
Almost every complement of a tadpole graph
is not chromatically unique∗

J.F. Wanga,d†, Q.X. Huangd, K.L. Teob, F. Belardoc, R.Y. Liua, C.F. Yea

aDepartment of Mathematics and Information Science, Qinghai Normal University,
Xining, Qinghai 810008, P.R. China

bInst. of Fundamental Sciences, Massey University, Palmerston North, New Zealand
cDepartment of Mathematics, University of Messina, Italy

dCollege of Mathematics and System Science, Xinjiang University,
Urumqi, Xinjiang 830046, P.R. China

Abstract

The study of chromatically unique graphs has been drawing much
attention and many results are surveyed in [4, 12, 13]. The notion
of adjoint polynomials of graphs was first introduced and applied to
the study of the chromaticity of the complements of the graphs by
Liu [17] (see also [4]). Two invariants for adjoint equivalent graphs
that have been employed successfully to determine chromatic unique
graphs were introduced by Liu [17] and Dong et al. [4] respectively.
In the paper, we shall utilize, among other things, these two invari-
ants to investigate the chromaticity of the complement of the tadpole
graphs Cn(Pm), the graph obtained from a path Pm and a cycle Cn

by identifying a pendant vertex of the path with a vertex of the cy-
cle. Let G stand for the complement of a graph G. We prove the
following results:

1. The graph Cn−1(P2) is chromatically unique if and only if n ̸= 5, 7.

2. Almost every Cn(Pm) is not chromatically unique, where n ≥ 4
and m ≥ 2.
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1 Introduction

All graphs considered here are finite and simple. Undefined notation and
terminology will conform to that in [2]. For a graph G, let G, V (G), E(G),
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χ(G), P (G,λ) and σ(G, x) be, respectively, the complement, vertex set,
edge set, chromatic number, chromatic polynomial and σ-polynomial of G.

A partition {A1, A2, · · · , Ak} of V (G), where k is a positive integer,
is called a k-independent partition of a graph G if each Ai is a nonempty
independent set of G. Let α(G, k) denote the number of k-independent
partitions of G. Then

P (G,λ) =

p∑
k=1

α(G, k)(λ)k and σ(G, x) =

p∑
k=χ(G)

α(G, k)xk−χ(G),

where |V (G)| = p, (λ)k = λ(λ− 1) · · · (λ− k + 1) (see [14, 21]).

Two graphs G and H are said to be chromatically equivalent (or simply
χ-equivalent), denoted by G ∼ H, if P (G,λ) = P (H,λ). A graph G is
chromatically unique or in short χ-unique if H ∼= G whenever G ∼ H.
The questions on chromatic equivalence and uniqueness are said to be the
chromaticity problem of graphs. See [21] and [4, 12, 13, 24] for details on
chromatic polynomials and the chromaticity of graphs respectively.

Let G be a graph of order p. An ideal subgraph of a graph G is a
spanning subgraph of G whose components are all complete graphs. Let
N(G, k) denote the number of ideal subgraphs with k components. Note
that N(G, k) = α(G, k), where k is a positive integer. The adjoint polyno-
mial of a graph G is defined as follows [4, 17, 22]:

h(G, x) =

p∑
k=1

N(G, k)xk.

Two graphs G andH are said to be adjointly equivalent, denoted by G
h∼ H,

if h(G, x) = h(H,x). A graph G is said to be adjointly unique if H ∼=
G whenever H

h∼ G. The following two results follow directly from the
definitions of P (G,λ), h(G, x), and σ(G, x).

Theorem 1.1. ([4, 17])

(1) G
h∼ H if and only if G ∼ H.

(2) G is χ-unique if and only if G is adjointly unique.

Theorem 1.2. ([6, 17]) h(G, x) = xχ(G)σ(G, x).

In what follows we will write h1(G, x) = σ(G, x).

Remark 1.1. E.J. Farrell [9, 10] studied the relations between chromatic,
adjoint, clique, matching, σ-polynomials and uniquely colourable graphs.
For details we refer the readers to see his papers.
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Definition 1.1. The adjoint roots (simply adj-roots) of a graph G are the
roots of its adjoint polynomial.

Let G be a graph of order p(G) = p and size q(G) = q. For convenience,
we simply denote h(G, x) by h(G) and h1(G, x) by h1(G). By β(G) we
denote the smallest real adj-root of h(G). For each v ∈ G, let dG(v), or
simply d(v), be the degree of v in G. For two graphs G and H, G

∪
H

denotes the disjoint union of G and H, and mH stands for the disjoint
union of m copies of H. By Kn and K1,n−1 respectively, we denote the
complete graph and star with order n. Let nG(K3) and nG(K4) denote
the number of subgraphs in G isomorphic to K3 and K4, respectively. Let
g(x)|f(x)(resp. g(x) - f(x)) denote g(x) divides f(x)(resp. g(x) does not
divide f(x)) on the rational field and ∂(f(x)) denotes the degree of f(x).

