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Abstract: TOPMODEL predictions of surface runoff and subsurface flow are fundamentally developed on the basis of the topographic index
distribution (TID). The scale dependency of the TID [i.e., dependency on the resolution of the digital elevation model (DEM) data used to
compute the topographic indexes] determines that downscaling of the TID computed from a coarser resolution DEM to a finer resolution is
needed before the TOPMODEL concepts can be applied to simulate hydrological processes at some larger scales than the scale of hillslopes.
It was found that adjusting only the mean values cannot achieve an accurate downscaling of the TID because the difference between 2-m TIDs
and the downscaled TIDs from a coarser resolution to 2 m through adjusting only mean values resulted in overestimation of the fraction of
the saturation area and surface runoff under wet conditions and underestimation under dry conditions. It was found that downscaling by
correcting for scale-dependencies in the first three moments of TIDs produced better predictions. A series of empirical relationships among
mean, standard deviation, and coefficient of skewness of TIDs of nine catchments in eastern Tennessee at resolutions of 2, 10, and 100 m and
205 watersheds across the contiguous United States at resolutions of 10 m and 1 km were developed for downscaling TIDs from 1 km to 2 m
through approximating TIDs by a 3-parameter gamma distribution function. The errors in the downscaled TIDs from 1 km to 10 m over 205
watersheds across the contiguous United States decreased with increasing watershed size and approached a minimum (approximately 6%) as
the watershed drainage area was larger than approximately 500 km2. With the constructed empirical relationships, topographic indexes
computed from 1-km DEM can be scaled down to 2 m for reducing errors and uncertainties in the TOPMODEL-based general circulation
model (GCM) hydrological simulations. DOI: 10.1061/(ASCE)HE.1943-5584.0000438. © 2012 American Society of Civil Engineers.
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Introduction

Although the original TOPMODEL concept was proposed to
represent hydrological processes at the scale of hillslopes (Beven
and Kirkby 1979), it has been applied at much larger spatial scales.
For example, TOPMODEL was implemented in the Land Surface
Model (LSM) (Bonan 1998), the Common Land Model (CLM)
(Dai et al. 2003), and embedded in general circulation models
(GCM) (e.g., Koster et al. 2000; Ducharne et al. 2000; Yang and
Niu 2003; Niu and Yang 2003). TOPMODEL predictions of sur-
face runoff and subsurface flow are fundamentally based on the
topographic index distribution (TID). The TID is the spatial prob-
ability distribution of the topographic index of a basin, watershed,
or catchment, and the topographic index is the natural logarithm of
the ratio of the specific flow accumulation area a to the ground
surface slope tan β, calculated for each cell of a computational grid
superimposed on a basin, watershed, or catchment. Many studies
have shown that TIDs are scale dependent; i.e., the distribution is

strongly affected by the resolution of the digital elevation model
(DEM) used to produce the topographic index (e.g., Wolock and
Price 1994; Zhang and Montgomery 1994; Quinn et al. 1995).
DEMs used in GCMs are generally much coarser (e.g., 1-km
resolution) than those used to define hillslopes in more traditional
TOPMODEL applications (normally down to 10-m resolution).
Therefore, a spatial rescaling of TIDs between GCM resolutions
and hillslope scales is needed before the TIDs can be used to predict
saturation area and runoff in GCMs.

Generally, GCMs are run at spatial resolutions of 2.5, 5, or even
10° latitude and longitude. With the continued growth in high per-
formance computing, a future with GCM runs at 1-km resolution is
no longer “science fiction.” Indeed, numerical tests at 1-km reso-
lution had already been conducted on the Japanese Earth Simulator
(JES) (Habata et al. 2003). With the advent of 1-km GCMs, the
DEMs supporting them will likely have resolutions of tens of
meters. However, for the near future, GCM climate simulations
will continue with spatial resolutions on the order of one to several
degrees latitude/longitude, and the DEMs defining topography in
GCMs will likely have spatial resolutions no finer than 1 km. Thus,
there exists an immediate need for downscaling 1-km TIDs to a
finer resolution for the TOPMODEL-based GCM hydrological
simulations.

