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Abstract
Classifying common atoms in organic compounds in terms of families in periodic table of
elements and hybridization states, a novel rotation – translation invariant Three-
Dimensional Molecular Structural Characteristic (3D-MSC) method, Three-Dimensional
Holographic Vector of Atom Interacting Field (3D-HoVAIF), is proposed by calculating
three kinds of interatomic nonbonding interactions namely electrostatic, van der Waals,
and hydrophobic interactions. In an attempt to apply 3D-HoVAIF into QSAR studies on
antimalarial activities of 32 artemisinin derivatives, the resulting Genetic Algorithm-Par-
tial Least Square (GA-PLS) model is confirmed to be stable and predictable by both
modeling validation and methodological contrast. For external test set, the 3D-HoVAIF
model has correlation coefficient (qext

2) and Root Mean Square Error of Prediction
(RMSEP) of 0.751 and 0.372, respectively.

1 Introduction

Quantitative Structure –Activity Relationship (QSAR)
plays an important role in Computer-Aided Drug Design
(CADD) by providing internal relationship between drug
molecular structures and bioactivities by mathematical
and statistical methods, thus directing meaningful pharma-
codynamic predictions on unknown compounds and struc-
tural modifications on lead compounds. Often QSAR
studies involve in two keys: Molecular Structural Charac-
terization (MSC) and construction of statistical model.
MSC aims to transform molecular structural features into
a group of numerical codes, and to endeavor to minimize
information loss during this process. In early 1940s, Wiener
[1] proposed the famous W index on the basis of two-di-
mensional graphical structures, and following that, a series
of other topological indices were consequently developed,
including Hosoya index (Z index) [2], Randic index (c in-
dex) [3], Balaban index (J index) [4], Kier –Hall index (mcv

index) [5], etc. which achieved successful results on predic-
tions of physicochemical properties for simple homologous
compounds. Then the middle of 1960s witnessed prelude
of QSAR studies, confirmed by the Hansch –Fujita analyt-
ical method (proposed by Hansch and Fujita [6] to relate
molecular bioactivities to physicochemical properties) and
Free –Wilson method (corporately created by Free and

Wilson [7] to relate molecular bioactivities to indication
variables) which were later successfully utilized in the
drug design of pyridonecarboxylic [8], dihydrofolate re-
ductase inhibitor [9], etc. However, based on molecular
two-dimensional structures, the above-mentioned methods
are all insufficient in providing information on three-di-
mensional drug – receptor interactions, thus being restrict-
ed with respect to further development. In contrast with
2D-MSC, Three-Dimensional Molecular Structural Char-
acteristic (3D-MSC) methods are more amenable to physi-
cochemical interpretations, enabling directly reflections of
ligand – receptor binding manners and nonbonding inter-
actions in drug molecules and thus obtaining wide general-
ization in QSAR fields in the last 20 years. Among many
3D-MSC methods, Comparative Molecular Field Analysis
(CoMFA) [10], proposed on the basis of DYLOMMS [11]
and PLS [12] by Cramer, has attracted considerable impor-
tance as a standard QSAR technique to be widely utilized
in drug analysis and design. In addition to CoMFA, other
3D-MSC methods are also put forward one after one, with
some pertaining to conformational alignment-dependent
kinds (e.g., CoMSIA [13], HASL [14], COMPASS [15],
etc.) and some to conformational alignment-independent
(e.g., WHIM [16], COMMA [17], GRIND [18], etc.). The
latter is often called Translationally and Rotationally In-
variant Descriptor (TRI descriptor) [19] which has great
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merits such as easy calculation, simple operation, fewer in-
terferences, conformational insensitiveness etc., thus ensur-
ing high-speed calculations and reproducibility to achieve
wide applications in the quick screening of drug-related
database and pharmacodynamic evaluation of lead com-
pounds. Although many available references always report
that qualities of TRI model are in no way inferior to that
of CoMFA, TRI descriptor applications largely fall behind
conformation alignment-dependent CoMFA methods
since TRI models are less interpretable.
According to atomic valence number, atoms have al-

ways been classified into for four types by Liu et al. [20 –
23] who subsequently discussed electronic interactions at
2D electrotopological levels. Enlightened by this idea,
common atoms in organic compounds are classified for
ten types in terms of families in periodic table of ele-
ments and hybridization states, and following that, a fur-
ther step is taken by calculating electrostatic, van der
Waals and hydrophobic interactions among the ten atom-
ic types based on molecular 3D structures, herein result-
ing in a novel TRI descriptor Three-Dimensional Holo-
graphic Vector of Atomic Interacting Field (3D-HoV-
AIF). Compared with traditional 3D-MSC, 3D-HoVAIF
differs in the following points: (a) distributions of non-
bonding interaction potential fields are indirectly embod-
ied into intramolecular interatomic interactions; (b) that
atoms are classified according to chemical properties ele-
vates resolution abilities on molecular structures and in-
terpretabilities on statistical model; (c) avoiding demerits
such as conformation alignment, grid assignment, and
probe setting in CoMFA, the calculating process is large-
ly simplified. By applying the 3D-HoVAIF approach to
systematic QSAR studies on 32 artemisinin derivatives,
this method has been confirmed to be efficacious to indi-
cate information on molecular steric nonbonding poten-
tial fields and to relate with bioactivities via strict exter-
nal and internal validations, with model constructed of
high qualities and good interpretabilities.