The notion of χ-unique graphs was first introduced by Chao et al. [3].
By (2) of Theorem 2.1, we know that the goal of searching for the χ-unique
graphs can be realized by looking for adjointly unique graphs. In order to
search for them, it is very helpful to find as many as possible necessary
conditions for two graphs to be adjointly equivalent. A quantity ζ(G) is
called an invariant for adjointly equivalent graphs (or adj-invariant in short)
if h(G, x) = h(H,x) implies the ζ(G) = ζ(H), where G and H are graphs
[4].

Some researchers, such as Du [8] and Li and Whitehead [15], have used
σ-polynomials to study the chromaticity of some dense graphs, but one
disadvantage is that σ(G, x) does not determine the order of G. This can
be seen from the fact that σ(G, x) = σ(G

∪
mK1) for any integer m ≥ 1.

The adjoint polynomial does not have this fault, and it contains all the
information that the σ-polynomial has. Hence in this paper we shall use
adjoint polynomials rather than σ-polynomials.

Now we define some classes of graphs which will be used throughout the
paper.

(1) Cp (resp. Pp) denotes the cycle (resp. the path) of order p, and we
write C = {Cp|p≥3}, P = {Pp|p≥2} and U = {U1,1,t,1,1|t≥1}.

(2) Dp(p≥4) denotes the graph obtained from C3 and Pp−2 by identi-
fying a vertex C3 with a pendant vertex of Pp−2.

(3) Tl1,l2,l3 is the tree with a vertex v of degree 3 such that Tl1,l2,l3 −
v = Pl1

∪
Pl2

∪
Pl3 and l3 ≥ l2 ≥ l1, write T1 = {T1,1,l3 |l3≥1) and T =

{Tl1,l2,l3 |(l1, l2, l3)̸=(1, 1, 1)}.
(4) ϑ = {Cp, Dp,K1, Tl1,l2,l3 |n ≥ 4, l3 ≥ l2 ≥ l1 ≥ 1}.
(5) ξ = {Cr(Ps), Qr,s, Br,s,t, Fp, Ur,s,t,a,b,K

−
4 }.

(6) ψ = {ψ1
p, ψ

2
p, ψ

3
p(r, s), ψ

4
p(r, s), ψ

5
p(r, s, t), ψ

6
5}.
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Some of the graphs with orders n used in the paper are shown in Table 1.
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The organization of the paper is the following. In Section 2 we introduce
some basic lemmas and results of adjoint polynomials, such as the first
character and the second character of a graph, the smallest real adj-roots
and the divisibility of adjoint polynomials and so on. In Section 3, by
making use of these algebraic properties of adjoint polynomials, we research
into the chromaticity of the complement of the tadpole Cn(Pm), the graph
obtained from a path Pm and a cycle Cn by identifying a pendant vertex
of the path Pm with a vertex of the cycle Cn, where n ≥ 4 and m ≥ 2.
Finally in Section 4 we give a conjecture for the chromaticity of Cn(Pn−1).

2 Some Algebraic Properties of Adjoint
Polynomials

For an edge e = v1v2 of a graph G, the graph G∗e is defined as fol-
lows: the vertex set of G∗e is (V (G) − {v1, v2})

∪
{v}, where v/∈V (G),

and the edge set of G∗e is {e′ |e′∈ E(G), e
′
is not incident with v1 or

v2}
∪
{uv|u∈NG(v1)

∩
NG(v2)}, whereNG(v) is the set of vertices ofG which

are adjacent to v.
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Lemma 2.1 ([4, 17]). Let G be a graph with e∈E(G). Then

h(G, x) = h(G− e, x) + h(G∗e, x),

In particular, if e = uv ∈ E(G) is not an edge of any triangle of G, then

h(G, x) = h(G− e, x) + xh(G− {u, v}, x),

where G − e and G − {u, v} are, respectively, the graphs obtained from G
by deleting the edge e and deleting the vertices u, v and their incident edges
in G.

Lemma 2.2 ([17]).

(1) For n≥3, h(Pn) = x(h(Pn−1) + h(Pn−2)).

(2) For n≥6, h(Cn) = x(h(Cn−1) + h(Cn−2)).

Theorem 2.1.

(1) For n≥4, m≥1, h(Cn(Pm)) = h(Pn−1)h(Pm)+2xh(Pn−2)h(Pm−1).

(2) For n≥4 and m≥3, h(Cn(Pm)) = h(Cm+1(Pn−1)).

(3) For n≥6 and m≥2, h(Cn(Pm)) = x(h(Cn−1(Pm)) + h(Cn−2(Pm)).

(4) h(C4(P2)) = h(K−
4

∪
K1), h(C6(P2)) = h(B(2, 1, 1)),

h(C4(P3)) = h(Q1,2).

Proof.