Although several studies have focused on this issue, how to
best achieve this downscaling for GCM simulations is uncertain.
Wolock and McCabe (2000) developed an empirical relationship
between TIDs at 1-km and 100-m resolutions which can be used
for downscaling TIDs from 1 km to 100 m. Kumar et al. (2000)
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constructed an empirical downscaling similar to Wolock and
McCabe’s (2000), finding that the mean, standard deviation, and
the coefficient of skewness (hereafter skewness) of TIDs scaled
linearly between 90 m and 1 km. Chen and Kumar (2001) used
this relationship to scale 1-km topographic indexes down to
100 m in a simulation for North America. Yang and Niu (2003)
used a 1-km DEM to compute TIDs for two catchments and applied
these results to define a constant topographic index for every grid
cell of a global climate simulation. Ibbitt and Woods (2004) as-
sumed that the TIDs computed from different resolution DEM data
have similar shapes and thus downscaling a TID can be achieved
through “shifting” the distribution, i.e., adjusting the mean value of
the TID. Pradhan et al. (2006) proposed a method for downscaling
TIDs computed from 1-km DEMs to 50 m through adjusting the
specific flow accumulation area by a DEM resolution factor and
scaling the slope using a fractal method. Sørensen and Seibert
(2007) applied 5-m DEM derived from light detection and ranging
(LIDAR) data to study the effects of DEM resolution on the
calculation of the topographic indexes. Their results showed that
there are considerable differences between topographic indexes
computed from DEMs of different grid resolution, and the com-
puted specific flow accumulation area seemed to be more affected
by the DEM resolution than the computed slope. Yong et al. (2009)
conducted statistical analyses on the TIDs computed from 90-m
and 1-km DEMs in China and found that a series of linear relation-
ships existed between mean values of 90-m and 1-km TIDs in three
sampled blocks with different sizes (i.e., 0:1° × 0:1°, 0:5° × 0:5°,
and 1° × 1°).

Although all the noted preceding studies focused on the scale
dependency of TIDs and downscaling of TIDs computed from a
coarser DEM resolution to a finer resolution, there are still two
unresolved issues: (1) What is the fine resolution DEM needed for
computing the topographic index to give accurate TOPMODEL-
based hydrologic predictions? To what fine resolution should the
TIDs computed from 1-km DEM be downscaled? According to
Zhang and Montgomery (1994), 10-m or even finer resolution is
needed for TOPMODEL-based hydrological modeling. Therefore,
downscaling of 1-km TIDs to 10-m or even finer resolutions
may be required before TOPMODEL concepts can be accurately
incorporated into GCM climate simulations. However, it is compu-
tational expensive to directly compute topographic indexes for
global land surface using 10-m DEMs and actually the 10-m res-
olution DEM data are now available only for the contiguous United
States and limited parts of Alaska and Hawaii. (2) Can an accurate
downscaling of the TIDs computed from 1-km DEMs be achieved
through “shifting” the mean values (e.g., Ibbitt and Woods 2004)?
Are the shapes of the TIDs scale independent? To answer these
questions, a series of statistical analyses were conducted of TIDs
computed from 2-, 10-, and 100-m resolution DEMs in eastern
Tennessee and 10-m and 1-km resolution DEMs in 205 watersheds
across the contiguous United States. The main objective of this
paper is to improve the understanding of the effects of DEM res-
olution on TIDs and establish a series of empirical relationships
among watershed statistical moments of TIDs computed from 2-,
10-, and 100-m and 1-km resolution DEMs. With the constructed
empirical relationships, 1-km TIDs can be downscaled to 2 m for
reducing errors and uncertainties in the TOPMODEL-based GCM
hydrological simulations.

