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ABCG2 is a member of the ATP binding cassette (ABC) transporters, which can pump a wide variety of
endogenous and exogenous compounds out of cells.Widely expressed in stemcells, ABCG2 is also found to confer
the side population phenotype and is recognized as a universal marker of stem cells. Although the precise
physiological role of ABCG2 in stem cells is still unclear, existing data strongly suggest that ABCG2 plays an
important role in promoting stem cell proliferation and themaintenance of the stem cell phenotype. In addition,
ABCG2 is also found to be expressed in a number of cancer cells and appears to be a marker of cancer stem cells.
Moreover, ABCG2 expression in tumors may contribute to their formation and progression. Thus, ABCG2 has
potential applications in stem cell and tumor therapy.
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Introduction

ATP binding cassette (ABC) transporters form one of the largest
transmembrane protein families. These proteins use cellular ATP to
drive the transport of various substrates across cell membranes
including drugs, metabolites and other compounds. To date, about 50
humanABC transporters have been identified in a variety ofmammalian
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Fig. 1. Structure of the ABCG2 transporter and a list of its substrates. ABCG2 is a half-
transporter, which consists of a single nucleotide binding domain (NBD) and a single
six transmembrane domain, functioning as a homodimer. It hydrolyzes cellular ATP to
transport diverse substrates ranging from chemotherapeutic agents to fluorescent dyes
across a cell membrane.
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cells (Schinkel and Jonker 2003). Based on the arrangement of
component domains, human ABC transporters are divided into seven
subfamilies (fromA toG). HumanABCG2 is the secondmember of the G
subfamily of ABC transporters. ABCG2 was first cloned from doxorubi-
cin-resistant human MCF-7 breast cancer cells and named as breast
cancer resistance protein (BCRP) (Doyle et al. 1998). Shortly after, other
teams reported two nearly identical genes termed ABCP (placental ABC
protein) (Allikmets et al. 1998) and MXR (mitoxantrone resistance
protein) (Miyake et al. 1999). Following the cloning of BCRP/ABCP/MXR,
the Human Genome Nomenclature Committee suggested that the
transporter be renamed ABCG2. ABCG2 is widely distributed in normal
tissues and is highly expressed in a subpopulation of stem cells: the side
populations (SP), which were first described in bone marrow by their
ability to efflux Hoechst 33342, the DNA binding dye (Zhou et al. 2001).
Its conserved expression in stem cell populations suggests an important
role in stemcell biology. In addition, ABCG2 is oneof themost important
multidrug-resistance transporters and its substrates include many
commonly used drugs in cancer chemotherapy (Robey et al. 2007).
There is increasing evidence that ABCG2 correlates with unfavorable
prognosis in a variety of tumors (Ross and Nakanishi 2010). ABCG2may
impact cancer treatment outcomes through active efflux of anticancer
drugs or other mechanisms (Ross and Nakanishi 2010). Recent studies
suggest that ABCG2 may be involved in cancer stem cells (CSCs) (Dean
et al. 2005). In this review, we will summarize the current knowledge
about ABCG2 with respect to its expression and function in stem cells
and tumors. Finally, the potential role of ABCG2 in the characterization
of cancer stem cells is discussed.

ABCG2 gene, structure and substrates

The human ABCG2 gene maps to chromosome 4q22, spans over
66 kb and consists of 16 exons and 15 introns. Its coding protein
contains 655 amino acids (72 kDa). ABCG2 is a half-transporter,
requiring dimerization to become functionally active. Unlike other
ABC half-transporters, which are usually expressed in cellular mem-
branes, ABCG2 localizes predominantly to the plasma membrane
(Rocchi et al. 2000).