(1) Choosing v1 on the path joining to u1 such that d(u1) = 3 and
d(v1) = 2, we have, by Lemma 2.1, that

h(Cn(Pm)) = h(Pm−1)h(Cn) + xh(Pm−2)h(Pn−1). (2.1)

Let e2 ∈ E(Cn), it follows, from Lemma 2.1, that

h(Cn) = h(Pn) + xh(Pn−2). (2.2)

Combining (2.1) and (2.2), we obtain, together with (1) of Lemma 2.2, that

h(Cn(Pm)) = h(Pm−1)h(Cn) + xh(Pm−2)h(Pn−1)

= h(Pm−1)(h(Pn) + xh(Pn−2)) + xh(Pm−2)h(Pn−1)

= h(Pm−1)(xh(Pn−1) + xh(Pn−2)) + xh(Pm−1)h(Pn−2)

+xh(Pm−2)h(Pn−1)

= h(Pn−1)(xh(Pm−1) + xh(Pm−2)) + 2xh(Pm−1)h(Pn−2)

= h(Pn−1)h(Pm) + 2xh(Pn−2)h(Pm−1).

(2) Assertion (2) follows directly from (1).

37



(3) By using (2.1) and Lemma 2.2, we arrive at

h(Cn(Pm)) = h(Pm−1)h(Cn) + xh(Pm−2)h(Pn−1)

= h(Pm−1)(xh(Cn−1) + xh(Cn−2)) + xh(Pm−2))(xh(Pn−2)

+xh(Pn−3))

= x(h(Pm−1)h(Cn−1) + h(Pm−2)h(Pn−2))

+x(h(Pm−1)h(Cn−2) + h(Pm−2)h(Pn−3))

= x(h(Cn−1(Pm)) + h(Cn−2(Pm)))

(4) Part (4) can be similarly proved. �
Lemma 2.3 ([4, 17]). Let G be a graph with p vertices and q edges. Let M
denote the set of vertices of the triangles in G and M(i) denote the number
of triangles which cover the vertex i in G. If the degree sequence of G is
(d1, d2, · · · , dn), then

(1) N(G, p) = 1, N(G, p− 1) = q;

(2) N(G, p− 2) =
(
q+1
2

)
− 1

2

∑p
i=1 d

2
i + nG(K3);

(3) N(G, p−3) = q
6 (q

2+3q+4)− q+2
2

∑p
i=1d

2
i+

1
3

∑p
i=1d

3
i+

∑
ij∈E(G)didj−∑

i∈MM(i)di + (q + 2)nG(K3) + nG(K4).

We next define two invariants for adjoint equivalent graphs.

Definition 2.1([5, 18]). Let G be a graph with p vertices and q edges.
Let bi(G) = N(G, p− i) for i = 1, 2, 3.

The first character of G is defined as

R1(G) =

{
0 if q = 0;

b2(G)−
(
b1(G)−1

2

)
+ 1 if q > 0.

The second character of G is defined as

R2(G) = b3(G)−
(
b1(G)

3

)
− (b1(G)− 2)

(
b2(G)−

(
b1(G)

2

))
− b1(G),

Remark 2.1. It deserves to be pointed out that the parameter π(G) =
N(G,n− 2)− (m2 − 3m)/2, defined by Du [8] independently, is in fact the
same as R1(G). Very good work was done by Du [7] and Mao [19], respec-
tively, who used a recursive method to construct graphs with R1(G) = i
for i ≤ 1 and R2(G) = j for j ≥ −2.

Lemma 2.4 ([5, 18]). Let G be a graph with k components G1, G2, . . . , Gk.

Then h(G) =
∏k

i=1
h(Gi) and Rj(G) =

∑k

i=1
Rj(Gi) for j = 1, 2.

By the definition of adjoint polynomial, Theorem 1.2 and Lemma 2.3,
we state some adj-invariants in the following theorem.
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Theorem 2.2. Let G and H be graphs such that H
h∼ G. Then

(1) N(G, k) = N(H, k), where k is a non-negative integer.

(2) |V (G)| = |V (H)| and |E(G)| = |E(H)|.
(3) Ri(G) = Ri(H) for i = 1, 2

(4) β(G) = β(H)

(5) χ(G) = χ(H). �
Remark 2.2. The first four conclusions also hold for h1(G) = h1(H) (see
Theorem 1.2).

Lemma 2.5([7, 17]). Let G be a nontrivial connected graph with p vertices
and q edges.

(1) R1(G)≤ 1, and the equality holds iff G ∼= Pp (p≥ 2) or G ∼= K3.

(2) R1(G) = 0 iff G ∈ ϑ.

(3) R1(G) = −1 iff G ∈ ξ. In particular, R1(G) = −1 and
G∈{Fp|n≥ 6}

∪
{K−

4 } iff q = p+ 1.

(4) R1(G) = −2 iff G ∈ ψ for q = p+ 1 and G ∼= K−
4 for q = p+ 2.

Lemma 2.6 ([11]). For k ≥ 0, let G(−k) denote the union of the com-
ponents of G, whose first character is −k, and s

k
denote the number of

components of G(−k).

(1) If k ∈ {0, 1, 2}, then q(G(−k))−p(G(−k)) ≤ ks
k
with equality holding

iff q(X)− p(X) = k for each component X of G(−k).

(2) If k = 3, then q(G(−k)) − p(G(−k)) ≤ 2s3 with equality holding iff
q(X)− p(X) = 2 for each component G(−3).