The second objective of this study is to identify the minimum
size of watershed suitable for applying the TOPMODEL concept
with a TID downscaled from 1-km resolution. The TOPMODEL
assumes that the recharge rate is spatially uniform (Beven and
Kirkby 1979). In reality, the recharge rate is a function of soil
hydraulic properties, and the spatial heterogeneity in soil hydraulic

properties dictates that the larger a watershed (encompassing
greater heterogeneity), the larger the error in assuming a spatially
uniform recharge rate for the watershed. Therefore, to limit the
error, TOPMODEL should be applied to small, homogeneous,
watersheds. However, the watershed cannot be too small relative
to the resolution of the DEM because of significant errors in the
downscaled TID arising from too fewDEMgrid cells (i.e., sampling
points) from which to form the TID. Therefore, there may be an
optimal range of watershed size for applying the TOPMODEL with
a downscaled TID computed from a 1-km resolution DEM. This
threshold scale of watershed size is similar to the representative
elementary area (REA) first suggested byWood et al. (1988). Wood
et al. argued that, at the REA, the spatial pattern of topography, soil,
vegetation, and rainfall is not important for hydrological modeling
because the hydrological processes can be captured by their stat-
istical characteristics (Wood et al. 1988; Wood 1995). In this study,
only the topographic aspects of the REA are considered.

Topographic Index Calculation

Calculating TOPMODEL’s topographic index requires quantifica-
tion of ground surface slope, tan β, and the specific flow accumu-
lation area, a. The surface slope can be evaluated from DEM data.
The specific flow accumulation area is the total flow accumulation
area (or upslope area), A, through a unit contour length, L,
i.e., a ¼ A=L. The total flow accumulation area is computed by
starting at the DEM cell of interest and tracking flow directions
upslope to the upstream divide of the watershed; A is calculated
as the total area of upslope cells contributing to the drainage area
of the original downstream cell.

Generally speaking, three types of algorithm are commonly
used to compute the topographic indexes (Pan et al. 2004): single
flow direction (SFD) (O’Callaghan and Mark 1984), biflow direc-
tion (BFD) (Tarboton 1997), and multiple flow direction (MFD)
(Quinn et al. 1995; Pan et al. 2004). Among these algorithms,
the MFD method is the most accurate followed by the BFD method
and the SFD method (Pan et al. 2004). Accordingly, the MFD
algorithm is adopted in this study.

TOPMODEL Predictions of Surface Runoff and Base
Flow

The water table depth (or depth to water table) is a critical lower
boundary condition for solving the Richards equation (Richards
1931) and thus influences modeled runoff. On the basis of the
TOPMODEL concepts and assumptions, Sivapalan et al. (1987) re-
lated the local water table depth zi (i.e., depth from ground surface to
the water table level) to the watershed averaged water table depth, �z,
and the average topographic index, λ, of a catchment or watershed:

zi ¼ �z� 1
f

�
ln

�
aTe

To tan β

�
� λ

�
ð1Þ

In Eq. (1), lnða= tan βÞ = topographic index; λ = areal average of
lnða= tanβÞ; To = local soil transmissivity; Te = areal average
of To; and f = empirical parameter describing the exponential decay
of soil transmissivity with soil depth. The total saturation area, Ac, =
summation of all pixels that satisfy the following expression:

zi ¼ �z� 1
f

�
ln

�
aTe

To tan β

�
� λ

�
≤ 0; or

ln

�
aTe

To tan β

�
≥ f�zþ λ

ð2Þ

244 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / FEBRUARY 2012

Downloaded 07 Mar 2012 to 129.120.35.207. Redistribution subject to ASCE license or copyright. Visit http://www.ascelibrary.org



If the spatial variation of transmissivity is neglected, expression
(2) becomes:

ln

�
a

tanβ

�
≥ f�zþ λ ð3Þ

where f�zþ λ can be considered as a threshold, and the fraction of
the saturation area Ac=A (A = total catchment area) can be estimated
from the complementary distribution (i.e., one minus the cumula-
tive distribution) of the topographic index distribution (TID),
i.e., the interception between the Ac=A curve and the threshold
f�zþ λ, as shown in Fig. 1. If mean water table depth is small
(i.e., water table is close to the surface), the threshold f�zþ λ is
small, and the fraction of the saturation area is large, and vice versa.
As the fraction of the saturation area increases, so does surface
runoff from the watershed. The mean value of the TID, λ, also
influences the TOPMODEL’s predictions of base flow, because,
according to Sivapalan, et al. (1987), base flowQb can be estimated
as follows:

Qb ¼ Qo expð�f�zÞ and Qo ¼ ATe expð�λÞ ð4Þ
where Qo = maximum base flow when �z is zero.