Since ABCG2 was first described in drug-resistant cell lines, it has
been established that ABCG2 has the capacity to transport a broad range
of substrates. Typical chemotherapy agents transported by ABCG2
include mitoxantrone, flavopiridol, 9-aminocamptothecin, topotecan,
irinotecan and its active metabolite SN-38, methotrexate and the
tyrosine kinase inhibitors gefitinib, imatinib, and erlotinib (Polgar et al.
2008). ABCG2 has also been shown to play a role in the transport of
natural substrates such as 2-amino-1-methyl-6-phenylimidazo [4,5-b]
pyridine (PhIP), phosphatidylserine, pheophorbide α, and protopor-
phyrin IX (PPIX) (van Herwaarden et al. 2003; Woehlecke et al. 2003;
Robey et al. 2004; Jonker et al. 2007). In addition, ABCG2 is proved to be
responsible for the efflux of fluorescent dyes Hoechst 33342 and
BODIPY-prazosin (Robey et al. 2003). Rhodamine 123 and Lyso-Tracker
Green are substrates of ABCG2when amino acid 482 is mutated (Robey
et al. 2003). Several other substrate classes including antivirals,
antibiotics, HMGCoA reductase inhibitors and flavonoids have been
described to be transported by ABCG2 (Polgar et al. 2008). For protein
structure and a list of ABCG2 substrates, see Fig. 1.

Regulation of ABCG2 expression

To date, the molecular mechanisms regulating the expression of
ABCG2 remain unclear. An estrogen response element was previously
identified in theABCG2 promoter (Ee et al. 2004b). However, conflicting
data are shown to impact the ABCG2 expression for estrogen (Ee et al.
2004a,b; Imai et al. 2005; Wang et al. 2006). Other steroid hormones
such as progesterone, human placental lactogen and human prolactin
have been shown to have stimulatory effects on ABCG2 expression in
human placental choriocarcinoma BeWo cells (Wang et al. 2008a,b). In
addition, folate has been found to induceABCG2expression,while folate
deprivation results in the loss of ABCG2 expression (Ifergan et al. 2004).
ABCG2 expression is up-regulated by hypoxia and injury via hypoxia-
inducible transcription factor HIF-1 and HIF-2α signaling, respectively
(Krishnamurthy et al. 2004;Martin et al. 2008). In drug-resistantMCF-7
cells, alternative use of the 5′ promoter due to differential expression
of splice variants at the 5′ untranslated region (UTR) of ABCG2 mRNA
has been observed (Nakanishi et al. 2006). DNA methylation and
histone modifications were reported to play important roles in the
epigenetic regulation of ABCG2 expression in human renal carcinoma
and multidrug-resistant cells, respectively (To et al. 2006, 2008a).
Furthermore, To et al. (2008b) identified a putative microRNA binding
site in a portion of the 3′UTR and suggested that a putative microRNA
binds at this site and can suppress expressionof ABCG2. Panet al. (2009)
recently reported thatmicroRNA-328 transfection inMCF-7 cells targets
the 3′UTR of ABCG2 and decreases ABCG2 expression.

Cytokines and growth factors have also been shown to alter ABCG2
expression. Evseenko et al. (2007) showed that treatment of primary
term trophoblasts with tumor necrosis factor-α (TNF-α) and interleu-
kin-1β (IL-1β) markedly decreased ABCG2 expression. On the other
hand, epidermal growth factor (EGF) and insulin-like growth factor II
significantly increasedABCG2 expression.WhenABCG2-positiveMCF-7
sidepopulation cellswere treatedwith transforminggrowth factor-beta
(TGF-β), Yin et al. (2008) detected decreased ABCG2 gene expression.

Finally, signaling pathways that control ABCG2 expression have
been described.

The activation of the Sonic Hedgehog (SHH) and notch signaling
pathways which are critical in stem cell and tumor biology, has been
shown to promote the expression of ABCG2 (Sims-Mourtada et al.
2007; Bhattacharya et al. 2007). Mogi et al. (2003) demonstrated that
the serine/threonine protein kinase Akt positively modulated ABCG2
activity. This Akt-induced ABCG2 activation results from its translo-
cation to the plasmamembrane. Takada et al. (2005) have also shown
that the phosphorylation state of Akt regulates cell surface expression
of ABCG2 in the porcine renal endothelial LLC-PK1 cells. Recently,
PTEN/PI3K/Akt pathway has been shown to regulate ABCG2 activity
in glioma cancer stem-like cells. Inhibiting the PI3K/Akt pathway
strongly decreased the activity of the transporter, while loss of the Akt



Table 1
Summary of ABCG2 expression in stem cells.

Stem cell types Major findings

Human pancreatic islet stem
cells

Nestin-positive cells derived from human
pancreatic islets contain 1.5–2% of SP cells,
which express ABCG2 and nestin at high levels
compared to non-SP control cells.