2 Principle and Methodology

2.1 Atomic Types

As is well known, a fundamental rule in QSARs is in that
molecular properties depend upon structures. Thus, it is
deemed that constituent atoms of a molecule provide in-
sight into its external properties. Often common atoms in
organic molecules are distributed over five families in peri-
odic table of elements (e.g., H in family IA, C and Si in
family IVA, N and P in family VA, O and S in family VIA,
F, Cl, Br, and I in family VIIA), so atoms are naturally
classified into five types according to families. On further
consideration, since the same atom may sometimes behave
with distinct chemical properties in different hybridization
states, the above-mentioned five atomic types are further

divided into ten types according to hybridization states
(Table 1).

2.2 Cross-Interactions

As a chemical entity, the organic molecule has its internal
atoms associated with each other by chemical bonds and
other factors. In 3D-HoVAIF, ten atomic types are de-
fined, thus resulting in 55 interactions (Table 1). Taking
into account that drug – receptor binding is usually closely
related to three nonbonding interactions, namely to elec-
trostatic, van der Waals, and hydrophobic interactions, 3�
55¼165 interaction items ultimately correspond to an or-
ganic molecule as the total 3D-HoVAIF descriptors. Al-
though not directly indicating ligand – receptor interac-
tions, these 3D-HoVAIF descriptors are rich in informa-
tion on molecular potential field distributions in many cas-
es that receptor structures are unknown.

2.3 Atomic Interaction Potential Energies

Electrostatic interaction, as an important nonbonding in-
teraction, follows CoulombLs law (Eq. 1). In this equation,
dij denotes interatomic Euclid distance, with Ḿ serving as
its unit; e (1.6021892�10�19 C) represents elementary
charge; e0 (8.85418782�10�12 C2/J ·m) indicates dielectron-
ic constant in vacuum; q is atom partial charges; m and n
are atomic attributes.

Vele
mn ¼

X
i2m

X
j2n

e2

4pe0

qiqj

dij

(1�m�10, m�n�10) (1)

van der Waals interaction describes interatomic spatial
nondipole – dipole or dipole-induced interactions, here ex-
pressed by the Lennard – Jones equation (Eq. 2), where
eij¼ (eii ·ejj)

1/2 is the potential well of atom pairs, with its
value taken from Ref. [24]; Rij*¼ (ChRii*þChRjj*)/2 is
the van der Waals radius for modified atom-pair, with cor-
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Table 1. Ten atomic types and their 55 interactions in 3D-HoV-
AIFs.

No. Atomic type 1 2 3 4 5 6 7 8 9 10

1 H 1 – 1 1 – 2 1 – 3 1 – 4 1 – 5 1 – 6 1 – 7 1 – 8 1 – 9 1 – 10
2 C(sp3) 2 – 2 2 – 3 2 – 4 2 – 5 2 – 6 2 – 7 2 – 8 2 – 9 2 – 10
3 C(sp2) 3 – 3 3 – 4 3 – 5 3 – 6 3 – 7 3 – 8 3 – 9 3 – 10
4 C(sp) 4 – 4 4 – 5 4 – 6 4 – 7 4 – 8 4 – 9 4 – 10
5 N(sp3) , P(sp3) 5 – 5 5 – 6 5 – 7 5 – 8 5 – 9 5 – 10
6 N(sp2) , P(sp2) 6 – 6 6 – 7 6 – 8 6 – 9 6 – 10
7 N(sp) , P(sp) 7 – 7 7 – 8 7 – 9 7 – 10
8 O(sp3) , S(sp3) 8 – 8 8 – 9 8 – 10
9 O(sp2) , S(sp2) 9 – 9 9 – 10
10 F, Cl, Br, I 10 – 10
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rected factors C(sp3)¼1.00, C(sp2)¼0.95, and C(s)¼0.9
[25].

