpolarization. The two computational results are superposed together, and in Fig. 3 it is
clear to see that the two curves disagree with each other in the middle section from Iapp = �0.472 to Iapp = �0.454. In



Fig. 1. Bifurcation diagram of the Wang model under the applied current Iapp. The thick solid lines denote stable steady states, but the
dotted lines indicate unstable steady states. The thin solid lines present the maxima and minima of stable limit cycles, and the short
dash dotted lines are the maxima and minima of unstable limit cycles: (a) global structure of bifurcation diagram, (b) local enlargement
of the rectangle in (a) and (c) magnification of the supercritical Hopf bifurcation located at the right-hand part of (b).

Y. Xie et al. / Chaos, Solitons and Fractals 30 (2006) 1250–1259 1253
other words, this section is bistable. The left of the bistable range corresponds to the fold bifurcation of limit cycles, as
shown in Fig. 1(c), and the right to an exterior crisis of chaotic attractor, a type of discontinuous bifurcation of a cha-
otic set [22–25]. Here, the exterior crisis is that a chaotic firing pattern, which will be demonstrated in the next section,
disappears suddenly and becomes a subthreshold oscillation.



Fig. 2. The projection of the attractor in the h–V phase plane and time series of membrane potential. Iapp corresponds to �0.6, �0.64,
�0.686, �0.8, �1.2 from top to bottom.

Fig. 3. The bistability range. The thin line denotes the oscillatory amplitude of membrane potential for the increasing direction of
hyperpolarization, and the thick line for the decreasing direction of hyperpolarization.
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The small amplitude corresponds to a subthreshold oscillation, while the large amplitude to a suprathreshold firing
pattern. From Fig. 3, we can also see clearly that the subthreshold oscillation originates from the supercritical Hopf
bifurcation in Fig. 1(c). For Iapp = �0.456 located at the bistable range, taken V = �62.44782, h = 0.03522,
H = 0.28438, n = 0.11385 as the initial state of the Wang model, the neuron exhibits a subthreshold oscillation, how-
ever, if the initial state is taken as V = �1.65617, h = 0.03493, H = 0.11017, n = 0.53799, a suprathreshold firing behav-
iour is observed, as seen in Fig. 4. This shows the bistability manifests itself as two distinct firing patterns obtained with
the same stimulation of applied current but different initial states.
5. Integer multiple firing depending on initial state

Since the suprathreshold firing pattern is comparatively complicated in the range between the two Hopf bifurcations
in Fig. 1(b), the continuation algorithm fail to compute the branch of the suprathreshold. Thus, an alternative method



Fig. 4. Coexistence of the subthreshold oscillation and the suprathreshold firing behaviour under Iapp = �0.456: (a) the initial state:
V = �62.44782, h = 0.03522, H = 0.28438, n = 0.11385 and (b) the initial state: V = �1.65617, h = 0.03493, H = 0.11017, n = 0.53799.
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is used to study the suprathreshold behaviour. Namely, we investigate the change in ISI as a function of Iapp because a
spike emerges for the suprathreshold case.

The change in ISI has been explored in the range from Iapp = �2.0 to Iapp = �0.4 along the two directions of increas-
ing and decreasing intensity of hyperpolarization. Only in the segment of Iapp 2 [�0.60, �0.44] the bifurcation of ISI is
shown in Fig. 5 due to the same structure of ISI in the rest of Iapp. It can be seen that there lies a distinct difference in the
bifurcation structure of ISI versus Iapp in a very narrow range located at the right of Fig. 5(b), which is enlarged in
Fig. 5(c). Interestingly, the ISI as a function of Iapp exhibits a multi-layer structured distribution and centers on the
integer multiples of about ISI = 60 in the range of Iapp 2 [�0.4604, �0.4540], which just falls in the bistable range. This
shows the firing pattern with multi-layer structured distribution of the ISI depends on the initial state of the neuron.

Especially, fixed Iapp = �0.456 in the range of the multi-layer structure, the membrane potential of the neuron dis-
plays an aperiodic firing when a proper initial state of the neuron is chosen, namely, it looks like random about the
integer number of subthreshold cycles between each successive pair of fast spikes, as shown in Fig. 6(a). Fig. 6(b) is
the corresponding series of 120 ISIs, which exhibits an irregular jump. Fig. 6(c) shows the histogram of the ISI series
with a length of 50,000. This length is regarded enough long to trust the reliability of the shape of ISI histogram. It is
clear that the ISI histogram is multimodal distribution with peaks at integer multiples of a basic ISI = 60, nearly equiv-
alent to the period of the subthreshold oscillation. This is the characteristic feature of the IMF. Since the Wang model is
a completely deterministic dynamical system, thus the IMF is deterministic but not stochastic. Such remarkable aperi-
odicity is a sign of deterministic chaos. In the h–V phase plane the phase portrait is a complicated strange attractor, as
shown in Fig. 4(b), which is completely different from simple closed curves of periodic firing in the left column of Fig. 2.
As a consequence, the deterministic IMF represents a chaotic firing pattern of the neuron.



Fig. 5. Bifurcation diagram of ISI versus Iapp: (a) the increasing direction of hyperpolarization, (b) the decreasing direction of
hyperpolarization and (c) enlargement of (b) between �0.4604 and �0.4540.
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Due to the existence of the bistability, whether the deterministic IMF occurs or not depends on obviously the initial
state of the neuron. We freeze H = 0.28438 and n = 0.11385 to a subthreshold state, and investigate the attraction basin
of the chaotic IMF in the phase plane of h–V. Here, the subthreshold values of H and n are chosen in order that the
attraction basin of the subthreshold oscillation is guaranteed to exist in the phase plane of h–V. The dark area in Fig. 7
is the attraction basin of the deterministic IMF when Iapp = �0.456, apparently, the white is that of the subthreshold
oscillation. This shows the IMF in the Wang model is dependence of the initial state of the neuron.



Fig. 6. Under the case of Iapp = �0.456 membrane potential, aperiodic ISI series and histogram of ISI series corresponding to (a)–(c),
respectively.
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6. Conclusions

To sum up, the dynamical behaviour of the Wang model has been investigated in detail. We have found that the
Wang possesses Type I and Type II excitability simultaneously. Namely, the neuron displays the excitability of Type
I from a global view, but the excitability of Type II from a local view. A bistable range, which lies at the segment
of hyperpolarization, has been uncovered, where a suprathreshold firing behaviour coexists with a subthreshold oscil-
lation. Furthermore, there exists a narrower range just falling in the bistable range, in which the neuron exhibits a cha-
otic firing pattern of the IMF. We have pointed out the deterministic IMF depends on the initial state of the neuron due



Fig. 7. Attraction basins of the IMF and the subthreshold oscillation for Iapp = �0.456.
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to the bistability. Consequently, the dynamical behaviour of the neuron is different along the directions of increasing
and decreasing intensity of hyperpolarization. This shows it is possible that some neurons display different oscillations
of the membrane potential during the application and washout processes of drugs and chemicals, or during the
enhancement and weakening of the applied currents. At the same time, it is shown that the IMF can occur in an auton-
omous and deterministic dynamical system.
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