Some alternative formulas for computing R2(G) are given by Dong et
al. [4], we prefer the one below.

Lemma 2.7 ([4]). Let G be a graph with p vertices and q edges. Then

R2(G) =

4q

3
− 2

p∑
i=1

d2i +
1

3

p∑
i=1

d3i +
∑

ij∈E(G)

didj +
∑
i∈M

M(i)di + 4nG(K3) + nG(K4),

where the notation has the same meaning as in Lemma 2.3.

Lemma 2.8 ([19]). If G ∈ η
∪
{P2}, then −1 ≤ R2(G) ≤ 2.

In particular,

(1) R2(G) = −1 iff G ∈ {T1,1,1, P2}.
(2) R2(G) = 0 iff G ∈ {Cn, D4,K1, T1,1,l3 |n ≥ 4, l3 ≥ 2}.
(3) R2(G) = 1 iff G ∈ {T1,l2,l3 |l3 ≥ l2 ≥ 2}

∪
{Dn|n ≥ 5}.

(4) R2(G) = 2 iff G ∈ {Tl1,l2,l3 |l3 ≥ l2 ≥ l1 ≥ 2}.
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By Lemma 2.4 and straightforward calculation, in the next lemma we
classify the graphs in ξ by the second character and give the lower and
upper bounds for R2(G), where G ∈ ψ

∪
{K4}.

Lemma 2.9. Let G be a graph such that G ∈ ψ
∪
{K4}, then 7 ≤ R2(G) ≤

10; if G ∈ ξ − {Ur,s,t,a,b}, then 3 ≤ R2(G) ≤ 6. In particular,

(1) R2(G) = 3 iff G ∈ {K−
4 , Br,1,1, Q1,1|r ≥ 2}

∪
{Cr(P2)|r ≥ 4}.

(2) R2(G) = 4 iff
G ∈ {Cr(Ps), Fn|r ≥ 4, s ≥ 3, n ≥ 7}

∪
{B1,1,1, Br,1,t, Q1,s|r, s, t ≥ 2}.

(3) R2(G) = 5 iff G ∈ {B1,1,t, Br,s,t, Qr,s, F6|r, s, t ≥ 2}.
(4) R2(G) = 6 iff G ∈ {B1,s,t|s, t ≥ 2}. �
Now, we discuss the smallest real adj-roots of adjoint polynomials, which

play an important role in studying the chromaticity of graphs.

Lemma 2.10 ([23]). Let f1(x), f2(x) and f3(x) be polynomials with real
positive coefficients. If f3(x) = f2(x) + f1(x), ∂f3(x)− ∂f1(x) ≡ 1(mod 2)
and β2 < β1, then f3(x) has at least one real root such that β3<β2, where
βi denotes the smallest real root of fi(x) (i = 1, 2, 3).

Lemma 2.11 ([24]).

(1) For n ≥ 8 and r ≥ 6,

β(Cn−1(P2)) < β(C6(P2)) = β(B(2, 1, 1)) < β(B(3, 1, 1))

< β(B(4, 1, 1)) < β(B(5, 1, 1)) = β(C5(P2)) < β(B(r, 1, 1)).

(2) For n ≥ 10, 12 ≤ r ≤ 16 and m ≥ 18,

β(F6) < β(F7) < β(F8) < β(Cn−1(P2)) < β(C8(P2))

= β(F9) < β(C7(P2)) < β(F10) < β(F11)

= β(C6(P2)) < β(Fr) < β(C5(P2)) = β(F17) < β(Fm) < β(C4(P2)).

(3) For r ≥ 2, n ≥ 6 and m ≥ 4,

β(Fn) < β(Fn+1) < β(Dm),

β(B(r − 1, 1, 1)) < β(B(r, 1, 1)) < β(Dm).

Note, the coefficients of an adjoint polynomial of a graph G are positive
and the constant term is zero, so all real adj-roots of G are non-positive.
The following lemma characterizes the graphs whose smallest real adj-root
is in the interval [-4,0].

Lemma 2.12 ([24]). Let G be a connected graph. Then

(1) β(G) = −4 iff

G ∈ {T1,2,5, T2,2,2, T1,3,3,K1,4, C4(P2), Q1,1,K
−
4 , D8}

∪
U .
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(2) −4 < β(G) ≤ 0 iff

G ∈ {K1, T1,2,i(2 ≤ i ≤ 4), Di(4 ≤ i ≤ 7)}
∪

P
∪

C
∪

T1.

(3) If H is a proper subgraph of G, then β(G) < β(H).

Theorem 2.3.

(1) For n ≥ 3 and m ≥ 2, β(Cn(Pm)) < β(Cn(Pm−1)).

(2) For n ≥ 5 and m ≥ 4, β(Cn−1(P2) ≤ β(Dm) with equality holding
if and only if n = 5 and m = 4.

(3) For m ≥ 2 and n ≥ 5, β(Cn(Pm)) < β(Cn−1(Pm)).

(4) For n ≥ 5, β(Cn−1(P2)) ≤ β(Q1,1) with equality holding if and only
if n = 5.