Vste
mn ¼

X
i2m

X
j2n

eij

R�ij
dij

� �12

�2
R�ij
dij

� �6
" #

(1�m�10, m�n�10) (2)

Hydrophobic interaction plays very important roles for
drug molecules binding to organisms. Indicating informa-
tion on systematic entropic changes, this interaction is dif-
ficult to be uniformly described. In 3D-HoVAIF, hydro-
phobic interaction is expressed by Eq. 3 which is defined
in method Hint proposed by Kellogg et al. [26]. In this
equation, S is the atomic Solvent Accessible Surface Area
(SASA) [27], indicating the surface area formed by a wa-
ter-molecule probe rolling its center at an atom surface in
a circle; a is the atomic hydrophobic constant, value taken
from Ref. [28]; T is the discriminant function, denoting en-
tropic changing orientation when different interatomic in-
teractions take place.

Vhyd
mn ¼

X
i2m

X
j2n

SiaiSjaje
�dij Tij

(1�m�10, m�n�10) (3)

2.4 3D-HoVAIF Illustration

Scheme 1 illustrates the calculating process of 3D-HoV-
AIF descriptors for several hetero atoms included in a
benzene substitution. As for atoms N(sp3), O(sp3), and F
which pertain to the 5th, 8th, and 10th atomic types re-
spectively, interactions among them are separately of 5 – 8,
5 – 10, and 8 – 10 3D-HoVAIF kinds. In the same way, in-
teractions between atoms H�H, C(sp2)�C(sp2), and
C(sp2)�H, as well as these and hetero atoms, can also be
calculated.

3 Results and Discussion

3.1 Dataset for Artemisinin Derivatives

Qinghao (Artemisia annua), a Chinese traditional medi-
cine, lasted for more than 2000 years. In 1972, the valid in-
gredient artemisinin (Figure 1) of this plant was successful-
ly isolated and identified, generating considerable interest
worldwide due to its particular structure and high antima-
larial activity but low toxicity [29, 30]. Catalyzed by
heme – iron complex (Figure 2), artemisinin breaks its per-
oxy bond, dissociating into a series of free radicals which
would disturb functions of membrane-bioblast of plasmo-
dium [31, 32]. For the reason that this process includes
many intricate steps, the antimalarial mechanism has not
yet been completely elucidated in spite of extensive stud-
ies at molecular levels [33 – 36]. Thirty-two artemisinin de-
rivatives are taken from refs. [37 – 41], with activities IC50

tested by Plasmodium falciparum D-6 clone. To reduce
differences among different experiments, relative activities
(RA) are employed, expressed as log(RA)¼ log[(artemisi-
nin IC50/analogue IC50)� (analogue MW/artemisinin
MW)] [42] (Table 2).

3.2 Calculations for 3D-HoVAIF

The original steric structure of heme is peeled off from the
crystal structure of hemoglobin which was tested at 2.1 M
resolution by X-ray diffraction by Shaanan [43] (PDB ID:
1HHO) (Figure 3). Assignment of electronic charges to
heme is implemented by quantum chemical software pack-
age Gaussian 98W at density function levels (B3LYP/6-
31G**). While the artemisinin steric structure is construct-
ed by molecular simulating software HyperChem 7.5 [44],
it is then optimized at molecular mechanics levels
(MMþ force field). Artemisinin – heme interaction is simu-
lated by molecular docking software AutoDock 3.0 [45],
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Scheme 1. Illustration of 3D-HoVAIF calculations.
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with detailed parameter settings referring to reports by
Tonmunphean et al. [46]. Figure 4 presents the most stable
artemisinin – heme binding conformation among a series
of candidates generated by molecular docking, indicating
that peroxy bridge of artemisine gets close to iron Fe2þ of

heme from its obverse side, with the two O-Fe2þ distance
of 1.98 and 2.76 M, respectively. Taking this docking com-
plex as the conformation template, we construct and opti-
mize molecular structures of 32 artemisine derivatives by
molecular simulating software HyperChem 7.5 [44]. Then
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Table 2. Molecular structures and bioactivities of 32 arteminisin derivatives.

No.a Compound R1 R2 R3 log(RA)

Observed Calculated (M1) Calculated (M2)

