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ABSTRACT

We have developed an efficient method of directional illu-
mination analysis in the local angle domain using local expo-
nential frame beamlets. The space-domain wavefields with
different shot-receiver geometries are decomposed into the
local angle domain by using the local exponential beamlets,
which form a tight frame with the redundancy ratio two and
are implemented by a linear combination of local cosine and
local sine transforms. Because of the fast algorithms of the lo-
cal cosine/sine transforms, this method is much more effi-
cient than the previously used decomposition methods in di-
rectional illumination analysis, such as the local slant-stack-
ing method and the Gabor-Daubechies frame method. The re-
sults of directional illumination �DI� maps and the acqui-
sition dip responses �ADR� for the 2D SEG/EAGE salt model
and the 45-shot 3D SEG/EAGE model demonstrated the va-
lidity and feasibility of our method. Compared with the illu-
mination results using local slant-stacking decomposition,
the new method produces illumination maps of similar quali-
ty, but it does so a few times faster. Furthermore, because of
its high computational efficiency and saving in memory us-
age, the new method makes the 3D directional illumination
analysis readily applicable in the industry.

INTRODUCTION

Directional illumination analysis in a target area is a powerful tool
o study the influence of acquisition configuration and overlying
tructure on the quality of a migration image �e.g., Chen et al., 2006;
ie et al., 2006�. Many techniques of predicting illumination inten-

ity distributions for certain acquisition geometries are based on ray-
racing modeling �Berkhout, 1997; Schneider and Winbow, 1999;
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ear et al., 2000; Muerdter and Ratcliff, 2001a, 2001b; Muerdter et
l., 2001�. Recently, the applicability of the ray-tracing method has
een improved �e.g., Gjøystdal et al., 2007�. Although ray tracing is
onvenient and efficient, it still has some limitations, e.g., the resul-
ant illumination maps might contain large errors in complex areas
ecause of the high-frequency approximation and the singularity
roblems of ray theory �Hoffmann, 2001�. Therefore, wave-theory-
ased methods are much more desirable to obtain reliable and fre-
uency-dependent illuminations.

One-way wave-equation-based propagators are widely used in il-
umination analysis �Xie et al., 2006; Etgen, 2008�. They can handle

ultiforward-scattering phenomena, including focusing/defocus-
ng, and diffraction. However, unlike the ray-based methods, the
avefield obtained from traditional wave-equation-based methods,

uch as finite-difference-based one-way propagators �Claerbout,
985�, the Fourier finite-difference method �Ristow and Rühl,
994�, and the generalized screen propagator �Xie and Wu, 1998; Le
ousseau and de Hoop, 2001�, do not explicitly give the directional

nformation in the propagation process. Techniques to obtain the
ocal angle-domain information of a space-domain wavefield based
n the beamlet decomposition or local slant stacking have been de-
eloped and applied to directional illumination analysis �Xie and
u, 2002; Wu et al., 2003; Luo et al., 2004; Wu and Chen, 2002,

003, 2006; Xie et al., 2003, 2006�.
Full-wave �two-way�-equation-based illumination analysis pro-

ides full-angle true-amplitude illuminations of all arrivals for the
urvey design. The full-wave modeling and the local angle-domain
llumination analysis can be implemented in the time domain or in
he frequency domain. Xie and Yang �2008� propose an illumination

ethod that uses a time-domain full-wave finite-difference propaga-
or and a time-domain local slowness analysis to determine the angle
nformation. The method is effective in the illumination analysis for
everse-time migration. Cao and Wu �2009� propose a frequency-
omain full-wave directional illumination analysis method, which
an be used for frequency-dependent illumination analysis. The
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omputational cost is still a problem for full-wave methods. In many
ases, one-way methods are still very useful with good accuracy,
etter efficiency, and fewer artifacts.

Illumination analysis also provides useful information for the
ompensation of the image amplitude. Rickett �2003� proposes an il-
umination-based normalization for wave-equation depth migration.
owever, the illumination calculated in that paper is the total illumi-
ation and lacks directional information. As a consequence, it can-
ot give a good compensation to the image amplitude in the area
here the structures are angle dependent. For the amplitude com-
ensation, directional illumination is needed for a limited acquisi-
ion aperture and is critical in balancing the image amplitude, espe-
ially for weak interfaces in poorly illuminated regions. Illumina-
ion-based true-amplitude, true-reflection migration methods also
ave been studied extensively �Wu et al., 2004; Audebert et al.,
005; Cao and Wu, 2005, 2008; Lecomte 2008�.

With new advancements in seismic acquisition for 3D surveys,
ome illumination studies have been carried out for 3D cases �e.g.,
ontecha et al., 2005; Alai and Thorbecke, 2008; Droujinine et al.,
008� and for a 3D vertical seismic profiling �VSP� data set �e.g., Yu
t al., 2005�. However, the present methods, such as the local plane-
ave decomposition, have poor efficiency for 3D data sets. The non-
rthogonal Gabor-Daubechies frame decomposition needs at least a
edundancy ratio of four in the wavefield representation �Chen et al.,
006�, which results in huge computational cost. The local slant
tacking for wavefield decomposition is even more computationally
emanding.

The local cosine bases �LCB� decomposition applied to the seis-
ic wavefield �Wang and Wu, 2002; Wu et al., 2000, 2008; Wang et

l., 2003; Wu and Mao, 2007� is efficient in wavefield decomposi-
ion, and the corresponding propagator was successfully developed
or wave propagation and imaging. Because the local cosine trans-
orm is orthogonal and has a fast algorithm, the wavefield decompo-
ition and extrapolation using the LCB beamlet have good computa-
ional efficiency. Nevertheless, local cosine beamlets always propa-
ate along two symmetrical directions with respect to the vertical
xis. This lack of uniquely defined directional localization prevents
ts use for directional illumination analysis. Therefore, we need a

ore efficient way to do directional illumination analysis in the 3D
ase.