Effects of DEM Resolution on TOPMODEL Surface
Runoff and Base Flow Predictions

To illustrate the influence of DEM resolution on the TID, a 2-m
resolution topographic dataset for the Oak Ridge Reservation
(ORR) in eastern Tennessee was used to compute the topographic
indexes. The 2-m DEM data set for the ORR was developed from
aerial photography taken during leaf-off in April of 1993. The
aerial photographs were flown at 2,195 m above ground level,
resulting in a nominal scale of 1∶14;400. The data were compiled
at 1∶2;400 scale (see Fig. 2) yielding a root mean square error
(RMSE) of 2.32 m. Two coarser DEM resolution data, i.e., 10
and 100 m, were also downloaded from the U.S. Geology Survey
(USGS) National Elevation Dataset (NDE). The overall RMSE of
USGS DEMs is 2.44 m according to the NED Accuracy Document
(http://ned.usgs.gov/Ned/accuracy.asp) and slightly larger than that
of 2-m ORR DEM (i.e., 2.32 m).

Since 2-m DEM used in this study was not from the same data
source as the 10- or 100-m DEM, to compare the systemic errors
and biases among 2-, 10-, and 100-m DEMs, the authors aggre-
gated 2-m ORR DEM to 10 m, and 10-m USGS DEM to 100 m
using the mean method (e.g., Shaw et al. 2005). The maximum,
minimum, mean, standard deviation, and skewness of each DEM
are listed in Table 1. The difference between the aggregated 10-m
DEM from 2-m ORR DEM and the original 10-m USGS DEM is
comparable to that of between the aggregated 100-m DEM from
10-m USGS DEM and the original 100-m USGS DEM (see
Table 1) and implies that the difference in the computed TIDs
between 2 and 10 or 100 m is not attributable to different DEM
data sources.

Nine catchments were delineated across the ORR (see Fig. 2).
The MFD algorithm (Quinn et al. 1995; Pan et al. 2004) was used
to compute the topographic index at each DEM cell inside each
catchment. For each catchment, three TIDs were obtained, i.e., one
for each of three DEM resolutions, i.e., 2, 10, and 100 m.

The first three moments (i.e., mean, standard deviation, and
skewness) of each TID were computed and listed in Table 2.
The mean values λ of the TIDs decreased with deceasing DEM
grid cell size (i.e., increasing DEM data resolution) (Table 2).

Fig. 1. Schematic plot of the fraction of the saturation area (Ac=A) ver-
sus the topographic index lnða= tan βÞ, which is also the complemen-
tary distribution of the topographic index; the saturation area can be
determined by the interception of the threshold f�zþ λ and the curve
of Ac=A versus lnða= tan βÞ

Fig. 2. Depiction of 2-m DEM over the Oak Ridge Reservation in eastern Tennessee; the boundaries of nine catchments are indicated
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The λ value derived from 100-m resolution DEM data is about
twice that from 2-m data for each catchment. These results agree
with those of Wolock and Price (1994), Zhang and Montgomery
(1994), and Quinn et al. (1995). In general, a coarser resolution
DEM generates a larger mean value of the TID, and a finer reso-
lution produces a smaller mean value of the TID.

To study the effects of the scale dependency exhibited by λ
on the TOPMODEL predictions of surface runoff and base flow,
the complementary topographic index distributions were plotted
(i.e., Ac=A versus lnða= tan βÞ curves) for No.9 Oak Ridge Reser-
vation catchment at 2-, 10-, and 100-m resolutions in Fig. 3(a).
Without any scale adjustment, for a given mean depth to water
table, the fractions of the saturation area determined from the TIDs
among 2, 10, and 100 m are different because of the differences in
the mean values and the shapes of the TIDs [see Fig. 3(a)]. Thus,
the predicted surface runoff varies with different resolution TIDs.
Second, according to Eq. (4), a factor of 2 in λ between 100- and
2-m resolution implies a factor of e�2 (≈0:13) in Qo between 100
and 2 m, and thus the predicted base flow on the basis of a 100-m
TID is about 0.13 times that for a 2-m TID. These scale depend-
encies are generally known (Wolock and Price 1994; Zhang and
Montgomery 1994; Quinn et al. 1995). The question is how to
correct for them.