Human HSCs The expression of ABCG2 is restricted to the
most immature hematopoietic progenitors in
human bone marrow and is sharply down-
regulated at the committed progenitor level.

Human limbal epithelial stem
cells

Harvested limbal epithelial cells contain SP cells
expressing ABCG2.

Mouse germ stem cells SP phenotype is dependent on ABCG2 activity
and testis SP in adult mice is highly enriched in
male germ stem cells.

Mouse muscle stem cells ABCG2 is a determinant of the SP cell phenotype
and muscle SP cells are probably progenitor cells
that participate in repair and regeneration of
adult skeletal muscle.

Mouse heart stem cells Adult heart contains an ABCG2-expressing SP
cell population and these progenitor cells are
capable of proliferation and differentiation.

Human and rabbit limbal
conjunctival epithelia stem
cells

Limbal and conjunctival epithelia contain
ABCG2-dependent SP cells.

Human NSPCs About 63% of the cells in neurospheres were
ABCG2-positive and ABCG2 levels were sharply
down-regulated during human NSPCs
differentiation.

Mouse HSCs Overexpressed in HSCs.
Human prostate stem cells The SP transcriptome was essentially the same

as ABCG2+ and both populations expressed
genes indicative of a stem cell phenotype.

Human ESCs High level ABCG2 expression in the
undifferentiated human ESCs, while the
expression of this protein significantly
decreased during early cell differentiation.

Zebra fish HSCs zAbcg2a mRNA is a useful marker for zebra fish
HSCs.

HSC: hematopoietic stem cell; NSPC: neural stem/progenitor cell; ESC: embryonic stem
cell.
SP: side population.
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inhibitor PTEN increased the SP phenotype (Bleau et al. 2009).
Differential ABCG2 regulation was observed downstream of the MEK–
ERK pathway. ABCG2 is transcriptionally up-regulated by inhibition of
the MEK–ERK–RSK pathway and is post-transcriptionally down-
regulated through the inhibition of the MEK–ERK–non-RSK pathway
(Imai et al. 2009). Further studies are needed to accurately elucidate
the molecular mechanisms controlling ABCG2 expression.

Wide distribution in normal tissues

Doyle et al. (1998) first examined the expression of ABCG2mRNA in
selected normal human tissues using the ABCG2 cDNA as a probe in
northern blots. Prominent expression was seen in placental tissue and
considerably lower levels of expression were found in brain, prostate,
small intestine, testis, ovary, colon and liver. Subsequently, an immu-
nohistochemical study with two different ABCG2-specific monoclonal
antibodies BXP-21 andBXP-34detectedhighexpressionofABCG2 in the
epithelium of the small intestine and colon, in placental syncytiotro-
phoblasts, in liver canalicular membranes, in breast ducts and lobules,
and in veinous and capillary endothelium (Maliepaard et al. 2001).
Using immunohistochemistry and northern blot analyses, Fetsch et al.
(2006) observed several additional sites of ABCG2 expression in
normal tissues including alveolar pneumocytes, sebaceous glands,
transitional epithelium of bladder, interstitial cells of testes, prostate
epithelium, endocervical cells and cervical squamous epithelium, small
and large intestinal mucosal epithelial cells, pancreatic islet/acinar cells,
adrenal zona reticularis, renal cortical tubules and hepatocytes.

Although ABCG2 is widely distributed in normal tissues, its function
is not clear. Recent work, relyingmainly on the use of ABCG2−/−mice,
has revealed that the primary biological role of ABCG2 is protecting the
organism from a range of xenobiotics (Vlaming et al. 2009).

