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Abstract— Periodic signal tracking is certainly easier than
general signal tracking. This has been manifested for linear
time-invariant systems by applying theories of repetitive control.
However, because of the lack of corresponding theories, the
difficulties in designing repetitive controllers for both periodic
signal tracking and general signal tracking in nonlinear systems
are similar or the same. In view of this, this paper proposes a
new viewpoint on the internal model principle which is used to
explain how the internal models work in the time domain when
the desired signals are step signals, sine signals and general
periodic signals, respectively. Guided by this viewpoint, the
periodic signal tracking problem is considered as a stability
problem for nonlinear systems. To demonstrate the effectiveness
of this new viewpoint, a new method of designing repetitive
controllers is proposed for periodic signal tracking of non-
minimum phase nonlinear systems, where the internal dynamics
are subject to a periodic disturbance. A simulation example
illustrates the effectiveness of the new method.

Index Terms— Internal model principle, Repetitive control,
Non-minimum phase nonlinear systems.

I. INTRODUCTION

The concept of repetitive control (RC) was initially de-

veloped for continuous single-input, single-output (SISO)

linear time-invariant (LTI) systems by Inoue et al., for high

accuracy tracking of a periodic signal with a known period

[1]. Later, Hara et a1. extended the RC to multiple-input,

multiple-output (MIMO) systems [2]. Since then, RC has

begun to receive more attention and applications, and has

become a special topic in control theory. In recent years,

the development on RC has been uneven. By the use of

frequency methods, the theories and applications in LTI

systems have developed very well [3],[4]. On the other hand,

RC in nonlinear systems has received very limited research

effort.

For LTI systems, the design of repetitive controllers mainly

depends on transfer functions. By contrast, the leading

method of designing repetitive controllers in nonlinear sys-

tems is in fact a design method for a special adaptive

controller [5]-[8]. The structures of repetitive controllers

∗This work was supported by the Innovation Foundation of BUAA for
PhD Graduates.

obtained for the two types of systems are similar or the same,

but the ways to obtain these controllers are very different.

For LTI systems, we do not need to obtain error dynamics.

However, for nonlinear systems, it is often required to derive

error dynamics to convert a tracking problem to a disturbance

rejection problem or a parameter estimation problem. Then

an adaptive control design is adopted to specify certain com-

ponents of the repetitive controller. In the process, the error

dynamics are required. For non-minimum phase nonlinear

systems, the ideal internal dynamics are required to obtain

the error dynamics. This is difficult and computationally

expensive especially when the internal dynamics are subject

to an unknown disturbance. As a result, the authors suppose

that this is the reason why few RC works on such systems

have been reported.

General signal tracking problem

Periodic  signal tracking problem 

Stability problem

Fig. 1. Relationship between stability and tracking.

As shown in Fig.1, the periodic signal tracking problem is

an instance of the general signal tracking problem, and in turn

includes the stability problem (means zero signal tracking

problem here) as a special case. Consequently, periodic signal

tracking should certainly be easier than general signal track-

ing. Nevertheless, if the repetitive controllers are designed by

following existing methods used for general signal tracking

problem, then the special feature of periodic signals is in fact

under-exploited. Therefore, general methods will not only

restrict the development of RC, but also fail to represent the

special feature and importance of RC. Since periodic signals

are special, we have reason to believe that there should exist

another method, different from the general methods, to design

repetitive controllers for nonlinear systems. It is expected
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that the new design method will outperform general design

methods when dealing with the periodic signal tracking

problem.

For LTI systems, the periodic signal tracking problem

is usually viewed as a special stability problem. On the

other hand, for nonlinear systems, it usually comes down

to a pure tracking problem. This is the major difference

between dealing with the same problem for LTI systems and

nonlinear systems. In our opinion, the periodic signal tracking

problem should be a stability problem just as in LTI systems.

It is well known that a stability problem is easier than a

tracking problem. So, this conversion will greatly reduce the

difficulties in periodic signal tracking and moreover conforms

to the internal model principle (IMP) [9]. More importantly,

when the external signals are periodic, this conversion can

help overcome certain weaknesses of existing methods as

developed for general signal tracking.

Based on the consideration above, this paper develops a

new viewpoint on IMP in the time domain, which relies on

the system’s behavior. Guided by this viewpoint, the periodic

signal tracking problem is viewed as a stabilizing problem for

the closed-loop system which incorporates an external signal

model. The resulting new method does not require error

dynamics. Furthermore, it can unify the repetitive controller

design for both LTI systems and nonlinear systems. To

demonstrate the effectiveness of the proposed method, we

design a repetitive controller to track a periodic signal for

a non-minimum phase nonlinear system where a periodic

disturbance exists in the internal dynamics. To the authors’

knowledge, general methods handle such a case only at

highly computational cost [10].

In this paper, Cn
PT is the space of continuous and periodic

functions with periodicity T : x (t) = x (t − T ) , x (t) ∈
R

n, 0 ≤ t < ∞; xθ (t) denotes x (t − θ). If x (t) is

bounded on [0,∞), we let ‖·‖a denote the quantity ‖x‖a �
lim sup

t→∞
‖x (t)‖ [11].