In this work, we propose a decomposition method using local ex-
onential frame beamlets. The local exponential frame is a tight
rame with the redundancy ratio two, which is formed by linear com-
inations of local cosine and local sine bases. The tests presented in

nx 1nx +

( )nB x

( )( )c
mnb x

igure 1. An element of local cosine bases.
his paper are based on the one-way wave-equation, but this new
eamlet decomposition method can be extended to the full-wave il-
umination in the frequency domain. This newly developed local ex-
onential frame beamlet has uniquely defined directional localiza-
ion. By taking advantage of the fast algorithm of local cosine/sine
ransforms, this method can provide local angle-domain information
fficiently. We apply the method to the illumination analysis of the
D SEG/EAGE model and compare it with the local slant-stacking
ethod. We also extend this method to the 3D case, and calculate il-

umination distribution on a 3D SEG/EAGE salt model.

LOCAL TRIGONOMETRIC BASES AND LOCAL
EXPONENTIAL FRAMES

The frequency-space-domain wavefield can be decomposed into
eamlets, which provides us the localized information in both space
nd direction simultaneously. Beamlet transform uses a translated
indow for the spatial localization and harmonic modulations for

he directional localization. Both orthogonal bases �e.g., local cosine
ases� �Wu et al., 2008� and tight frames �e.g., Gabor-Daubechies
rame� �Chen et al., 2006; Wu and Chen, 2006� were introduced into
he beamlet decomposition.

For the consideration of computational efficiency, we prefer or-
hogonal bases, which have no redundancy and have efficient de-
omposition and reconstruction. However, the Balian-Low theorem
Balian, 1981; Daubechies, 1992� states that orthogonal bases gener-
ted by Gaussian windowed exponential functions, with localization
n both space and wavenumber, do not exist. Redundancy is needed
o have a stable reconstruction. On the other hand, Coifman and

eyer �1991� �see also Wickerhauser, 1994; Mallat, 1999� success-
ully constructed local trigonometric bases �LTB�, including local
osine/sine bases �LCB/LSB�, which have an almost ideal localiza-
ion in the space and wavenumber domains. The only exception is
hat the localization in the wavenumber domain is in the form of two
ymmetrical �LCB� or antisymmetrical �LSB� lobes. This two-lobe
ocalization is the price paid for the orthogonality of the decomposi-
ion bases.

ocal trigonometric bases

Local trigonometric bases consist of the cosine/sine multiplied by
mooth, compactly supported bell functions. In fact, these orthonor-
al bases are formed by linear combinations from a tight frame of

ocal exponentials �Daubechies et al., 1991; Auscher, 1994�. A local
osine/sine basis element can be specified by its spatial position x̄n,
nterval �the nominal length of the window� Ln� x̄n�1� x̄n, and the
avenumber index m �m�0,¯ ,M �1, M denotes the sample
oint number of each interval; n�0, . . . ,N�1, N denotes the total
nterval number� as follows:

bmn
�c��x��� 2

Ln
Bn�x�cos���m�

1

2
� x� x̄n

Ln
� �1�

nd

bmn
�s� �x��� 2

Ln
Bn�x�sin���m�

1

2
� x� x̄n

Ln
�, �2�

here bmn
�c��x� and bmn

�s� �x� denote the local cosine and local sine bases,
espectively �Figure 1�. The expression Bn�x� denotes a bell func-
ion, which is smooth and supported in the compact interval � x̄
n
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�,x̄n�1���� for x̄n��� x̄n�1���, with �, �� as the left and right
verlapping radius, respectively. Appendix A gives the definition of
he bell function in detail.

As the local trigonometric bases are modulated harmonic func-
ions, they are suitable for wavefield decomposition. Combined with
ts orthogonal character, the LTB ensures the sparseness of the de-
omposition coefficients, which results in effective and efficient
avefield representation. Wu et al. �2008� constructed a local cosine
asis beamlet propagator, which has proved to be an accurate and ef-
cient one-way propagator.Although the LCB gives us high-quality
igration images, it lacks the capability to provide the complete di-

ectional information due to the “two-lobe” localization property.
If the LTB is used for the space-domain wavefield decomposition,

�m�
1
2� /Ln can be related to the local horizontal wavenumber,

hich is related to propagating angles �the relationship between the
ocal wavenumber and local angle will be discussed later�. With �̄ m

��m�
1
2� /Ln defined as the local horizontal wavenumber, the ex-

ression of the LCB can be rewritten as the following:

bmn
�c��x��

1

2
� 2

Ln
Bn�x��exp�i�̄ m�x� x̄n��

�exp�� i�̄ m�x� x̄n��� . �3�

he two exponential terms indicate that an LCB beamlet always has
wo symmetrical propagating directions. Figure 2 shows the propa-
ation of a single LCB beamlet in the 2D SEG/EAGE salt model.As
result, the LCB or LSB cannot be directly used in directional illu-
ination analysis due to this lack of uniquely defined directional lo-

alization. Therefore, we need to go back to the tight frame represen-
ation with local exponentials for complete directional information.

ocal exponential frame

The local exponential frame �LEF� atoms can be defined as

gmn�x��� 2

Ln
Bn�x�exp�i�̄ m�x� x̄n��, �4�

here m��M, . . . ,�1,0, . . . ,M �1 and n�0, . . . ,N�1; M and
have the same definition for the LTB. To take advantage of the fast

lgorithm for the LCB/LSB transform, we separate the local expo-
ential functions into two sets as follows:

�gmn
����x��bmn

�c��x�� ibmn
�s� �x��� 2

Ln

Bn�x�exp�i�̄ m�x� x̄n��

gmn
����x��bmn

�c��x�� ibmn
�s� �x��� 2

Ln

Bn�x�exp�� i�̄ m�x� x̄n�� 	,

�5�

0

2

4
Distance (km)

8 10 12 14 16 18 20 22 2

D
ep

th
(k

m
)

igure 2. Local cosine beamlet propagation in the 2D SEG/EAGE
alt model.
here m�0, . . . ,M �1. We will call gmn
����x� and gmn

����x� the right-
nd left-propagating local exponential beamlets, respectively. The
EF expressions indicate that they are linear combinations of the
CB and LSB.
For a real-value series, the number of LCB decomposition coeffi-

ients is the same as the total sample number of the original series be-
ause of the orthogonal characteristic. However, the number of the
EF decomposition coefficients is twice as many as the total sample
umber, which makes the LEF a frame of the redundancy ratio two.
he dual-frame function for reconstruction is completely the same
s the frame used for decomposition, which means the LEF is a tight
rame. Collectively, gmn

����x� and gmn
����x� form a tight frame of the re-

undancy ratio two �Daubechies et al., 1991; Auscher, 1994�. Com-
ared with the Gabor-Daubechies frame, the local exponential frame
oes not need a dual-frame calculation and can be implemented effi-
iently by using the fast algorithm of the LTB.

The other important characteristic of the LEF that concerns us is
he frequency leakage �see Appendix A for a discussion�. Figure 3
hows how the LEF beamlet propagates in the 2D SEG/EAGE salt
odel, which gives the localized information with the uniquely de-
ned direction. The leakage of the LEF beamlets to other directions
wavenumbers� is barely seen. As a result of this directional charac-
er, the LEF is more suitable than the LCB for wave representation
ith sparse decomposition coefficients.

WAVEFIELD DECOMPOSITION IN THE LOCAL
WAVENUMBER DOMAIN USING THE

LOCAL EXPONENTIAL FRAME BEAMLET

Generally, in the frequency-space � f-x� domain, the scalar wave
quation can be written as

��x
2��z

2��2/V2�x,z��u�x,z,���0, �6�

here � denotes frequency, V�x,z� is velocity, and u�x,z,�� stands
or the frequency-domain wavefield. For the 3D case, x� �x,y� and

x
2��x

2��y
2.

The frequency-space-domain wavefield u�x,z,�� can be extrapo-
ated in depth by any propagators P as follows:

u�x,z��z,��� P�u�x,z,��� . �7�

ere the one-way LCB propagator is selected for its accuracy and ef-
ciency �Wu et al., 2008�. The wavefield is decomposed and propa-
ated in the beamlet domain.

0

2

8 10 12 14 16 18 20 22 24
Distance (km)

D
ep

th
(k

m
)

Distance (km)

0

2

D
ep

th
(k

m
)

8 10 12 14 16 18 20 22 24
b)

)

igure 3. The LEF beamlet propagation in the SEG/EAGE salt mod-
l: �a� left-propagating LEF beamlet; �b� right-propagating LEF
eamlet.
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avefield decomposition using the LEF in the 2D case

At each depth z, the wavefield u�x,z,�� can be decomposed into
ocal exponential beamlets with windows along the horizontal
-axis:

u�x,z,���

n



m

�u�x,z,��,gmn�x��gmn�x�

�

n



m

�û����x̄n,�̄ m,z,��gmn
����x�

� û����x̄n,�̄ m,z,��gmn
����x��, �8�

here û���� x̄n,�̄ m,z,�� and û���� x̄n,�̄ m,z,�� are the coefficients for
he corresponding right- and left-propagating LEF beamlets, respec-
ively, located at the space window x̄n and local wavenumber win-
ow �̄ m. The expression �,� stands for the inner product as
u�x,z,��,gmn�x���u�x,z,���gmn�x��*dx �*� denotes the complex
onjugation�.

If we use the LCB propagator, the LCB coefficients already are
vailable during the wave propagation. After an extra LSB decom-
osition, the coefficients corresponding to local exponential beam-
ets can be calculated as follows:

�û����x̄n,�̄ m,z,���
û�c��x̄n,�̄ m,z,��� iû�s��x̄n,�̄ m,z,��

4

û����x̄n,�̄ m,z,���
û�c��x̄n,�̄ m,z,��� iû�s��x̄n,�̄ m,z,��

4
	,

�9�

here û�c�� x̄n,�̄ m,z,�� and û�s�� x̄n,�̄ m,z,�� are the complex coeffi-
ients of the LCB and LSB decomposition of the wavefield. The de-
ailed derivation of the coefficient calculation is given in Appen-
ix B.

The LEF decomposition translates the space-domain wavefield
nto the local space-wavenumber domain. For example, the total 2M
oefficients û���� x̄n,�̄ m,z,�� and û���� x̄n,�̄ m,z,�� �m�0, . . . ,M �1�
epresent the weights of the 2M directional beamlets in the localized
indow at position x̄n. The cartoon in Figure 4 shows the basic con-

ept of the LEF beamlet decomposition. The LEF beamlet coeffi-
ients provide only the directional information for each window.
owever, we need the directional information for each point for the

llumination analysis, which can be extracted from the beamlet
oefficients by partial reconstruction. Through the partial recon-
truction, the absolute directional information u����x,z,�̄ m,�� and
����x,z,�̄ m,�� �Appendix B� is obtained for each space point, which
s a weighted average of two windowed plane waves of the same lo-
al wavenumber from the overlapped windows. It also can be
hought of as an interpolation from the LEF decomposition coeffi-
ients. Collectively, u����x,z,�̄ m,�� and u����x,z,�̄ m,�� are local
lane waves in the local wavenumber domain.

igure 4. The concept of LEF beamlet decomposition.
Through a summation of the local plane waves with all of the local
avenumbers, the wavefield can be fully reconstructed:

u�x,z,���

m

�u����x,z,�̄ m,���u����x,z,�̄ m,��� .