ABCG2 and stem cells

Conserved expression in stem cells

The side population phenotype, which is characterized by the ability
to transport the fluorescent dye Hoechst 33342, has been identified as a
characteristic feature of stem cells. Zhou et al. (2001) first proved that
ABCG2 was a molecular determinant of the SP phenotype. A number of
other studies in awide variety of organs have also indicated that ABCG2
is responsible for Hoechst 33342 dye efflux pattern and confers the SP
cell phenotype both in human andmouse (Kim et al. 2002; Scharenberg
et al. 2002; Martin et al. 2004; Jonker et al. 2005). Therefore, ABCG2 has
been suggested as a universal marker for various stem cells. Semi-
quantitative RT-PCR analyses taken by Zhou et al. (2001) discovered the
expression of ABCG2 in SP cells from murine bone marrow, skeletal
muscle and cultured embryonic stem cells, as well as in rhesus monkey
bone marrow. ABCG2 is also found to be expressed in hematopoietic
stem cells (HSCs) from human and zebra fish (Scharenberg et al. 2002;
Kobayashi et al. 2008). Recent studies have shown that ABCG2 is
expressed in stem cell populations derived from awide range of tissues,
including pancreas (Lechner et al. 2002), lung (Summer et al. 2003),
limbal epithelium (Watanabe et al. 2004), heart (Martin et al. 2004),
testis (Lassalle et al. 2004), muscle (Meeson et al. 2004), cornea and
conjunctiva (Budak et al. 2005), brain (Islam et al. 2005), prostate
(Pascal et al. 2007) and embryo (Apati et al. 2008). A summary of ABCG2
expression in stem cells is provided in Table 1. Together, these findings
indicate that ABCG2 expression is a conserved feature of stem cells from
a wide variety of sources. Therefore, ABCG2 is an attractive candidate
marker useful for identifying and isolating stem cells.

Contribution in stem cell proliferation and self-renewal

The conserved expression of ABCG2 in stem cells from various
sources suggests that ABCG2 has an important function in stem cell
biology. Israeli et al. (2005) put forward that the biological role of ABCG2
in stem cells may be part of the normal tissue regenerationmechanism,
probably due to the protection of the small stem cell population from
cell death and the preservation of the stem cell homeostasis under
extreme stress conditions. Results obtained from the ABCG2 deficient
mouse model suggest that ABCG2 is not essential for normal hema-
topoietic development (Zhou et al. 2003). However, recent evidence has
revealed that ABCG2 plays a crucial role in protecting stem cells.

Zhou et al. (2002) discovered that ABCG2 null hematopoietic cells
were significantly more sensitive to mitoxantrone in vivo. This result
suggests that the physiological function of ABCG2 expression in HSCs
is to provide protection from cytotoxic substrates. Krishnamurthy et
al. (2004) reported that ABCG2 enhances the survival of hematopoi-
etic stem cells in hypoxia through its interactions with heme. This can
explain why stem cells thrive under conditions of low oxygen.
Specifically, ABCG2 binds heme and diminishes the cellular accumu-
lation of porphyins. ABCG2 has also been shown to play a role in
protecting embryonic stem cells from porphyrin accumulation during
colony expansion (Susanto et al. 2008). In addition, Martin et al.
(2008) unveiled a cytoprotective role of ABCG2 in cardiac SP cell
populations in response to oxidative stress. Overexpression of ABCG2
leads to the upregulation of cytoprotective factors involved in the
oxidative stress response and promotes cellular viability. A recent
report by Ahmed et al. (2008) demonstrated that constitutive
expression of ABCG2 enhances the proliferative capacity of early
human hematopoietic progenitors both in vitro and in vivo. ABCG2 is
characterized as a regulatory protein of early human hematopoietic
development.
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Taken together, ABCG2 plays a role in protecting stem cells by
increasing their survival capacity and proliferation potential, process-
es which are fundamental for stem cell maintenance and renewal.

Block stem cell differentiation

ABCG2 is sharply down-regulated during hematopoietic stem cell
differentiation and is expressed at a low level in mature cells
compared with progenitor cells (Zhou et al. 2001; Scharenberg et al.
2002). The same phenomenon also occurs in human neural, retinal
and embryonic stem cells (Islam et al. 2005; Bhattacharya et al. 2007;
Apati et al. 2008). The highly regulated expression of ABCG2 suggests
that ABCG2 may play a regulatory role in maintaining stem cells in an
undifferentiated state. When ABCG2 is overexpressed in retinal
progenitors by using a retrovirus-mediated transduction, differenti-
ation is blocked, accompanied by an increase in the expression of stem
cell markers and the SP cell phenotype. By contrast, siRNA-mediated
silencing of ABCG2 expression in retinal progenitors depletes the SP
cell population and promotes differentiation (Bhattacharya et al.
2007). In addition, notch signaling, a key regulator of retinal stem cells
is shown to influence ABCG2 expression and the SP cell phenotype
(Bhattacharya et al. 2007). Therefore, ABCG2 is involved in the
maintenance of stem cells under the regulation of notch signaling.
Considering that ABCG2 acts as an efflux pump, it is also possible that
constitutive expression of ABCG2 in human progenitor cells critically
expels substrates that are necessary for lineage differentiation,
thereby blocking stem cell differentiation. However, few studies
have directly proved this function of ABCG2 in stem cells and more
research is required to unveil this phenomenon.