1 a �H �CH3 – 0.854 0.7716 1.1079
2* a �CH2COOCH2CH3 �CH3 – 0.689 0.0316 0.3687
3 a �(CH2)2COOCH3 �CH3 – 0.202 0.1199 �0.1315
4* a �CH2C6H4COOCH3 �CH3 – 0.580 �0.9663 0.9348
5 a �CH2COO� �CH3 – �1.264 �1.3123 �1.4090
6* a �(CH2)2COO� �CH3 – �1.463 �0.3084 �1.0063
7 a �(CH2)3COO� �CH3 – �1.411 �1.4146 �1.2246
8 a �CH2C6H4COO� �CH3 – 0.226 0.1975 �0.0044
9 a �(CH2)3COOH �CH3 – �0.786 �0.1032 0.4737
10 a �CH3 �CH3 – 0.423 0.2050 �0.4210
11 a �C2H5 �CHO � 0.079 �0.3924 �0.1139
12 a �C2H5 �CH3 – 0.146 �0.1967 0.3688
13 b Phenyl – – �0.786 �0.5636 �0.5839
14 b 2-N-phenyl – � �1.139 �0.8805 �1.2511
15 b 2,6-N-phenyl – – �1.666 �0.9046 �1.3430
16* c �CH2CH2CH3 �CH2C6H5 – �0.122 0.6355 0.1032
17 c �CH2C6H5 �CH2CH2CH3 – 0.375 0.6347 0.7679
18* c �C6H5 �COOCH2CH3 � 0.904 0.3025 1.3650
19 c �COOCH2CH3 �C6H5 – 0.655 0.4792 0.5825
20 c �CH3 �C6H4�CF3(p) – 0.199 �0.6203 �0.0234
21 c �CH2COOCH2CH3 �C6H5 – 0.667 0.6277 0.5976
22 c �C6H5 �CH2COOCH2CH3 – 0.700 0.6360 0.5973
23 c �CH2COOCH2CH3 �C6H4�NO2(p) – 0.612 0.5583 0.5986
24 c �C6H4-NO2(p) �CH2COOCH2CH3 – 0.971 0.6083 0.5971
25 c �C6H4-COOCH3(p) �CH3 – 0.522 0.3655 0.5438
26 c �CH3 �C6H4�COOH(p) – �0.399 �0.0054 �0.5169
27* c �C6H4-COOH(p) �CH3 – �0.105 �0.4262 �0.3137
28 c �CH2COOH �C6H4�NO2(p) – �0.094 0.2172 0.3028
29 d �OH �CH3 �CH2CF3 0.255 0.7037 �0.0441
30 d �CH3 �OH �CH2CF3 �0.824 �0.8412 �0.3811
31* d �OH �CH3 �CH2CH3 �0.347 �0.9692 0.1301
32 d �CH3 �OH �CH2CH3 �1.097 �0.5785 �0.8938

a“*” Superscript indicates that the compound was chosen to be a member of the test set.

Figure 1. Molecular structure of arteminisin. Figure 2. Molecular structure of heme.
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the optimum structures are selected and put into semi-ex-
perimental quantum chemical software MOPAC 6.0 [47],
and following that, atomic MTlliken partial charge is calcu-
lated in the form of single point at PM3 levels for each
molecule. Finally, Cartesian coordinates and partial charg-
es for each atom are obtained and fed into the GET3D
program (written in C language), generating the ultimate
3D-HoVAIF descriptors.

3.3 Partition of Sample Set and Validation of the Model

Recently, many researches indicate that only the cross-val-
idation q2 is insufficient in confirming validities of the
QSAR model and it needs both rigorous statistical and ex-
ternal tests [48 – 50]. During this process, how to effective-
ly divide the test set is very important. While the common
method of random sampling is practically proved to be
greatly arbitrary and incidental, it is infeasible to ensure
training set space efficiently to cover the test set. In view

of that, D-optimal (determinant-optimal) algorithm is uti-
lized to divide the test set. D-optimal is an algorithm
which allows for sampling space of the training set the
mostly covers the test set via maximizing the determinant
value of information matrix (X’X) of the training set, Here
the details about D-optimal are introduced in Ref. [51, 52].
In this context, the D-optimal algorithm is implemented
by Matlab 7.0 [53], generating 25 training and seven test
samples (marked by symbol “*” in Table 2).
For the test set, modeling predictabilities are often eval-

uated by external correlation coefficient and Root Mean
Square Error of Prediction (RMSEP), while recently sev-
eral following parameters, reported by Tropsha et al. [54,
55], are deemed to be more convincible for such a purpose

q2
ext ¼ 1�

Pnext

i�1 ðYi
obsd � Yi

predÞ
2Pnext

i�1 ðYi
obsd � �YtraÞ2

ð4Þ

or
r2

ext � r00;ext2

r2
ext

0.85�k�1.15 or 0.85�k’�1.15 (6)

where qext
2 (external q2) is the external correlation coeffi-

cient indicating predictabilities on the test set by model.
Yi

obs denotes observed bioactivities on the test set while
Yi

pred is the predicted value by model for test samples. �Ytra

represents the average observed bioactivities over training
samples; rext

2 indicates the correlation coefficient of the ob-
served-to-predicted regression for the test set, r2

0;ext and
r00;ext2 are correlation coefficients of the origin-passed re-
gression for the test set (predicted vs. observed activities
r2

0;ext, and observed vs. predicted activitiesr00;ext2), with k
and k’ corresponding to separate slopes.