Proof.
(1) It is evident that Cn(Pm−1) is a proper subgraph of Cn(Pm), which

results in β(Cn(Pm)) < β(Cn(Pm−1)) by (3) of Lemma 2.11.

(2) In view of (2) and (3) of Lemma 2.11, together with (1) of Lemma
2.12, the result obviously holds.

(3) We prove β(Cn(Pm)) < β(Cn−1(Pm)) by induction on n + m.
From the condition of (3), it follows that min{n + m} = 7, which leads
to m = 2 and n = 5. By software Mathematica we obtain that β(C5(P2)) =
−4.11494 < β(C4(P2)) = −4. Suppose that the result holds for k when
k < n+m. Let k = n+m, by (3) of Theorem 2.1, we have that

h(Cn(Pm)) = x(h(Cn−1(Pm)) + h(Cn−2(Pm))).

By the induction hypothesis, we get β(Cn−1(Pm)) < β(Cn−2(Pm)). From
Lemma 2.10, it follows that β(Cn(Pm)) < β(Cn−1(Pm)).

(4) From (3) of the theorem and (1) of Lemma 2.12, we have that
β(Cn−1(P2)) < β(C4(P2)) = β(Q1,1) = −4 for n ≥ 6, which illustrates that
the result holds. �

We conclude this section by establishing some results concerning the
divisibility of adjoint polynomials, which are helpful in the study of the
chromaticity of graphs.

Lemma 2.13 ([24]).

(1) Let {gi(x)} be a polynomial sequence with integer coefficients and
g
n
(x) = x(g

n
(x) + g

n−1
(x)). Then

gn(x) = h(Pk)gn−k
(x) + xh(P

k−1
)g

n−k−1
(x).

(2) For m ≥ 2 and n ≥ 6, h(Pm)|h(Cn−1(P2)) if and only if m = 2 and
n = 3k + 2, where k ≥ 1.
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Theorem 2.4. For n ≥ 5, h2(P2) - h(Cn−1(P2)).

Proof. For n ≥ 7, according to (3) of Theorem 2.1, we arrive at

h(Cn−1(P2)) = x(h(Cn−2(P2) + h(Cn−3(P2))). (2.3)

Let gn(x) = h(Cn−1(P2)) which implies, from (2.3), that

gn(x) = x(gn−1(x) + gn−2(x)). (2.4)

Noting (2) of Lemma 2.13, we obtain that h(Pm)|gn(x) if and only if m = 2
and n = 3k + 2, where k ≥ 1. Suppose that h2(P2)|h(Cn−1(P2)), that is,
h2(P2)|gn(x). It follows, from (2.4) and (1) of Lemma 2.13, that

gn(x) = h(P2)gn−2(x) + x2gn−3(x)

= h2(P2)gn−4(x) + 2x2h(P2)gn−5(x) + x4gn−6(x)

= h2(P2)(gn−4(x) + 2x2gn−7(x)) + 3x4h(P2)gn−8(x) + x6gn−9(x)

= h2(P2)(gn−4(x) + 2x2gn−7(x) + 3x4gn−10(x))

+4x6h(P2)gn−11(x) + x8gn−12(x)

· · ·

= h2(P2)
k−2∑
s=1

gn−3s−1(x) + (k − 1)x2k−4h(P2)gn+1−3(k−1)(x)

+x2k−2gn−3(k−1)(x),

which, together with the assumption and n = 3k + 2, results in

h2(P2)|((k − 1)x2k−4h(P2)g6(x) + x2k−2g5(x)). (2.5)

By Lemma 2.1 and calculation, we arrive at

g5(x) = h(C4(P2)) = x5 + 5x4 + 4x3,

g6(x) = h(C5(P2)) = x6 + 6x5 + 8x4 + x3.
(2.6)

Combining (2.5) and (2.6), we have, from h(P2) = x2 + x, that

(x2 + x)|((k − 1)x2k+2 + (6k − 5)x2k+1 + (8k − 4)x2k + (k − 1)x2k−1)

By direct calculation, it follows that k = − 1
2 which is in contradiction

with k ≥ 1. �

3 The chromaticity of Cn(Pm)

By means of the algebraic properties of adjoint polynomials in Section 2,
we now investigate the chromaticity of the complement of Cn(Pm).

Theorem 3.1. Let G =
∪

i=1Gi be a graph such that G
h∼ Cn−1(P2),

where Gi are the components of G. Then G contains at most one component
isomorphic to P2.
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Proof. By h(G) = h(Cn−1(P2)) and (2) of Lemma 2.13, we obtain that
h(Pm)|h(G) iff m = 2. So the other paths Pk (k ̸= 2) are not components
of G. Or else, h(Pk)|h(G), that is, h(Pk)|h(Cn−1(P2)) which contradicts
to (2) of Lemma 2.13, where k ̸= 2. It follows, from h(P4)-h(G) and
h(K3

∪
K1) = h(P4), that G also contains no K3 as its component. In

view of Theorem 2.4, we arrive at h2(P2)-h(G), which implies, from (1) of
Lemma 2.5, that G contains at most one component P2. �
Theorem 3.2. For n ≥ 5, Cn−1(P2) is adjointly unique if and only if
n ̸= 5, 7.