�10�

s we discussed earlier, the local wavenumber is related to the local
ropagating angle. For the local plane wave with the local wave-
umber �̄ m, the corresponding propagating angle is

�̄ m�arcsin�V�x,z�
�

�̄ m�, �11�

here �̄ m is the local propagating angle with respect to the vertical
xis, and V�x,z� is the velocity at �x,z�. With this relationship, we can
et the directional information in the local angle domain. First we
ecompose the wavefield into the local wavenumber domain using
he LEF and then interpolate the local wavenumber-domain wave-
eld to the local angle domain. As the transformation from the local
avenumber to the local angle is nonlinear, the angle resolution will
e slightly different from the local slant-stacking method.

How can we choose the window length for the LEF decomposi-
ion? According to the Heisenberg uncertainty principle, the size of
patial and directional localization cannot be arbitrarily small. A
arger window means higher angular resolution, but lower spatial
esolution. Therefore, the window length should be chosen to bal-
nce the spatial and directional resolutions. Generally, the window
ength is related to the frequency, velocity, and grid size of the mod-
l. For example, the main frequency at 15 Hz is calculated with
000 m /s as the maximum model velocity. Then the maximum
avelength is 200 m. If the grid size is 25 m, a wavelength covers

ight grid points. Therefore, the window length for the LEF needs to
over a whole wavelength at least. In this case, we usually use 16
oints as the window length, which provides sufficient directional
nformation while maintaining appropriate spatial localization.

avefield decomposition using the LEF in the 3D case

In the 3D case, the 2D LEF atom is defined as follows:

gmnpq�x��� 2

LnLq
Bnq�x�exp�i�̄mp · �x� x̄nq��, �12�

here x� �x,y�, x̄nq� � x̄n,ȳq�, and �̄mp� � �̄ m,�̄ p�, with x̄n, ȳq as the
indow position in the x- and y-axes, and �̄ m, �̄ p as the local wave-
umber along the x- and y-directions. Due to the 2D nature of the ele-
entary decomposition functions �frame vectors�, the directivity

an be divided into four quarters �see Appendix C for details�. Ap-
endix C gives the detailed definition of 2D LEF functions and the
erivation of wavefield decomposition for 3D implementation.

In the 3D case, we also need the definition of local angles. For the
ocal plane wave of the local horizontal wavenumber �̄mp� � �̄ m,�̄ p�,
he corresponding propagating angle is

�̄mp� ��̄ m,	̄p�� �arcsin���̄ m
2� �̄ p

2/k�,arctan��̄ m/�̄ p�� .

�13�

he two components �̄ m and 	̄p are the inclination angle with respect
o the z-axis �zenith, downward in this case� and the azimuth angle
ith respect to the x-axis of the local plane wave, respectively



�
c
�
f

u
G
d
�
r

T
a
f
a

w
G

s
m
f
c
t
F

I
c

f
t
p
s
s
c
p
a
c
m
p

w
t

a
f
f

w
v
�
r
a
s
a
t

D
f

m
E
i

F F

Directional illumination analysis S167

D
ow

nl
oa

de
d 

10
/1

7/
14

 to
 1

46
.2

01
.1

59
.8

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

shown in Figure 5�. The expression k�� /V�x,z� represents the lo-
al wavenumber, and V�x,z� is the velocity at the subsurface point
x,z�. The component �̄ m is from 0° to 90°, and the component 	̄p is
rom �180° to 180°.

DIRECTIONAL ILLUMINATION ANALYSIS
IN THE LOCAL ANGLE DOMAIN

For a given acquisition geometry �shown in Figure 6�, we put a
nit-strength source on the surface and propagate it to get the
reen’s function for each subsurface point. The frequency-space-
omain Green’s function from the source s to a subsurface point
x,z� can be decomposed into local angle components at the image
egion by the proposed LEF method, which is

G�x,z;s,���

�s

G�x,z,�s;s,�� . �14�

he expression G�x,z;s,�� is the frequency-space Green’s function,
nd G�x,z,�s;s,�� is its local angle component at �s. Similarly, the
requency-space Green’s function from the subsurface point �x,z� to
receiver g can also be decomposed as follows:

G�x,z;g,���

�g

G�x,z,�g;g,��, �15�

here G�x,z;g,�� and G�x,z,�g;g,�� are the frequency-space
reen’s function and its local angle component at �g, respectively.
To evaluate the local angle-domain illumination for a given acqui-

ition system, let us first define the directional illumination �DI�
ap. A DI map sums all contribution from the sources at the subsur-

ace point. As the DI map is frequency dependent, a single-frequen-
y DI map is calculated to illustrate the illumination energy distribu-
ion, such as the DI map for the dominant frequency �0 of the source.
or the local propagating angle �s, the DI map for �0 is defined as

Da�x,z,�s,�0��

s

�G�x,z,�s;s,�0��2. �16�

f we sum the illumination energy of all incident angles together, we
an get the total illumination as follows:

x

ϕ

y

θ

k

z

igure 5. Definition of the incident angle �� �� ,	� for the 3D case.
Dtotal�x,z,���

�s



s

�G�x,z,�s;s,���2. �17�

ADI map shows only the angle distribution of illumination energy
rom the sources. To illustrate the aperture and propagation effects of
he given acquisition geometry on energy distribution for a specific
air of incident/receiving angles, we use the unit impulse as the
ource at both source and receiver points and propagated to each
pace point. Similar to the procedure of DI mapping, we sum up the
ontribution of the Green’s functions for each incident/receiving
air to get the acquisition aperture efficacy �AAE� matrix at each im-
ge point, which neglects the detailed wave-interference pattern and
onsiders only the energy distribution in the space and angle do-
ains for the acquisition configuration. Then the AAE matrix at

oint �x,z� is defined as

E�x,z,�s,�g,���

s

�G�x,z;�s,s,���2

g

�G�x,z;�g,g,���2,

�18�

hich measures the acquisition efficacy of a given acquisition sys-
em to any type of scattering objects.