ABCG2 and cancer

ABCG2 expression in human tumors

Diestra et al. (2002) were the first to report on a large screen of
ABCG2 expression in human tumors using the monoclonal antibody
BXP-21. ABCG2 expression was seen in all 21 tumor types that were
studied, with a high frequency in carcinomas of the digestive tract,
endometrium, lung and melanoma. Contradictory results of both high
and low expressions in acute myelogenous leukemia (AML) and acute
lymphocytic leukemia (ALL) have been reported, and controversial
data exist regarding the clinical importance of ABCG2 expression in
these blood malignancies (Abbott et al. 2002; Steinbach et al. 2002;
Sauerbrey et al. 2002; Plasschaert et al. 2003). However, in the largest
study reported to date, with 149 AML cases, Benderra et al. (2004)
reported that ABCG2 expression was a prognostic factor of complete
remission, 4-year disease free survival and 4-year overall survival. In
some solid tumors such as ovarian and breast cancer, ABCG2
expression frequently showed no correlation with clinical outcomes
(Nakayama et al. 2002; Faneyte et al. 2002). In contrast, ABCG2
expression is detected and generally, this expression is associated
with negative prognosis in many other human solid tumors such as
lung and esophageal cancers (Tsunoda et al. 2006; Yoh et al. 2004).
More recently, ABCG2 expression has been detected in glioma stem
cells, and the expression level of ABCG2 correlates well with the
increasing pathological grade of glioma, suggesting that ABCG2 may
be a marker of melanoma progression (Jin et al. 2009).

Based on a RNA interference approach, Chen et al. (2010) showed
that the suppression of ABCG2 could significantly inhibit cancer cell
proliferation. Furthermore, the blocking of ABCG2 function by
fumitremorgin C, a chemical inhibitor, also inhibited cell proliferation
via the prolonged G0/G1 interval. These data suggest that ABCG2 may
contribute to cancer cell proliferation.

A recent study evaluated SHH and ABCG2 expression in 67 cases of
diffuse large B-cell lymphoma. High levels of ABCG2 in diffuse large B-
cell lymphoma tumors correlate with shorter overall survival and
failure-free survival and ABCG2 protein levels correlate with the
expression of SHH protein levels (Kim et al. 2009). The HH signaling
pathway plays a critical role in growth and differentiation during
embryonic development (Ingham and McMahon 2001). Aberrant
activation of the HH pathway has been shown to contribute to tumor
development and progression (Karhadkar et al. 2004; Liao et al. 2009).
Because ABCG2 is a downstream target of the SHH pathway, it is
possible that the high expression of ABCG2 in tumor cells could be a
result of aberrant pathway activity that imparts multiple mechanisms
of tumor initiation, growth, invasiveness, metastasis and relapse.

Cancer stem cells

The cancer stem cell hypothesis suggests that the formation and
growth of tumors are driven by rare cancer stem cells (Reya et al.
2001). Like stem cells, cancer stem cells possess extensive prolifer-
ation and self-renewal capacity. During the last years, CSCs have been
identified in human leukemia (Bonnet and Dick 1997) and in diverse
solid tumors, including tumors of breast (Al-Hajj et al. 2003), brain
(Singh et al. 2004), retinoblastoma (Seigel et al. 2005), melanoma
(Fang et al. 2005), liver (Chiba et al. 2006), pancreas (Li et al. 2007),
colon (O'Brien et al. 2007), nasopharynx (Wang et al. 2007), lung (Ho
et al. 2007), head and neck (Prince et al. 2007), osteosarcoma (Tirino
et al. 2008), esophagus (Huang et al. 2009), as well as neuroblastoma
(Mahller et al. 2009). Increasing evidence suggests that CSCs play an
important role in tumor initiation, progression, metastasis, as well as
tumor relapse (Visvader and Lindeman 2008). In order to cure cancer,
it is necessary to focus on the elimination of CSCs. To allow a
perspective target therapy for cancer, it is important to identify and
characterize specific CSC biomarkers.