Proof. The necessity of the theorem is proved by (4) of Theorem 2.1. Now
we show the sufficiency of the theorem. Let H be any graph such that
h(H) = h(Cn−1(P2)) and H =

∪l
i=1Hi, where Hi are the components of

H. From R1(K3) = 1 and Theorem 3.1 we know that H contains no K3

as its component. Let si denote the number of the component Hi with
R(Hi) = −i. By Theorem 3.1 we obtain that

0 ≤ s−1 ≤ 1, (3.1)

which leads to −2 ≤ R1(Hi) ≤ 1 for 1 ≤ i ≤ l. In terms of (3) of
Lemma 2.5 and (1) of Lemma 2.9, we have that R1(Cn−1(P2)) = −1 and
R2(Cn−1(P2)) = 3, which, together with Lemma 2.4 and Theorem 2.2,

leads to R1(H) =
∑2

i=−1 si = −1, R2(H) = 2 and p(H) = q(H) implying
that

s−1 = s1 + 2s2 − 1∑
−2≤R1(Hi)≤0

(q(Hi)− p(Hi)) = s−1 .
(3.2)

According to Lemma 2.6, we have the following inequalities:∑
R1(Hi)=−1

(q(Hi)− p(Hi))≤ s1∑
R1(Hi)=−2

(q(Hi)− p(Hi))≤ s2 .
(3.3)

In view of (3.2) and (3.3), it is not difficult to obtain that

s1 − 1≤
∑

R1(Hi)=−1

(q(Hi)− p(Hi))≤ s1

2s2 − 1≤
∑

R1(Hi)=−2

(q(Hi)− p(Hi))≤ 2s2
(3.4)

We distinguish the following two cases by (3.1):

Case 1. s−1 = 0.

It follows, from (3.1) and (3.2), that s1 = 1, s2 = 0 and
0≤ q(H1)− p(H1)≤ 1 with R1(H1) = −1.
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Subcase 1.1. q(H1) = p(H1) + 1.

By (3) of Lemma 2.5, we arrive at

H1 ∈ {Ft,K
−
4 |t≥6}. (3.5)

Without loss of generality, let
H =

H1

∪
rK1

∪
(
∪

i∈A1
Ci)

∪
kD4

∪
(
∪

j∈B1
Dj)

∪
mT1,1,1

∪
(
∪

T∈T Tl1,l2,l3), (3.6)

where A1 = {i|i≥4}, B1 = {j|j≥5} and r, f,m≥ 0. From (3.6) it follows
that q(H) = p(H) − r −m − |T | + 1, which, together with q(H) = p(H),
leads to

r +m+ |T | = 1 and 0 ≤ m ≤ 1. (3.7)

It follows, from (3.6), Lemma 2.4 and Lemma 2.8, that

R2(H) = 3 ≥ R2(H1) + |B1| −m. (3.8)

In view of (3.5), the following subcases are discussed.

Subcase 1.1.1. H1
∼=Ft.

If t = 6, we have, by (3) of Lemma 2.9, that R2(H1) = R2(F6) = 5. It
follows from (3.7) and (3.8) that |B1| ≤ −1, which is a contradiction.

If t ≥ 7, then R2(H1) = R2(Ft) = 4. By (3.8) we get that R2(H) = 3
iff |B1| = 0 and m = 1, which results in r = |T | = 0. Thus H =
Ft

∪
(
∪

i∈A1
Ci)

∪
kD4

∪
T (1, 1, 1). In view of Lemma 2.12 and (4) of The-

orem 2.2, we arrive at β(Ft) = β(H) = β(Cn−1(P2)) which, together with
(3) of Lemma 2.11, leads to (t, n) ∈ {(9, 9), (11, 7), (6, 17)} that contradicts
to |V (H)| = |V (Cn−1(P2))|.
Subcase 1.1.2. H1

∼=K−
4 .

From (3.8) and R2(K
−
4 ) = 3, we have R2(H) = 3 if and only if |B1| = m.

We distinguish the following subcases by (3.7):

Subcase 1.1.2.1. m = |B1| = 1.

By (3.7) again we obtain that r = |T | = 0.
So H = K−

4

∪
(
∪

i∈A1
Ci)

∪
Dj

∪
kD4.

If 4<j≤8, we have, from Lemma 2.12, that β(H) = β(K−
4 ) = −4 >

β(Cn−1(P2)), which contradicts to β(H) = β(Cn−1(P2)).

If j≥9, we obtain, by Lemma 2.12, that β(H) = β(Dj). From (2) of
Theorem 2.3, it follows that β(Dj) > β(Cn−1(P2)) which also contradicts
to β(H) = β(Cn−1(P2)).

Subcase 1.1.2.2. m = |B1| = 0.