3.4 QSAR Modeling and Analysis

For the reason that 32 artemisinin derivatives are lacking
atoms P, S, Csp3, Nsp3, etc., 84 empty items occurr in 165 3D-
HoVAIFs. Removing all these empty ones, we ultimately
obtain 81 3D-HoVAIFs for each molecule, where electro-
static interactions are expressed by variables V1 –V27,
van der Waals interactions by variables V28 –V54 and hy-
drophobic interactions by variables V55 –V81. Based on
that, a linear relationship is obtained, by chemical quan-
tum software SIMCA-P 10.0 [56], to relate 3D-HoVAIFs
(X) with bioactivities (Y) for 25 training samples, and the
resulting PLS model contains two prominent principal
components which cumulatively account for 78.4% square
error of variables Y and 55.2% by cross-validation. Statis-
tics of this model are r2¼0.784, q2¼0.552, RMSEE¼
0.359, and RMSCV¼0.548. Figure 5 shows the plot of the
calculated versus observed activities for 25 training sam-
ples, with rfit¼0.886 (indicating free linear fitness) and
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Figure 3. Crystal structure of hemoglobin.

Figure 4. Artemisinin – heme binding conformation by molecu-
lar docking.
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slope kfit¼0.750, respectively. Thus, this model (called
M1), in spite of some linearity drift, is suggested to favora-
bly relate its calculated values with observed activities for
the training set. However, M1 is practically a little unsta-
ble, confirmed by its low cross-validation (q2¼0.552)
which falls below the recommended lower limit (q2>0.5)
as reported by Tropsha et al. [55]. Predicting statistics
on seven test samples by model M1 are qext

2¼0.618, rext
2¼

0.674, r2
0;ext¼0.673, r00;ext2¼0.673, k¼0.628, k’¼0.984,

and RMSEP¼0.462 (r2
ext � r2

0;ext=:r
2
ext ¼ r2

ext � r00;ext2=:r
2
ext

¼ 0:001) (Figure 6), of which only the k does not satisfy
Eq. 6. In summary, the model M1, although meeting basic
demands of QSARs, is not very perfect, with both its sta-
bilities for internal cross-validation and predictabilities for
external samples being slightly low. The reason for this
may be owing to too many 3D-HoVAIF descriptors. Al-
though containing valuable structural information, some
of them actually contribute little to artemisinin bioactivi-
ties, thus introducing noise and other interfering factors.
So, some 3D-HoVAIF descriptors, unfavorably related to
bioactivities, are filtered out prior to constructing the PLS
model. The process of variable selection is implemented
by Genetic Algorithm-Partial Least Square (GA-PLS)
[57], with relative programs Gaot_Toolbox [58] and
PLS_Toolbox [59] based on Matlab 7.0 environment. Pa-
rameter settings in GA are as follows: population size:
100, maximum iteration: 200, convergence standard: 80%
of individuals achieve to an agreement, mutation probabil-
ities: 0.5%, cross-over point: two points, cross-validation:
leave-one-out, data pretreatment: autoscaling, and other
settings just reserve the defaults. After such a screening,
the optimal subset is composed of variables V6, V9, V10,
V11, V12, V18, V24, V26, V27, V31, V32, V33, V36, V41,
V42, V47, V48, V50, V52, V55, V56, V60, V64, V67, V71,
V77, and of that there are nine electrostatic interactions,
ten van der Waals items, and seven hydrophobic interac-
tions. Generally speaking, this GA-PLS model has been
largely advanced, with ultimately 26 variables from the
overall 81 3D-HoVAIF descriptors to participate in mod-
eling. By a further analysis of this dataset by SIMCA-P
10.0 [56], the resulting PLS model (called M2) gets two
prominent principal components, with statistics as r2¼
0.852, q2¼0.778, RMSEE¼0.297, RMSCV¼0.368, rfit¼
0.923 (indicating correlativeness by free linear fitness) and
slope kfit¼0.849 (Figure 7). Then, the normal probability
of standardized residual [60] is tested for model M2 to val-
idate its normal hypothesis. From Figure 9, most sample
residues are found to obey a normal distribution, with only
one standardized residual going beyond a �2 range, so hy-
pothesis for M2 is believed to be true. Figure 10 shows
scoring scatter of the 25 samples at the top two PLS princi-
pal component spaces [60], wherein most samples fall in
the ellipse Hotelling T2 with a 95% confidence. Besides,
this figure also indicates that bioactivities of these samples
are increasingly distributed from the left to the right, and
compounds with similar bioactivities are favorably assem-

bled together, suggesting the top two principal compo-
nents are already sufficient to characterize activity distri-
bution features for this group of samples. The values pre-
dicted by M2 for seven test samples are qext

2¼0.751, rext
2¼

0.831, r2
0;ext¼0.831, r00;ext2¼0.831, k¼0.882, k’¼0.867, and

RMSEP¼0.372 (r2
ext � r2

0;ext=:r
2
ext ¼ r2

ext � r00;ext2=:r
2
ext ¼ 0),

meeting demands of Eqs. 5 and 6. Notice that r2
ext, r2

0;ext,
and r00;ext2, indicating predictabilities on test set are all of
0.831, suggesting that this model is unbiased. Figure 8 pres-
ents the origin-passed regression line which almost equally
goes through the sample area in an angle of 458 (slope k¼
0.882), with no obvious abnormal situations. To benefit a
further comparison, Table 3 lists statistics of both model
M1 and M2. In contrast with M1, M2 is obviously im-
proved, especially with its q2 (indicating internal stabili-
ties) and q2

ext (indicating external predictabilities) being
prominently superior to that of M1.