II. A NEW VIEWPOINT ON IMP

The IMP states that if any exogenous signal can be re-

garded as the output of an autonomous system, the inclusion

of this signal model in a stable closed-loop system can

assure perfect tracking or complete rejection of the signal.

In other words, the IMP embodies the concept that the

tracking problem of a signal can be converted into a stability

problem of a closed-loop system into which is incorporated

a corresponding model of the signal. This principle plays an

important role in forming the basis of RC theories.

For LTI systems, the IMP implies that the internal model

is to supply closed-loop transmission zeros which cancel

the unstable poles of the disturbances and reference signals.

Unfortunately, the transfer function cannot be applied to

nonlinear systems. For this reason, a new viewpoint on the

IMP is proposed to explain the role of the internal models

e s v s y s
dy s

1 s G s

Fig. 2. Step signal tracking.

for step signals, sine signals and generally periodic signals,

respectively.

A. Step Signals

Since the Laplace transformation model of a unit step

signal and an integral term are the same, namely 1
s , the

inclusion of the model 1
s in a stable closed-loop system can

assure perfect tracking or complete rejection of the unit step

signal according to the IMP.

Former Viewpoint: As shown in Fig.2, the transfer func-

tion from the desired signal to the tracking error is written

as follows

e (s) =
1

1 + 1
sG (s)

yd (s) =
1

s + G (s)

(
s
1
s

)

=
1

s + G (s)
. (1)

Then, it only requires to verify whether or not the roots of

the equation s+G (s) = 0 are all in the left s-plane, namely

whether or not the closed-loop system is stable. If all roots

are in the left s-plane, then the tracking error tends to zero

as t → ∞. Therefore, the tracking problem has been reduced

to a stability problem of the closed-loop system.

New Viewpoint: This new viewpoint will give a new

explanation on IMP without using transfer functions. Because

of the integral term, the relationship between v (t) and e (t)
can be written to be

e (t) = v̇ (t) . (2)

If the closed-loop system without external signals is expo-

nentially stable, then, when the system is driven by a unit

step signal, it is easy to see that v (t) and e (t) will tend to

constants as t → ∞. Consequently, e (t) = v̇ (t) → 0 as

t → ∞ by (2). Therefore, to confirm that the tracking error

tends to zero as t → ∞, it is only required to verify whether

or not the closed-loop system without external signals is

exponentially stable. This implies that the tracking problem

has been reduced to a stability problem.

B. Sine Signals

If the external signal is in the form a0 sin (ωt + ϕ0),
where a0, ϕ0 are constants, then perfect tracking or complete

rejection can be achieved by incorporating the model 1
s2+ω2

into the closed-loop system.
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Fig. 3. Sine signal tracking.

Former Viewpoint: As shown in Fig.3, the transfer func-

tion from the desired signal to the tracking error is written

as follows

e (s) =
1

1 + 1
s2+ω2 G (s)

yd (s)

=
1

s2 + ω2 + G (s)

[(
s2 + ω2

) b1s + b0

s2 + ω2

]

=
b1s + b0

s2 + ω2 + G (s)

where the Laplace transformation model of a0 sin (ωt + ϕ0)
is b1s+b0

s2+ω2 . Then, it is only required to verify whether or not

the roots of the equation s2 + ω2 + G (s) = 0 are all in the

left s-plane, namely whether or not the closed-loop system

is stable. Therefore, the tracking problem has been reduced

to a stability problem of the closed-loop system.

New Viewpoint: Because of the term 1
s2+ω2 , the relation-

ship between v (t) and e (t) can be written to be

e (t) = v̈ (t) + ω2v (t) . (3)

If the closed-loop system without external signals is ex-

ponentially stable, then, when the system is driven by an

external signal in the form of a0 sin (ωt + ϕ0), it is easy to

see that v (t) and e (t) will tend to signals in the form of

a sin (ωt + ϕ), where a and ϕ are constants. Consequently,

e (t) → (a sin (ωt + ϕ))′′ + ω2 (a sin (ωt + ϕ))

as t → ∞ by (3). Therefore, to confirm that the tracking error

tends to zero as t → ∞ , it only requires to verify whether

or not the closed-loop system without external signals is

exponentially stable. This implies that the tracking problem

has been reduced to a stability problem.

C. Generally Periodic Signal

If the external signal is in the form of yd (t) = yd (t − T ),
which can represent any periodic signal with a period T , then

perfect tracking or complete rejection can be achieved by

incorporating the model 1
1−e−sT into the closed-loop system.

Former Viewpoint: Similarly, the transfer function from

e s v s y s
dy s

1 1
Ts

e G s

Fig. 4. Periodic signal tracking of a RC system.

the desired signal to the error is written as follows

e (s) =
1

1 + 1
1−e−sT G (s)

yd (s)

=
1

1 − e−sT + G (s)

[(
1 − e−sT

) 1
1 − e−sT

]

=
1

1 − e−sT + G (s)
.