According to (3.7), we arrive at r = 1, |T | = 0 or r = 0, |T | = 1.
If r = 1, |T | = 0, then H = K−

4

∪
(
∪

i∈A1
Ci)

∪
kD4

∪
K1. So we have,

from Lemma 2.12, that β(H) = β(K−
4 )>β(Cn−1(P2)) which contradicts to

β(H) = β(Cn−1(P2)).
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If r = 0, |T | = 1, then H = K−
4

∪
(
∪

i∈A1
Ci)

∪
kD4

∪
Tl1,l2,l3 . Recalling

that R2(H) = 3 = R2(K
−
4 ) +

∑
i∈A1

R2(Ci) + fR2(D4) + R2(Tl1,l2,l3), we
obtain, from (1) of Lemmas 2.8 and 2.9, that R2(Tl1,l2,l3) = 0 which implies
that l1 = l2 = 1 and l3 ≥ 2. Note that from Lemma 2.12, it follows β(H) =
β(K−

4 ) = −4 > β(Cn−1(P2)) that contradicts to β(H) = β(Cn−1(P2)).

Subcase 1.2. q(H1) = p(H1).

By Lemma 2.5, we arrive at H1 ∈ {Bm1 ,m2 ,m3
, Cm1

(Pm2
), Qm1 ,m2

}. In
terms of (3.6) and p(H) = q(H), it is not difficult to show that r+m+|T | =
0, that is, r = m = |T | = 0, which results in

H = H1

∪
(
∪

i∈A1
Ci)

∪
(
∪

j∈B1
Dj )

∪
kD4

R2(H) = 3 = R2(H1) + |B1|
(3.9)

Subcase 1.2.1. H1
∼=Cm1

(Pm2
).

According to Lemma 2.8 and 2.9, we have that R2(H) = 3 if and only
if R2(Cm1

(Pm2
)) = 3, which leads to m1 ≥ 4, m2 = 2 and |B1| = 0. Hence

H = Cm
1
(P2)

∪
(
∪

i∈A1
Ci)

∪
kD4, which results in β(H) = β(Cm

1
(P2)) by

Lemma 2.12. Note that β(Cm1
(P2)) = β(H) = β(Cn−1(P2)) and (3) of

Theorem 2.3, it follows that m1 = n − 1. By p(H) = q(H) we arrive at
|A1| = k = 0. Thus H∼=Cn−1(P2).

Subcase 1.2.2. H1
∼=Bm1 ,m2 ,m3

.

In the light of (3) of Lemma 2.8 and (1) of Lemma 2.9, it follows, from
(3.9), that R2(H) = 3 if and only if R2(Bm1 ,m2 ,m3

) = 3, which leads to
m1≥2,m2 = m3 = 1 and |B1| = 0. Hence H = Bm

1
,1,1

∪
(
∪

i∈A1
Ci)

∪
kD4

that implies, from Lemma 2.12, that β(H) = β(Bm1 ,1,1
). Note that

β(Bm1 ,1,1
) = β(H) = β(Cn−1(P2)) and by (1) of Lemma 2.11, it follows

that (m1 , n) ∈ {(2, 7), (5, 6)}. According to the condition of the theo-
rem that n ̸= 7, we arrive at m1 = 5 and n = 6 which contradicts to
|V (H)| = |V (Cn−1(P2))|.
Subcase 1.2.3. H1

∼=Qm1 ,m2
.

In view of (1) of Lemma 2.9 and (3.9), we have that R2(H) = 3 iff
R2(Qm1 ,m2

) = 3, which results in m1 = m2 = 1 and |B1| = 0. So
H = Q1,1

∪
(
∪

i∈A1
Ci)

∪
kD4 which implies, from Lemma 2.12, that β(H) =

β(Q1,1). Recalling that β(Q1,1) = β(H) = β(Cn−1(P2)), we obtain, by (4)
of Theorem 2.3, that n = 5 which contradicts to the assumption of the
theorem that n ̸= 5.

Case 2. s−1 = 1.

We obtain, by (3.2), that s1 = 0, s2 = 1 or s1 = 2, s2 = 0. From The-
orem 3.1 and s−1 = 1, we know that H only contains one path P2 as its
component.

Subcase 2.1. s1 = 0 and s2 = 1.
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It follows, from (3.4), that 1≤q(H1) − p(H1)≤2 with R1(H1) = −2.
Without loss of generality, let

H =
P2

∪
H1

∪
rK1

∪
(
∪

i∈A1
Ci)

∪
kD4

∪
(
∪

j∈B1
Dj )

∪
mT1,1,1

∪
(
∪

T∈T Tl1,l2,l3).

It follows, from Lemma 2.8, that

R2(H)≥R2(P2) +R2(H1) + |B1| −m = R2(H1) + |B1| −m− 1. (3.10)

We distinguish the following subcases:

Subcase 2.1.1. q(H1) = p(H1) + 2.

In this subcase, we have, from (4) of Lemma 2.5, thatH1
∼=K4. Similarly,

we have r +m + |T | = 1 and 0≤m≤1. From (3.10), Lemmas 2.8 and 2.9,
it follows that |B1| ≤ −2 which is a contradiction.

Subcase 2.1.2. q(H1) = p(H1) + 1.