However, when the objects are local reflectors �interfaces, faults,
nd so on�, we can further reduce the AAE matrix at each point to a
unction of reflector dip by a summation of all of the reflected energy
or a given dip,

Ad�x,z,�n,���

�r

E�x,z,�n,�r,��, �19�

here Ad�x,z,�n,�� is called the acquisition dip-response �ADR�
ector for point �x,z�; �n is the reflector normal angle to the vertical
equal to the migration-dip angle�; and �r is the reflection angle with
espect to the normal, which can be obtained from �s and �g �Chen et
l., 2006�. The value of the ADR map measures the dip-angle re-
ponse of the acquisition system, including the source and receiver
pertures, and propagation effects. Figure 7 shows the difference be-
ween the DI andADR maps.

NUMERICAL TESTS ON 2D AND 3D
SEG/EAGE MODELS

irectional illumination analysis (DI and ADR maps)
or the 2D SEG/EAGE model

We use both local slant-stacking and local exponential-beamlet
ethods for the directional illumination analysis of the 2D SEG/
AGE salt model, which has 1200 samples with an interval of 25 m

n the horizontal direction and 150 samples with an interval of 25 m

Sources Receivers

Gs

Gr

θ θs g

igure 6. An illustration of acquisition geometry.
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n depth. The minimum velocity is 1524 m /s, and the maximum ve-
ocity is 4480 m /s. There are 325 shots with an interval of 50 m, and
ach shot has 176 receivers in its left side with an interval of 25 m.
rom a comparison of the directional illumination maps �Figures 8
nd 9�, we see that the quality of analysis using the LEF method is
imilar to that of the more time-consuming local slant-stacking
ethod. Some slight differences exist due to the lower redundancy

nd the procedure of interpolation from the local wavenumber do-
ain to the local angle domain, which was discussed in the previous

ection.
Figure 10 shows the ADR maps from the new LEF method. With

imilar illumination results, the computational cost of the LEF meth-
d is only one-fourth that of the local slant-stacking method for this
D example. These directional illumination results clearly explain
he reason for the drastic variations in image amplitude and its dip
ependency in the subsalt region. This efficient method can be de-
eloped further for fast acquisition aperture corrections, which will
e discussed in future publications.

Let us briefly discuss the computational efficiency of the method
n the 2D case. We compare this LEF method with the time-consum-
ng local slant-stacking method and the Gabor-Daubechies �G-D�
rame method. We assume the same window length Lwin for the
aussian window and the bell window, which correspond to the lo-

al slant-stacking �or G-D frame� and LEF beamlet decompositions,
espectively. For the local slant-stacking method, a slant-stack com-
utation with O�Lwin
Lwin� is required for each sample point, which
esults in a total computational complexity of O�N
Lwin
Lwin�
N is the total sample number�. For the G-D frame method, a fast
ourier transform �FFT� computation with O�Lwin log2 Lwin� is done
or each Gaussian window. However, the G-D frame is not stable
hen the redundancy is two, which means we have to use more win-
ows to evade this difficulty. If the redundancy is four, as we usu-
lly used, the G-D frame method needs a total computation of
�4
N
 log2 Lwin�.
On the other hand, for the LEF beamlet decomposition, we need

nly a local cosine transform �LCT� and a local sine transform �LST�
omputation with O�Lwin log2 Lwin /4� �due to the use of the folding
echnique in the fast LCT and LST�. Therefore, the LEF method
eeds a total computation of O�2
N
 log2 Lwin /4�. For example, if

win�16, these three methods need O�256
N�, O�16
N�, and
�4
N� computations, respectively. The other advantage of using

he local exponential beamlets is the availability of LCB coefficients
uring the propagation, which saves some computational time for
he LEF decomposition. In summary, the analysis using the LEF is

uch more efficient than using the local slant-stacking and G-D
rame methods.

Illumination Dip responsea) b)

Illumination
angle

Source

Target

Receiver Source

Reflector
normal

Dip angle

Target
θ̄

θ̄

igure 7. Asketch of the concept of DI andADR.
irectional illumination analysis for different
requencies

We have mentioned that the directional illumination analysis is
requency dependent. To study the frequency-dependent effect, we
rst calculate and compare the directional illumination �DI� maps
or a low frequency �5 Hz�, the main frequency �15 Hz�, and a high
requency �30 Hz�. Figure 11 shows clearly that the angular resolu-
ion for the low frequency is much lower than that for the high fre-
uency.