Downscaling the Topographic Index Distributions

Downscaling Methodology

If DEM resolution affects the calculation of the topographic
indexes, and through the TID, the TOPMODEL predictions of

catchment hydrology, how, then, does one rescale a TID to correct
for the scale dependency? Two issues need to be resolved in
addressing this question. First, is it possible to scale the TID de-
rived from a coarse resolution DEM to the TID computed from
a finer resolution DEM, by just “shifting” the distribution and
correcting for the difference in the means of the distributions
(e.g., Ibbitt and Woods 2004)? Or, in addition to shifting the mean
(i.e., the first moment), must the shape of the distribution also be
changed by adjusting second and higher moments? Second, how
fine must the resolution of DEM data be? Is downscaling to 10 m
sufficient. or is it necessary to scale down to a resolution of 2 m
or less?

To answer these questions, the scale dependency shown in
Fig. 3(a) was first corrected by just matching mean values of the
TIDs, i.e., simply adding or subtracting the difference between the
mean of a TID and the mean of the reference TID. The TID calcu-
lated at 2-m resolution was chosen as the benchmark, because 2-m
DEM resolution is the finest available for the catchment. After
adjustment, the difference between the 10- and 100-m Ac=A curves
was reduced significantly [Fig. 3(b)]. However, the adjustment did
not eliminate the shape differences between 2 and 10 m, and be-
tween 2 and 100 m [Fig. 3(b)], which indicates that (1) in addition
to shifting the mean, the shape of the distributions must be changed
by adjusting second and higher moments; and (2) downscaling to
10 m is not enough.

To assess the significance of the remaining differences in the
TIDs on the TOPMODEL runoff predictions, three thresholds were
chosen: (1) f�z1 þ λ, (2) f�z2 þ λ, and (3) f�z3 þ λ, corresponding to
wet, normal, and dry conditions, respectively (i.e., �z1 < �z2 < �z3; a
small �z corresponds to a shallow water table and wet conditions,
and vice versa). After adjusting the means of the TIDs, λ is the
same and f is independent of DEM data resolution because f is a
soil parameter rather than a topographic parameter. Under wet con-
ditions [i.e., dashed vertical line 1 in Fig. 3(b)], the TOPMODEL
prediction of surface runoff at 2 m is less than that based on
adjusted 10- or 100-m TID because the saturation area predicted

Table 2. Statistics of the Topographic Index Distributions of Nine
Catchments over Oak Ridge Reservation at 2-, 10-, and 100-m Resolutions

2-m 10-m 100-m

Number m1 m2 m3 m1 m2 m3 m1 m2 m3

1 5.06 3.01 1.13 6.51 2.15 2.18 9.07 2.19 0.84

2 5.39 2.80 1.09 6.49 1.89 2.59 10.11 1.83 0.28

3 5.04 3.06 1.01 6.16 1.79 2.61 7.99 1.58 1.04

4 4.94 2.86 1.01 6.27 1.94 2.54 8.69 1.85 0.84

5 5.14 3.06 1.12 6.65 2.16 1.87 9.36 2.36 1.20

6 4.94 2.75 1.16 6.07 1.71 2.73 8.96 1.87 1.07

7 4.93 2.99 0.91 6.11 1.73 3.04 8.55 2.05 0.78

8 5.12 2.95 1.12 6.02 1.44 2.78 7.44 0.97 0.25

9 5.24 3.10 1.04 6.65 2.12 2.03 8.91 2.11 1.59

Note: m1: mean; m2: standard deviation; m3: coefficient of skewness.