We have, by (4) of Lemma 2.5, that H1 ∈ ψ. Similarly, we ob-
tain r + m + |T | = 0, that is, r = m = |T | = 0 which leads to H =
P2

∪
H1

∪
(
∪

i∈A1
Ci)

∪
kD4

∪
(
∪

j∈B1
Dj). From Lemma 2.9 and (3.10), it

leads to R2(H1)≥7 and |B1|≤ − 2 which is impossible.

Subcase 2.2. s1 = 2 and s2 = 0.

In view of (3.4), we arrive at 1≤
∑2

i=1[q(Hi)− p(Hi)]≤2 with
R1(Hi) = −1. Without loss of generality, let

H =

P2

∪
(

2∪
i=1

Hi)
∪
rK1

∪
(
∪

i∈A1

Ci)
∪
kD4

∪
(
∪

j∈B1

Dj)
∪
mT1,1,1

∪
(
∪

T∈T Tl1,l2,l3),

From Lemmas 2.8 and 2.9, we have that

R2(H)≥R2(P2)+
2∑

i=1

R2(Hi)+ |B1|−m =
2∑

i=1

R2(Hi)+ |B1|−m−1. (3.11)

We distinguish the following two subcases:

Subcase 2.2.1.
∑2

i=1[q(Hi)− p(Hi)]≤ 2.

By (3) of Lemma 2.5 we obtain that Hi∈{Fm,K
−
4 |m≥6} for i = 1, 2.

From Lemma 2.9 and the expression ofH, we know thatR2(H1)+R2(H2)≥ 6,
r +m+ |T | = 1 and 0≤m≤ 1, which results in |B1| ≤ − 1 by (3.11).

Subcase 2.2.2.
∑2

i=1[q(Hi)− p(Hi)]≤ 1.

Without loss of generality, we have, by Lemma 2.5, that
H1∈{Fm,K

−
4 |m≥6} and H2∈{Cr(Ps), Br,s,t, Qr,s}. In view of Lemma 2.9

and the expression of H, we arrive at R2(H1) + R2(H2)≥ 6 and r = m =
|T | = 0. From (3.11) we get |B1| ≤ − 2, which is a contradiction. �

From (2) of Theorem 1.1, the following corollary is obtained.
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Corollary 3.1. For n ≥ 5, Cn−1(P2) is χ-unique if and only if n ̸= 5, 7.

Theorem 3.3.Let G = {Cn(Pm)|n ≥ 4,m ≥ 3,m ̸= n − 1}
∪
{C4(P3)},

then any graph in G is not χ-unique.

Proof. By (2) and (4) of Theorem 2.1, we know that any graph in G is not
adjointly unique which implies, from (2) of Theorem 1.1, that it is also not
χ-unique. �
Theorem 3.4. For n ≥ 4 and m ≥ 2, almost every Cn(Pm) is not adjointly
unique.

Proof. We, first of all, calculate the number of Cn(Pm) for the fixed order
p = |V (Cn(Pm)| = n + m − 1. By the condition of the theorem, it is
not difficult to obtain that n ∈ [4, p− 1] and m ∈ [2, p− 3]. Thus we have
(p−4)2 possibilities to choose the pair (n,m) in the above ranges, that is, the
number of graphs Cn(Pm) whose orders do not exceed p is f(p) = (p− 4)2.
From Theorem 3.3, we know that there are only two graphs C4(P2) and
C6(P2) being not adjointly unique. The number of graphs whose orders do
not exceed p in G of Theorem 3.3 is

|G| = p2 − 21

2
p+ c,

where the constant c = 27 if p is even and c = 53
2 if p is odd. Obviously,

among all graphs Cn(Pm), the total number of graphs that are not adjointly
unique is at least

g(p) = p2 − 21

2
p+ c+ 2.

Thus, the proportion of them at least equals

lim
p→∞

g(p)

f(p)
= lim

p→∞

p2 − 21
2 p+ c+ 2

(p− 4)2
= lim

p→∞

1− 21
2p + c+2

p2

1− 8
p + 16

p2

= 1

implying that almost every Cn(Pm) is not adjointly unique. �
Now, Our main result in this paper follows from the above theorem.

Theorem 3.5. For n ≥ 4 and m ≥ 2, almost every Cn(Pm) is not χ-
unique.

B. Bollobás and O. Riordan [1] (or see [20]) conjectured that for the
family of all graphs with fixed vertices, almost every graph in the family
is χ-unique, that is, almost every complement of a graph in the family is
adjointly unique by Theorem 1.1. Another interesting result in contrast
with Theorem 3.5 is that almost every K4-homemorph is chromatically
unique proved by Li [16]. On the basis of these two results, we know that
to prove their conjecture may be even more difficult.
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4 Further Discussion

From the above results, we see that if we are searching for the chromatic
uniqueness of Cn(Pm) we should consider the graph Cn(Pn−1), where n ≥ 4.
However, we will need to investigate more complex algebraic properties of
this family of graphs. The following conjecture is put forward.

Conjecture. For n ≥ 4, Cn(Pn−1) is chromatically unique iff n ̸= 4.
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