Figure 12 shows in detail the frequency-dependent effect of illu-
ination variation. It plots the DI strength distribution for three fre-

uencies along a horizontal line at a given depth �z�3.25 km� for
he incident angle of �30°. Within a narrow frequency band, the DI
trength distribution is similar, but it changes significantly when the
requency difference is large. From this observation, we can develop
ome frequency-dependent illumination compensation methods for
ultifrequency bands to improve the image quality.
In our calculation, the same window length was used to do the

eamlet decomposition for all frequencies. In this way, the window
ength �beamwidth� contains fewer wavelengths and therefore has a
eaker focusing effect for low-frequency than for high-frequency
aves. This means that for the same spatial resolution �space local-

zation�, the angular resolution is frequency dependent. The other
ption is to have a multiscale windowing scheme so that the angular
esolution stays the same, but spatial resolution becomes frequency
ependent.
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igure 8. Directional illumination �DI� maps using the local slant-
tacking method: �a� DI map for the incident angle � s��30°; �b�
I map for the incident angle � s�0°; �c� DI map for the incident an-
le � �30°; �d� total illumination.
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irectional illumination analysis (DI maps and ADR
aps) for the 3D SEG/EAGE model
In the 3D case, as we know, the computational growth is geomet-

ic. As a result, the local slant-stacking method and the G-D frame
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igure 9. Directional illumination �DI� maps using the local expo-
ential frame decomposition: �a� DI map for the incident angle � s�
30°; �b� DI map for the incident angle � s�0°; �c� DI map for the

ncident angle � s�30°; �d� total illumination.
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igure 10. Acquisition dip response �ADR� using the local exponen-
ial frame decomposition: �a� ADR map for the dip angle � n�

20°; �b� ADR map for the dip angle � n�0°; �c� ADR map for the
ip angle � �20°.
n
ethod are quite time-consuming to use in 3D directional illumina-
ion. However, the LEF method is still affordable in the 3D case.

To demonstrate the application of the illumination analysis, we
alculate numerical examples using the 3D SEG/EAGE salt velocity
odel. This example simulates the illumination condition of the 45-

hot data set. The data set represents a land acquisition geometry.
he grid size for the model consists of 676, 676, and 210 grids in the
-, y- and z-axes, respectively, with 20 m for the horizontal and
epth intervals. The locations of those 45 shots are shown in Figure
3a. Each shot has 201
201 receivers with an interval of 20 m
long both x- and y-directions. Figure 14 shows the vertical and hori-
ontal slices �marked in Figure 13b� of the velocity model and mi-
ration image.

0

1

2

3D
ep

th
(k

m
)

0

1

2

3D
ep

th
(k

m
)

0 Max

0

1

2

3D
ep

th
(k

m
)

12 14 16 18 20 22
Distance (km)

a)

b)

c)

igure 11. Directional illumination �DI� maps for the incident angle
s��30°: �a� DI map for 5 Hz; �b� DI map for 15 Hz; �c� DI map

or 30 Hz.
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Figure 15 is the result of DI maps of different incident angles �s,
ncluding the y-left incidence �� s�30°, 	s��90°�, vertical inci-
ence �� s�0°, ∀	s� and y-right incidence �� s�30°, 	s�90°�, re-
pectively. From the DI maps, we can clearly see the energy flux of
ifferent local angles, especially for the subsalt area. For the ADR
alculation, a large amount of computation is needed to get each re-
eiver’s Green’s function, and then we use some sampled receiver’s
reen’s function to get theADR maps. In this example, the sampling

nterval is eight for both x- and y-axes, which means we calculate
ne Green’s function in every 8
8 grid.

Figure 16 shows the ADR maps calculated by the local exponen-
ial frame method. The dip-angle ranges are �0° � � n � 90°, 	n�

90°�, �� n�0°, ∀	n�, and �0° � � n � 90°, 	n�90°�, which rep-
esent negative, zero, and positive dip responses, respectively. These
gures show the different responses for different dip angles, which
re due to the salt structure and the acquisition system. From Figure
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igure 13. �a� Location of the 45 shots; �b� location of the slices for
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5, we see that the illumination with negative azimuthal angles is
uch poorer than that with positive azimuthal angles. Correspond-

ngly, in Figure 16, the dip responses for reflectors with negative dips
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� ADR for the dip angle �0° � �n � 90°, 	n��90°�; �c, d� ADR
or the dip angle ��n�0°, ∀	n�; �e, f� ADR for the dip angle �0°

� � 90°, 	 �90°�.
n n



a
m
s

o
t
i
t



o
c
t
w
w

u
f
s
c
N
t
l
w
a
u

t
f
r
o
u
p
t
h
m
c
L
o
t
a
m
m
t
a

Y
e
m
S

T
p

w

T
e

F

e

e
c
e
t
e
v
l
s
t

Directional illumination analysis S171

D
ow

nl
oa

de
d 

10
/1

7/
14

 to
 1

46
.2

01
.1

59
.8

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

re weaker than those with positive dips. From these directional illu-
ination results, we can also explain the poor image quality of the

ubsalt area for reflectors with certain dip angles.
Let us also discuss the computational cost between the LEF meth-

d and the local slant-stacking method in the 3D case. According to
he efficiency discussion in the 2D case, the basic computational cost
s squared for these methods. If an N
N wavefield is decomposed,
he local slant-stacking method needs an order of O�N
N
Lwin

Lwin
Lwin
Lwin� computation, whereas the LEF method needs
nly O�4
N
N
 log2 Lwin /4
 log2 Lwin /4� computation. In the
ase of Lwin�16, the computational costs for the LEF method and
he local slant-stacking method are O�16
N2� and O�65536
N2�,
hich means more than 4000 times the saving in CPU time for the
avefield decomposition.
In addition, the LEF method also reduces the memory and storage

sage for the 3D case. In the illumination calculation, one Green’s
unction can be used at different acquisition apertures of different
hots. Therefore, the Green’s functions are saved to avoid repetitive
alculation. However, the local slant-stacking method will create

N
Lwin
Lwin coefficients in the local angle domain, whereas

he LEF method has only 4
N
N coefficients. For a window
ength of Lwin�16, the memory saving will be 64 times greater. In a
ord, the local exponential frame provides a very efficient direction-

l illumination method with a dramatic saving in internal memory
sage.