3.5 Contrast Study

To further investigate the performance of 3D-HoVAIF de-
scriptors, we make comparisons of this method with other
molecular descriptors. In QSARs, large numbers of molec-
ular structural characteristic methods already exist, ap-
proximately classified into several following types such as
2D descriptor (e.g., E-state index [61], MEDV [21], CATS
[62, 63], etc.), 3D TRI descriptors (e.g., WHIM [16],
GRIND [18], DiP [19], etc.), and conformation alignment-
based 3D descriptors (e.g., CoMFA [10], MSA [64], SOM-
FA [65], etc.). In this context, three typical molecular struc-
tural characteristic methods are separately selected from
the above-mentioned three types, referred to as MEDV,
WHIM, and SOMFA. The reason for such selections can
be summarized as: (a) MEDV, a sort of electro-topological
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Figure 5. Plot of 3D-HoVAIF (M1) calculated versus observed
activities for 25 artemisinin derivatives in training set.
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index developed by Liu et al. [20 – 23], has its ideas of
atomic classification manner and paired interaction inte-
grated into the design of 3D-HoVAIF descriptors; (b)
WHIM, being representative in TRI descriptors, has wide
applications in many other research fields; (c) SOMFA,
similar to CoMFA which is based upon molecular confor-
mation alignment, is potent to investigate contributions of
molecular shape and electrostatic features to bioactivities.
Calculations of MEDV, WHIM, and SOMFA descriptors

are implemented by software GITM 1.1, Dragon 5.0, and
Somfa 2.0, respectively.
In MEDV, 13 types of atoms transmit electrostatic inter-

actions by chemical bonds, ultimately yielding 91-dimen-
sional vectors. Prior to creating model, all empty items are
omitted. In WHIM and SOMFA, original molecular con-
formations of 32 artemisinin derivatives are just the same
as those in 3D-HoVAIF. For SOMFA, molecular confor-
mation alignment is fulfilled by module RMS Fit in Al-
chemy 2000 [66], and the optimal model gets its shape/
electrostatic potential weight factor c1 of 0.47. To facilitate
comparison with 3D-HoVAIF, the GA-PLS modeling
method is utilized in MEDVand WHIM models; while for
the SOMFA model, the default MLR modeling method is
reserved here due to the particularity of SOMFA itself. Ta-
ble 3 lists modeling results on this dataset separately by
MEDV, WHIM, and SOMFA. From this table, the MEDV
model is found to be the most inferior with respect to ei-
ther its fitting or predicting abilities; the PLS model con-
structed by one principal component has correlation coef-
ficient r2 of 0.612 and external predicting qext

2 of 0.565
which just falls below the general standard (qext

2>0.6).
Figure 11(a) delineates the plot of the predicted versus ob-
served activities for seven test samples in the MEDV mod-
el, indicating that sample points are sporadic and one or
two compounds even has large predicting errors. For the
WHIM model which achieves good results on the training
set (r2¼0.831), predictabilities on the test set are a little
low (qext

2¼0.650). From Figure 11(b), it is intuitively re-
vealed that although all sample points are uniformly dis-
tributed along an origin-passed oblique line, they are far
way from it, suggesting the model possesses no good stabil-
ities and predictabilities. Both SOMFA and 3D-HoVAIF
models provide good results, with calculations on both
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Figure 6. Plot of 3D-HoVAIF (M1) predicted versus observed
activities for seven artemisinin derivatives in test set.

Figure 7. Plot of 3D-HoVAIF (M2) calculated versus observed
activities for 25 artemisinin derivatives in training set.

Figure 8. Plot of 3D-HoVAIF (M2) predicted versus observed
activities for seven artemisinin derivatives in test set.
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training and test sets being above 0.8 and 0.75, where, pre-
dictabilities qext

2 of SOMFA are nearly equal to that of the
3D-HoVAIF model. By contrasting Figure 8 with Fig-
ure 11(c), an approximate result on seven test samples is
found between 3D-HoVAIF and SOMFA models, with

sample points of both positive and negative errors being5
and 2, respectively. Thus, both are deemed to be reasona-
ble QSAR model.
In summary for this group of artemisinin derivatives, 2D

MEDV descriptors are difficult to correctly reflect infor-
mation on molecular steric conformation, thus yielding
poor-quality model. WHIM index, pertaining to 3D TRI
descriptors, is improved on the level of MEDV. However,
lacking a straight reflection of information on nonbonding
potential fields for drug molecules, the WHIM model still
does not have its predictabilities largely advanced. 3D-
HoVAIF and SOMFA, overcoming defects in MEDV and
WHIM descriptors, enable an efficacious extraction of
structural information directly related to bioactivities, thus
performing favorably. But in contrast with SOMFA which
requires molecular conformation alignment, 3D-HoVAIF
has great merits such as easy calculation, simple operation,
and highly reproducible performance as a sort of TRI de-
scriptor.