Table 1. Statistics of the Aggregated and Original DEMs

DEM
Maximum

(m)
Minimum

(m)
Mean
(m)

Standard
deviation

(m) Skewnessa

Aggregated

10-m

411.01 225.30 276.93 33.06 0.50

Original 10-m 413.07 225.26 274.16 31.76 0.59

Difference �2:06 0.04 2.77 1.30 �0:09

Aggregated

100-m

413.81 225.78 274.88 31.07 0.55

Original 100-m 410.00 226.00 272.68 29.90 0.50

Difference 3.81 �0:22 2.20 1.17 0.05
aCoefficient of skewness.
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Fig. 3. Complementary topographic index distributions for No. 9 Oak
Ridge Reservation catchment at 2-, 10-, and 100-m resolutions and de-
rived by the multiple flow direction algorithm: (a) distributions without
any adjustment; (b) adjusted distributions by shifting 10- and 100-m
distributions (i.e., adjusting mean values) except the distribution at
2-m [thresholds corresponding to wet (dashed vertical line 1), normal
(dashed vertical line 2) and dry (dashed vertical line 3) conditions are
marked]
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by the 2-m TID is less than that by either adjusted 10- or 100-m
TID. Under dry conditions [i.e., dashed vertical line 3 in Fig. 3(b)],
the saturation area predicted by the 2-m TID is greater than that by
either adjusted 10- or 100-m TID. This demonstrates that compared
with the predictions using the benchmark TID (i.e., 2-m TID),
surface runoff predictions could be overestimated under wet con-
ditions and underestimated under dry conditions if a TID computed
from a coarser DEM is used and only the mean of the TID is
adjusted.

Adjusting for the scale dependencies in the shape of the TIDs
and not just correcting for differences between the means first
requires a quantification of that shape. A 3-parameter gamma
probability density function (e.g., Sivapalan et al. 1987) is com-
monly used to approximate the distribution:

f xðxÞ ¼
jc2j½c2ðx� c3Þ�c1�1 exp½�c2ðx� c3Þ�

Γðc1Þ
ð5Þ

where Γðc1Þ = gamma function. According to the method of
moments (Benjamin and Cornell 1970), there are the following
relationships among mean, standard deviation (sd), the coefficient
of skewness (γ), and three parameters in Eq. (5), i.e., c1, c2, and c3:

for c1 > 0; c2 > 0; and x > c3 : mean ¼ c3 þ c1=c2;

sd ¼ c1=c22; γ ¼ c=
ffiffiffiffiffi
c1

p ð6Þ
Inversely, parameters c1, c2, and c3 can be estimated from the

mean, standard deviation, and skewness of the TID:

c1 ¼ 4=γ2; c2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4=ðγ2sdÞ

q
; c3 ¼ mean� 2=ðγ

ffiffiffiffiffi
sd

p
Þ
ð7Þ

With Eq. (7), a TID from a coarser resolution can be downscaled
to a finer resolution by relating mean, standard deviation, and
skewness at the finer resolution (e.g., meanf , sdf , γf ) to those at the
coarser resolution (e.g., meanc, sdc, γc):

8>><
>>:

meanf ¼ f 1ðmeanc; sdc;γcÞ
sdf ¼ f 2ðmeanc; sdc; γcÞ
γf ¼ f 3ðmeanc; sdc; γcÞ

ð8Þ

The relationships between statistical moments of the TIDs
computed from a coarser resolution and a finer resolution can
be obtained from a series of multiple linear regressions. The pro-
cedure for downscaling of the TIDs from 1 km to 2 m is illustrated
in the following section.

Empirical Relationships among 2-m, 10-m, and 1-km
TIDs

A two-step and hierarchical procedure can be used to scale the TIDs
from 1 km to 2 m. This two-step procedure is necessary because
there are only 2-m DEM data for nine ORR catchments, which are
too small to be adequately resolved at 1-km resolution. First, local
relationships between TIDs computed from 10- and 2-m resolution
DEMs over the nine ORR catchments were estimated (see Fig. 2).
Next, global relationships to scale from 1-km to 10-m based on 205
watersheds across the contiguous United Staes were estimated.