CONCLUSIONS

We have developed an efficient method of directional illumina-
ion analysis in the local angle domain using local exponential-
rame �LEF� beamlets, which form a tight frame of the redundancy
atio two. Due to the availability of the local cosine basis �LCB, an
rthogonal decomposition� coefficients during wave propagation by
sing the LCB propagator, we need only an extra orthogonal decom-
osition �local sine transform� to get into the local angle domain. As
he local cosine/sine transforms have fast algorithms, this method
as a much higher efficiency than the Gabor-Daubechies frame
ethod and the local slant-stacking method, especially in the 3D

ase. In the case of Lwin�16, where Lwin is the window length of the
EF decomposition, the CPU saving over the local slant-stack meth-
d is more than 4000 times greater, and the memory saving is 64
imes greater. Numerical examples of directional illumination maps
nd the acquisition dip responses for the 2D and 3D SEG/EAGE salt
odels illustrate the validity and efficiency of the new method. This
ethod can be used to develop efficient algorithms for image ampli-

ude compensation in the local angle domain for true-reflection im-
ging.
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APPENDIX A

THE BELL FUNCTION FOR LOCAL
TRIGONOMETRIC BASES

The bell function can be defined as

Bn�x���
0, x� x̄n��

�� x� x̄n

�
�, x̄n���x� x̄n��

1, x̄n���x� x̄n�1���

�� x̄n�1�x

��
�, x̄n�1����x� x̄n�1���

0, x x̄n�1���

	 .

�A-1�

he expression � �x� denotes a shape function �rising or decaying
rofile�, which is defined as

� k�1�x��� k�sin
�x

2
� for x� ��1,1�, �A-2�

ith k�0, and

� 0�x��sin� 4

�
�1�x�� for x� ��1,1� . �A-3�

he smoothness of � k�1�x� is associated with the parameter k. For
xample, for k�0,

� 1�x��sin� 4

�
�1�sin

�x

2
�� . �A-4�

igure A-1 shows three bell functions with k�0, k�2, and k�4.
The properties of the bell function,

�BI�x�2�BI�2� �x�2�1, x� �� ��,� ���
BI�x�2�BI�2� �x�2�1, x� �� ���,� ����
BI�x��1, x� �� ��,� ����,

	
�A-5�

nsure the orthonormality of the bases.
Bell functions can have all but an arbitrarily small amount of en-

rgy localized in just the positive part of the frequency. This is
aused by the construction scheme of the localized bases and is relat-
d to the shape of the bell functions. The energy leakage is defined as
he energy leaked to the negative frequency compared to the total en-
rgy. The energy leakage can be very small when k in equation A-2 is
ery large. However, a bell function with larger k has less frequency
eakage, but has worse time-frequency localization because of the
teep wall of the bell function. This is a compromise. In our calcula-
ion, we usually use a bell function with k�2.
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APPENDIX B

DERIVATION OF WAVEFIELD DECOMPOSITION
USING LOCAL EXPONENTIAL FRAMES

The frequency-space-domain wavefield u�x,z,�� at depth z can
e decomposed into beamlets along the x-axis with the local cosine
asis �LCB� beamlet

u�x,z,���

n



m

û�c��x̄n,�̄ m,z,��bmn
�c��x� �B-1�

nd the local sine basis �LSB� beamlet

u�x,z,���

n



m

û�s��x̄n,�̄ m,z,��bmn
�s� �x�, �B-2�

here û�c�� x̄n,�̄ m,z,��� �u�x,z,��,bmn
�c��x�� and û�s�� x̄n,�̄ m,z,��

�u�x,z,��,bmn
�s� �x�� are decomposition coefficients of the LCB and

he LSB, respectively. Both û�c�� x̄n,�̄ m,z,�� and û�s�� x̄n,�̄ m,z,�� are
omplex coefficients.

Then the wavefield can be described as a linear combination of
he two above decompositions,

a)

b)

c)

igure A-1. Bell functions associated �from top to bottom� with �a�
�1, �b� k�3, and �c� k�5.
u�x,z,���
1

2

n



m

�û�c��x̄n,�̄ m,z,��bmn
�c��x�� û�s�


�x̄n,�̄ m,z,��bmn
�s� �x�� . �B-3�

ubstituting the local cosine and sine bases with their exponential
xpressions, we get

u�x,z��
1

2

n



m
�û�c��x̄n,�̄ m,z,��

1

2
�gmn

����x��gmn
����x��

� û�s��x̄n,�̄ m,z,��
1

2i
�gmn

����x��gmn
����x���

�

n



m
� û�c��x̄n,�̄ m,z,��� iû�s��x̄n,�̄ m,��

4
gmn

����x�

�
û�c��x̄n,�̄ m,z,��� iû�s��x̄n,�̄ m,z,��

4
gmn

����x�� .

�B-4�

s a result, the local exponential-decomposition coefficients can be
alculated as

�û����x̄n,�̄ m,z,���
û�c��x̄n,�̄ m,z,��� iû�s��x̄n,�̄ m,z,��

4

û����x̄n,�̄ m,z,���
û�c��x̄n,�̄ m,z,��� iû�s��x̄n,�̄ m,z,��

4
	 .

�B-5�

hen the wavefield decomposition using the LEF can be expressed
s

u�x,z,���

n



m

û����x̄n,�̄ m,z,��gmn
����x�� û���


�x̄n,�̄ m,z,��gmn
����x� . �B-6�

f we rewrite equation B-6 with the full expression of the LEF, we get

u�x,z,���

m

exp�i�̄ mx�

n

û����x̄n,�̄ m,z,��� 2

Ln
Bn�x�


exp�� i�̄ mx̄n��

m

exp�� i�̄ mx�

n

û���


�x̄n,�̄ m,z,��� 2

Ln
Bn�x�exp�i�̄ mx̄n� . �B-7�

herefore, the directional information for the space point �x,z� and
ocal direction with �̄ m as the local wavenumber can be extracted by
he partial reconstruction
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�u����x,z,�̄ m,���exp�i�̄ mx�

n

û����x̄n,�̄ m,z,��� 2

Ln

Bn�x�exp�� i�̄ mx̄n�

u����x,z,�̄ m,���exp�� i�̄ mx�

n

û����x̄n,�̄ m,z,��� 2

Ln

Bn�x�exp�i�̄ mx̄n� 	 .