4 Conclusions

By defining ten atomic types common in organic mole-
cules and their 55 interaction items, a novel rotation –
translation invariant 3D structure descriptor, 3D-HoVAIF,
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Figure 9. The normal probability plot of the Y-standardized residuals for 25 artemisinin derivatives.

Figure 10. The PLS scores t1 and t2 for 25 artemisinin deriva-
tives in training set.
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is derived from calculations of three nonbonding interac-
tions directly related to drug bioactivities (e.g., electrostat-
ic, van der Waals, and hydrophobic interactions). Such a

method has great merits such as experiment-free, easy cal-
culation, and significant physicochemical meanings, avoid-
ing many demerits such as molecular alignment and arbi-
trary grid partition in present 3D-QSAR fields. Besides,
classifying atoms in terms of hybridization states and fami-
lies in periodic table of elements also helps further gener-
alize the 3D-HoVAIF approach into heteroatom-included
systems. In this context, 3D-HoVAIF is employed to sys-
tematically perform QSAR studies on 32 artemisinin de-
rivatives, with constructed model proving to be stable and
predictable via double of internal and external tests. 3D-
HoVAIF descriptor, favorably related to bioactivities of
drug and biological molecules, is thus deemed to be prom-
ising in the screening of lead compounds and structural
modification in future.

Acknowledgements

We thank the research group of Professor Zhiliang Li for
providing aid on both software and technology. This study
was supported by The National Natural Science Founda-
tion of China (NSFC, grant number 30471180) and by
Chongqing Science and Technology Committee (CSTC,
grant number 2006BA5006).

References

[1] H. Wiener, J. Am. Chem. Soc. 1947, 69, 2636 – 2641.
[2] H. Hosoya, Bull. Chem. Soc. 1971, 44, 2332 – 2339.
[3] M. Randic, J. Am. Chem. Soc. 1975, 97, 6609 – 6615.
[4] A. T. Balaban, Chem. Phys. Lett. 1982, 89, 399 – 404.
[5] L. B. Kier, L. H. Hall, Molecular Connectivity in Structure-

Activity Analysis, Wiley, New York, USA 1986.
[6] C. Hansch, T. Fujita, J. Am. Chem. Soc. 1964, 86, 1616 –

1626.
[7] S. M. Free, J. B. Wilson, J. Med. Chem. 1964, 7, 395 – 399.
[8] H. Koga, Kagaku No Ryoiki Zokan 1982, 126, 177 – 202.
[9] C. D. Selassie, Z. X. Fang, R. L. Li, C. Hansch, G. Debnat,

T. E. Klein, R. Langride, B. T. Kaufman, J. Med. Chem.
1989, 32, 1895 – 2824.

[10] R. D. Cramer, D. E. Patterson, J. D. Bunce, J. Am. Chem.
Soc. 1988, 110, 5959 – 5967.

[11] M. Wise, R. D. Cramer, D. Smith, I. Exman, in: J C. Dear-
den (Ed.), Quantitative Approaches to Drug Design, (Pro-
ceedings of the 4th European Symposium on Chemical
Structure-Biological Activity: Quantitative Approaches),
Elsevier, Amsterdam, The Netherlands 1983, pp. 145 – 146.

[12] P. Hoskuldsson, J. Chemometr. 1988, 2, 211 – 228.
[13] G. Klebe, U. Abraham, T. Mietzner, J. Med. Chem. 1994,

37, 4130 – 4146.
[14] A. M. Doweyko, J. Med. Chem. 1988, 31, 1396 – 1406.
[15] A. N. Jain, T. G. Dietterich, R. H. Lathrop, D. Chapman,

R. E. Critchlow, T. A. Webster, T. Lozaoperez, J. Comput.
Aided Mol. Des. 1994, 8, 635 – 652.

[16] R. Todeschini, P. Gramatice, R. Provenzani, Chemom. Intell.
Lab. Syst. 1995, 27, 221 – 229.

[17] B. D. Silverman, D. E. Platt, J. Med. Chem. 1996, 39, 2129 –
2140.

206 J 2008 WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim www.qcs.wiley-vch.de QSAR Comb. Sci. 27, 2008, No. 2, 198 – 207

Figure 11. Plot of predicted versus observed activities for seven
artemisinin derivatives in test set by (a) MEDV, (b) WHIM, and
(c) SOMFA, respectively.