Biomarkers for CSCs

Two general approaches have been used to identify CSCs. The
first one tracks surface markers that identify putative normal stem
cells. For example, pancreatic and hepatic CSCs are marked by CD44+
CD24+ESA+ (Li et al. 2007) and CD133+ (Ma et al. 2007), respec-
tively. The second one uses the flow cytometry-based side population
technique. Side population cells within tumors have been suggested
to be a novel approach to isolate CSCs as it is enriched in normal stem
cells. Recent work has shown that SP cells selected from different
tumor cell lines and specimens have higher tumorigenicity in immu-
nodeficiency mice, higher colony-forming efficiency and proliferation
capacity, compared to non-SP cells (Hirschmann-Jax et al. 2004;
Haraguchi et al. 2006; Kruger et al. 2006; Ho et al. 2007; Huang et al.
2009; Zhang et al. 2009). SP cells also show higher chemoresistance
to conventional antitumor agents such as doxorubicin and metho-
trexate when compared with non-SP cells. Together, these findings
indicate that SP is enriched with CSCs. However, there are some
limitations to this approach. First, the side population does not
represent all the cancer stem cells and contains both cancer stem cells
and non-cancer stem cells. Moreover, Hoechst 33342, which is used
for isolating SP, is toxic to many cells. Thus, the comparison of SP and
non-SP is not precise.

ABCG2: a novel target

Taking into account that the SP phenotype is mainly mediated by
ABCG2 and the conserved expression of ABCG2 in stem cells, it is
conceivable that ABCG2 may serve as a novel biomarker of CSCs.
Since ABCG2 functions as a high capacity transporter with a wide range
of substrates including various chemotherapy drugs, it has been shown
to participate in the multidrug resistance of tumors and lead to a
limitation of chemotherapeutics (Robey et al. 2007). Intriguingly, CSCs
are also supposed to be responsible for the acquisition of multi-drug
chemoresistance and lead to the cancer relapse. Side population
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and chemoresistance suggest a close link between ABCG2 and CSCs.
ABCG2+ tumor cells may hence represent a unique population of CSCs.
The expression of this chemoresistant efflux transporter in CSC popu-
lations would confer these cells intrinsic resistance to many commonly
used antitumor agents and may be the root cause of tumor recurrence.

Elevated expression of ABCG2 has been observed in a number of
putative CSCs from retinoblastoma (Seigel et al. 2005), lung (Ho et al.
2007), liver (Shi et al. 2008) and pancreas cancer (Wang et al. 2009).
In addition, ABCG2 and CD133, the widely identified CSC marker, are
co-expressed in melanoma and pancreatic carcinoma cell lines
(Monzani et al. 2007; Olempska 2007). Recently, Zen et al. (2007)
reported ABCG2+ cells could be purified from human hepatocellular
carcinoma (HCC) cell lines. ABCG2+ population showed evidence for
self-renewal, generating both ABCG2+ and ABCG2− progenies
during subculture, and a higher proliferative activity. Moreover,
other progenitor cell markers including cytokeratin 19 and alpha-
fetoprotein were mainly expressed in ABCG2+ subpopulations. This
study suggests that cancer cells with ABCG2 expression might play a
central role in hepatocarcinogenesis and the maintenance of the
cancer cell hierarchy of human HCC. Our group has already detected
high expression of ABCG2 in HCC tissues (Xi et al. 2009) and we are
now studying the possible role of ABCG2 in HCC development and
progression.

Together, these data suggest that ABCG2 may serve as a promising
biomarker for the identification CSCs in tumors. New therapeutic
strategies targeting ABCG2+ positive CSCs may effectively eliminate
CSCs and overcome current chemotherapeutic limitations.

Conclusion and future perspectives

Because of its extensive expression in stem cells, ABCG2 has gained
instant attention from researchers exploring its potential role in stem
cell developmental biology. With conserved expression in stem cells,
ABCG2 may serve as a universal marker to identify and isolate stem
cells from various tissues. In addition, ABCG2 exhibits a special effect
in promoting proliferation and blocking differentiation of stem cells
which reveals a potential application in stem cell based therapies.
Finally, ABCG2 may also have an important biological role in tumors
and serve as a potential molecular marker for the further character-
ization of CSCs. The further characterization of ABCG2 will open up a
new avenue in stem cell and tumor therapy.
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