�B-8�

ollectively, u����x,z,�̄ m,�� and u����x,z,�̄ m,�� are local plane
aves in the local wavenumber domain.

APPENDIX C

LOCAL EXPONENTIAL FRAME EXTENSION
FOR THE 3D CASE

D local exponential frame

To use the LEF in the 3D case, we need expressions of the LEF for
he 2D decomposition. The 2D LEF atoms can be defined as

gmnpq�x��� 2

LnLq
Bnq�x�exp�i�̄mp · �x� x̄nq��,

�C-1�

here x� �x,y�, x̄nq� � x̄n,ȳq�, and �̄mp� � �̄ m,�̄ p�. The expression ·
tands for the dot product. The expressions Bnq�x��Bn�x�Bq�y� and
mnpq�x� represent 2D functions.
The 2D LEF also can be written as follows:

�
gmnpq

�����x,y��� 4

LnLq

Bn�x�Bq�y�exp�i�̄ m�x� x̄n��exp�i�̄ p�y� ȳq��

gmnpq
�����x,y��� 4

LnLq

Bn�x�Bq�y�exp�i�̄ m�x� x̄n��exp�� i�̄ p�y� ȳq��

gmnpq
�����x,y��� 4

LnLq

Bn�x�Bq�y�exp�� i�̄ m�x� x̄n��exp�i�̄ p�y� ȳq��

gmnpq
�����x,y��� 4

LnLq

Bn�x�Bq�y�exp�� i�̄ m�x� x̄n��exp�� i�̄ p�y� ȳq��

	,

�C-2�

here the superscripts ����, ����, ����, and ���� denote the differ-
nt azimuthal directions in the 3D case. The 2D LEF is also a tight
rame with the redundancy of 4, which can also be implemented by
inear combinations of the 2D local trigonometric basis �LTB�.

The relationship between the 2D LEF and 2D LTB is

�
gmnpq

�����x�� �bmnpq
�cc� �x�� ibmnpq

�cs� �x��� i�bmnpq
�sc� �x�� ibmnpq

�ss� �x��

gmnpq
�����x�� �bmnpq

�cc� �x�� ibmnpq
�cs� �x��� i�bmnpq

�sc� �x�� ibmnpq
�ss� �x��

gmnpq
�����x�� �bmnpq

�cc� �x�� ibmnpq
�cs� �x��� i�bmnpq

�sc� �x�� ibmnpq
�ss� �x��

gmnpq
�����x�� �bmnpq

�cc� �x�� ibmnpq
�cs� �x��� i�bmnpq

�sc� �x�� ibmnpq
�ss� �x��

	,

�C-3�

here bmnpq
�cc� �x�, bmnpq

�cs� �x�, bmnpq
�sc� �x�, and bmnpq

�ss� �x� are 2D LTB func-
ions. Take bmnpq

�cs� �x� as an example:

bmnpq
�cs� �x��bmn

�c��x�bpq
�s��y� . �C-4�
avefield decomposition using the LEF in the 3D case

The 2D wavefield in the x-y plane can be decomposed by the 2D
ocal exponential frames

u�x,z,���

n



m



q



p

�u�x,z,��,gmnpq�x��gmnpq�x�

�

n



m



q



p

�û�����x̄nq,�̄mp,z,��gmnpq
�����x�

� û�����x̄nq,�̄mp,z,��gmnpq
�����x�� û����


�x̄nq,�̄mp,z,��gmnpq
�����x�� û����


�x̄nq,�̄mp,z,��gmnpq
�����x�� . �C-5�

et ûmnpq
�����z�, ûmnpq

�����z�, ûmnpq
�����z�, and ûmnpq

�����z� represent û����

� x̄nq,�̄mp,z,��, û����� x̄nq,�̄mp,z,��, û����� x̄nq,�̄mp,z,��, and û����

� x̄nq,�̄mp,z,��; then the LEF decomposition coefficients can be cal-
ulated as follows:

�
ûmnpq

�����z��
1

16
�ûmnpq

�cc� �z�� iûmnpq
�cs� �z�� iûmnpq

�sc� �z�� ûmnpq
�ss� �z��

ûmnpq
�����z��

1

16
�ûmnpq

�cc� �z�� iûmnpq
�cs� �z�� iûmnpq

�sc� �z�� ûmnpq
�ss� �z��

ûmnpq
�����z��

1

16
�ûmnpq

�cc� �z�� iûmnpq
�cs� �z�� iûmnpq

�sc� �z�� ûmnpq
�ss� �z��

ûmnpq
�����z��

1

16
�ûmnpq

�cc� �z�� iûmnpq
�cs� �z�� iûmnpq

�sc� �z�� ûmnpq
�ss� �z��

	,

�C-6�

here ûmnpq
�cc� �z�, ûmnpq

�cs� �z�, ûmnpq
�sc� �z�, and ûmnpq

�ss� �z� are the complex coef-
cients of the LTB decomposition of the wavefield. The derivation is
imilar to that in the 2D case.

The partial reconstruction expression of the wavefield is

u�x,�̄mp,���exp�i�̄mp ·x�

n



q

ûz�x̄nq,�̄mp,��


� 4

LnLq
Bnq�x�exp�� i�̄mp · x̄nq�,

�C-7�

hich represents a directional local plane wave in the 3D case.
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