Full Papers Yanrong Ren et al.

www.qcs.wiley-vch.de


[18] M. Pastor, G. Cruciani, I. McLay, S. Pickett, S. Clementi, J.
Med. Chem. 2000, 43, 3233 – 3243.

[19] K. Baumann, Quant. Struct. Act. Relat. 2002, 21, 507 – 519.
[20] S. Liu, C. Cao, Z. Li, J. Chem. Inf. Comput. Sci. 1998, 38,

387 – 394.
[21] S. Liu, C. Yin, L. Wang. J. Chem. Inf. Comput. Sci. 2002, 42,

749 – 756.
[22] P. Zhou, H. Mei, Y. Zhou, F. Tian, Z. Li, Chin. J. Anal.

Chem. 2006, 34, 200 – 204.
[23] P. Zhou, H. Zeng, F. Tian, B. Li, Z. Li, QSAR Comb. Sci.

2007, 26, 117 – 121.
[24] M. Levitt, J. Mol. Biol. 1983, 170, 723 – 764.
[25] M. Hahn, J. Med. Chem. 1995, 38, 2080 – 2090.
[26] G. E. Kellogg, S. F. Semus, D. J. Abraham, J. Comput. Aided

Mol. Des. 1991, 5, 545 – 552.
[27] W. Hasel, T. F. Hendrikson, W. C. Still, Tetrahed. Comp.

Method. 1988, 1, 103 – 116.
[28] J. Pei, Q. Wang, J. Zhou, L. Lai, Proteins 2004, 57, 651 –

664.
[29] R. K. Haynes, S. C. Vonwiller, Acc. Chem. Res. 1997, 30,

73 – 79.
[30] D. L. Klayman, Science 1985, 228, 1049 – 1055.
[31] Z. Ye, Z. Li, G. Li, X. Fu, H. Liu, M. Gao, J. Trad. Chin.

Med. 1983, 3, 95 – 102.
[32] P. A. Berman, P. A. Adams, Free Radic. Biol. Med. 1997, 22,

1283 – 1288.
[33] A. R. Butler, B. C. Gilbert, P. Hulme, L. R. Irvine, Free

Radic. Res. 1998, 28, 471 – 476.
[34] G. H. Posner, J. N. Cumming, P. Ploypradith, J. Am. Chem.

Soc. 1995, 117, 5885 – 5886.
[35] W. M. Wu, Z. J. Yao, Y. L. Wu, K. Jiang, Y. F. Wang, H. B.

Chen, F. Shan, Y. Li, J. Chem. Soc. Chem. Commun. 1996,
2213 – 2214.

[36] W. M. Wu, Y. K. Wu, Y. L. Wu, Z. J. Yao, C. M. Zhou, Y.
Li, F. Shan, J. Am. Chem. Soc. 1998, 120, 3316 – 3325.

[37] A. J. Lin, D. L. Klayman, W. K. Milhous, J. Med. Chem.
1987, 30, 2147 – 2150.

[38] A. J. Lin, L. Q. Li, D. L. Klayman, C. F. George, J. L. Flip-
pen-Anderson, J. Med. Chem. 1990, 33, 2610 – 2614.

[39] A. J. Lin, R. E. Miller, J. Med. Chem. 1995, 38, 764 – 770.
[40] Y. M. Pu, D. S. Torok, H. Ziffer, X. Q. Pan, S. R. Meshnick,

J. Med. Chem. 1995, 38, 4120 – 4124.
[41] M. A. Avery, S. Mehrotra, T. L. Johnson, J. D. Bonk, J. A.

Vromn, R. Miller, J. Med. Chem. 1996, 39, 4149 – 4155.
[42] M. A. Avery, M. Alvim-Gaston, C. R. Rodrigues, E. J. Bar-

reiro, F. E. Cohen, Y. A. Sabnis, J. R. Woolfrey, J. Med.
Chem. 2002, 45, 292 – 303.

[43] B. Shaanan, Nature 1982, 296, 683 – 684.
[44] Hypercube Inc., HyperChem 7.5, 2004. http://www.hyper.

com.
[45] G. M. Morris, D. S. Goodsell, R. Huey, A. J. Olson, Auto-

Dock Version 3.0, The Scripps Research Institute, Depart-
ment of Molecular Biology, MB-5, LaJolla, California,
USA.

[46] S. Tonmunphean, V. Parasuk, S. Kokpol, Quant. Struct. Act.
Relat. 2000, 19, 475 – 483.

[47] J. J. P. Stewart, J. Comput. Aided Mol. Des. 1990, 4, 1 – 105.
[48] J. T. Leonard, K. Roy, QSAR Comb. Sci. 2006, 25, 235 – 251.
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