Aset of multiple linear regressions were applied to the statistics
of the TIDs of the nine catchments over ORR (Table 2) to obtain the
following relationships between 10- and 2-m TIDs:

8>><
>>:

mean2�m ¼ �3:826þ 1:402 × mean10�m � 0:434 × sd10�m þ 0:328 × γ10�m

sd2�m ¼ 3:655� 0:209 × mean10�m þ 0:440 × sd10�m � 0:091 × γ10�m

γ2�m ¼ 2:266� 0:023 × mean10�m � 0:245 × sd10�m � 0:240 × γ10�m

ð9Þ

The RMSE of the estimated mean, standard deviation, and
skewness on the basis of Eq. (9) are 0.09, 0.10, and 0.06, respec-
tively, and the corresponding correlation coefficients between the
estimated and observed mean, standard deviation, and skewness are
0.86, 0.60, and 0.59, respectively. Fig. 4 illustrates scatter plots
of the estimated and the observed mean, standard deviation, and
skewness.

The 2-m TID statistics can be estimated by applying these
empirical relationships to the 10-m TIDs of each of the nine
ORR catchments. These three parameters were estimated by
using the downscaling relationships in Eq. (9). The down-
scaled (10- to 2-m) TIDs, given by Eq. (5), for nine ORR
catchments show good agreement with the observed TIDs at
2 m (Fig. 5).

To construct relationships to scale from 1-km to 10-m
TIDs, 18 major watersheds with a drainage area magnitude of
1;000–2;000 km2 in 18 states were delineated (one watershed
per state, see Fig. 6) using 10-m DEM data. To investigate the effect
of the drainage area on errors in the downscaled TIDs, again using
10-m DEM data, about 10 subwatersheds with different drain-
age areas (approximately evenly distributed between 50 and
2;000 km2) inside each of the 18 major watersheds were also delin-
eated and resulted in a total of 205 watersheds. As an example,
Fig. 7 depicts the major watershed (i.e., watershed No. 1) and sub-
watersheds (watersheds Nos. 2-8) in Utah. Each 10-m watershed or
subwatershed boundary was projected to 1 km before constructing
the 1-km TID. Data used were 1-km DEM data from the USGS
GTOPO30. The resulting 1-km to 10-m scaling functions are:

8>><
>>:

mean10�m ¼ 1:136þ 0:657 × mean1�km � 0:640 × sd1�km þ 0:053 × γ1�km

sd10�m ¼ �0:128þ 0:187 × mean1�km þ 0:168 × sd1�km � 0:261 × γ1�km

γ10�m ¼ 3:768� 0:246 × mean1�krm þ 0:317 × sd1�km þ 0:222 × γ1�km

ð10Þ
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The RMSEs of the estimated mean, standard deviation, and
skewness at 10-m resolution from Eq. (10) are 0.70, 0.25, and 0.44,
respectively. The corresponding correlation coefficients between
the estimated and observed mean, standard deviation, and skewness
are 0.85, 0.78, and 0.73, respectively. TID statistics scaled from

1 km to 10 m with the actual 10-m TID statistics can be compared
visually (Fig. 8).

Following the same procedure used in downscaling 10-m TIDs
to 2 m, the empirical relationships shown in Eq. (10) was used to
estimate the mean, standard deviation, and skewness of 10-m TIDs
from the 1-km TIDs. The three parameters of the gamma function
were determined from Eq. (7), and the downscaled TIDs were ob-
tained using Eq. (5). Fig. 9 shows the computed TIDs at 10 m (solid
curves) and the downscaled TIDs (dashed curves) from 1 km of
nine major watersheds in nine states.

Errors in the Downscaled TIDs

Using Eqs. (7), (9), and (10), any TID can be downscaled from
1 km to 2 m. Although the errors in the estimated mean, standard
deviation, and skewness quantify the accuracy of downscaling to
some extent, ultimately, the desire is to quantify the errors in mod-
eled watershed hydrology associated with the downscaled TIDs.
For example, the error in the fraction of the saturation area or
Ac=A can be expressed as

error ¼
R
x2
x1
jðAc

A Þo � ðAc
A Þejdx

x2 � x1
× 100% ð11Þ

where x ¼ lnða= tan βÞ; dx = interval for discretizing the Ac=A
curve; x1 and x2 = minimum and maximum lnða= tan βÞ of an
observed TID; and subscripts o and e stand for “observed” and
“estimated.” “Observed” means the TID is directly derived from
DEM data at a finer resolution, whereas “estimated” indicates the
TID is downscaled from the TID computed at a coarser resolution
DEM to the finer resolution.

The error in the fraction of the saturation area estimated from
TIDs downscaled from 1 km to 10 m were compared with those
estimated with observed TIDs at 10 m. The error in estimated sat-
uration area fraction decreased with increasing watershed area and
reached a lower asymptote (about 6%) for watersheds with area
greater than 500 km2 (Fig. 10).

Summary

This research has shown that not only the mean value (first mo-
ment) of the TIDs but also the shape of the TID (second and higher
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Fig. 4. Scatterplots of the estimated and the observed: (a) mean;
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moments) influence TOPMODEL predictions of surface runoff and
base flow. The scale dependency of TIDs (i.e., dependency on the
resolution of the DEM data used to define them) determines that
downscaling of the TID computed from a coarser resolution DEM
to a finer resolution is needed before the TOPMODEL concepts can
be applied to simulate hydrological processes at some larger scales
than the scale of hillslopes. This is particularly true for GCMs
utilizing coarse 1-km DEMs.

Next, methods were explored for downscaling TID’s. In the first
attempt, it was found that downscaling of TIDs could not be
achieved simply by shifting the mean value (i.e., correcting for
scale dependency in the first moment of the TIDs), because the
difference between 2-m TIDs and the downscaled TIDs from a
coarser resolution to 2 m through only adjusting mean values
resulted in overestimation of the fraction of the saturation area
and surface runoff under wet conditions and underestimation under
dry conditions.

It was found that downscaling by correcting for scale depend-
encies in the first three moments of the TID produced better pre-
dictions. The authors developed a hierarchical method of applying
statistical relationships among moments estimated from different
DEM resolutions and parameters of a 3-parameter gamma distribu-
tion function that can be used to estimate the TID at the desired
resolution. This technique was illustrated by scaling from 10 to 2 m
for nine catchments over ORR and from 1 km to 10 m for 205
watersheds across the contiguous United States.

It was found that the errors in the downscaled TIDs of 205
watersheds decreased with an increase in watershed size and
reached a minimum for watershed areas greater than 500 km2.
The assumption of the spatially uniform recharge rate in the
TOPMDODEL requires that the modeled watershed be as small

Fig. 7. Topographic index maps of one major watershed (marked as 1
near the outlet) and 7 subwatersheds (marked as 2–8 near each outlet)
in Utah
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Fig. 6. Eighteen major watersheds chosen from 18 states (shaded areas)
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as possible to minimize the impact of soil heterogeneity on re-
charge rate. The trade-off between the errors in the downscaled
TIDs attributable to DEM resolution and the errors attributable
to spatial variation of recharge rate implies that the suitable water-
shed size for applying the TOPMODEL concepts with TIDs com-
puted from 1-km DEM is about 500 km2. However, the TIDs for
these watersheds must be downscaled from 1-km to 2-m resolution
before they can be used for TOPMODEL-based hydrological
modeling.

One issue has not been touched in this study, i.e., what is the
optimal resolution of DEM for computing the topographic indexes?
As DEM resolution becomes finer and finer, more and more small-
scale topographic features can be captured. However, there might
be a scale limit under which all small-scale topographic variations
play a negligible role in controlling hydrological processes. To
identify such optimal resolution, more efforts and more finer res-
olution DEMs are needed to conduct a series of statistical analysis
of TIDs computed from different finer resolution DEMs and exam-
ine the impacts of geomorphologic characteristics (e.g., channel
width and river shape) on TIDs. When finer resolution DEM data
are used for computing the topographic indexes, some artificial

features such as buildings, parking lots, roads, and bridges and
other canopy structures could add “noise” to the terrain information
and produce errors in the calculated topographic indexes. There-
fore, a preprocessing step is necessary for removing artificial fea-
tures and canopy structures from finer resolution DEMs before they
can be used for computing the topographic indexes.
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