Then, it is only required to verify whether or not the roots

of the equation 1 − e−sT + G (s) = 0 are all in the left s-

plane. Therefore, the tracking problem has been reduced to

a stability problem of the closed-loop system.

New Viewpoint: Because of the term 1
1−e−sT , the rela-

tionship between v (t) and e (t) can be written to be

e (t) = v (t) − v (t − T ) . (4)

If the closed-loop system without external signals is exponen-

tially stable, then, when the system is driven by a periodic

signal, it can be proved that v (t) and e (t) will both tend

to periodic signals with the period T . Consequently, we can

conclude that e (t) → 0 as t → ∞ by (4). Therefore, to

examine the tracking error tends to zero as t → ∞, it only

requires to verify whether or not the closed-loop system

without external signals is exponentially stable. This implies

that the tracking problem has been reduced to a stability

problem.

A controller including the model 1
1−e−sT or e−sT

1−e−sT is

said to be a repetitive controller and a system with such a

controller is called a RC system. How to stabilize the RC

system is not a trivial problem due to the inclusion of the time

delay element in the positive feedback loop. It was proved

in [2] that stability of RC systems could be achieved for

continuous-time systems only when the plants are proper but

not strictly proper. Moreover, the internal model 1
1−e−sT may

lead to instability of the system. Therefore, low-pass filters

are introduced into repetitive controllers to enhance stability

of RC systems, forming modified repetitive controllers which

can suppress the high-gain feedback at high frequencies.

However, stability is achieved at the sacrifice of performance

at high frequencies. With an appropriate filter, the modified

repetitive controller can usually achieve a tradeoff between

tracking performance and stability, which in turn broadens its

application in practice. For example: substituting the model
q(s)

1−q(s)e−sT for 1
1−e−sT results in the closed-loop system
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Fig. 5. Periodic signal tracking of a modified RC system.

shown in Fig.5, where q (s) = 1
1+εs . Then the relationship

between v (t) and e (t) can be written to be

e (t) = v (t) − v (t − T ) + εv̇ (t) . (5)

If the closed-loop system without external signals is exponen-

tially stable, then, when the system is driven by a periodic

signal, it is easy to see that v (t) and e (t) will both tend to

periodic signals as t → ∞. Because of the relationship (5),

we can conclude that e (t) − εv̇ (t) → 0. This implies that

the tracking error can be adjusted by the filter q (s) or say ε.

Moreover, if v̇ (t) is bounded in t uniformly with respect to

(w.r.t) ε as ε → 0, then we have lim
t→∞,ε→0

e (t, ε) = 0. On the

other hand, increasing ε can improve stability of the closed-

loop system. Therefore, we can achieve a tradeoff between

stability and tracking performance by using the modified

repetitive controller.

As seen above, the new viewpoint not only explains the

IMP in the time domain, but also gives an explanation for

the modified repetitive control. For periodic signal tracking,

we can conclude that if a periodic signal model with tracking

error as the input is incorporated into a closed-loop system all

of whose states tend to periodic signals, then perfect tracking

is achieved. From the new viewpoint, we do not utilize the

transfer function as before. Instead, we only need some tools

to verify the system’s behavior as t → ∞. This broadens the

tools we can choose. For periodic signal tracking, we only

need to seek conditions to verify whether or not the system

states tend to periodic signals. There exist many conditions

on existence of periodic solutions, which usually rely on

stability of the closed-loop system. Consequently, stability

of the closed-loop system is all that is needed. Therefore,

the tracking problem has been reduced to a stability problem

of the closed-loop system.

As an application of the new viewpoint, a new method is

proposed to design repetitive controllers for periodic signal

tracking of non-minimum phase nonlinear systems, where

the internal dynamics are subject to a periodic disturbance.

To the authors’ knowledge, general methods handle such a

case only at high computational cost. So the effectiveness is

demonstrated.

III. PERIODIC SIGNAL TRACKING OF NON-MINIMUM

PHASE NONLINEAR SYSTEMS

For clarity, consider a single-input, single-output system in

the following normal form

η̇ = φ (η, ξ) + dη

ξ̇ = u + dξ (6)

y = ξ

where η ∈ Dη ⊂ R
n−1, ξ ∈ Dξ ⊂ R, dη ∈ Cn−1

PT and dξ ∈
C1

PT . The signals dη and dξ are both periodic disturbances.

The function φ : Dη × Dξ → R
n−1 is locally Lipschitz. In

addition, φ (0, 0) = 0. The zero dynamics η̇ = φ (η, 0) in

(6) is unstable, so the system (6) is called a non-minimum

phase nonlinear system. All the states of (6) are further

assumed to be accessible. In this paper, the objective is

to design a controller for systems of the form (6) to track

a given desired trajectory yd ∈ C1
PT , while ensuring that

the internal state is bounded. Unlike many non-minimum

phase nonlinear systems considered in existing literature, an

unknown disturbance exists in the internal dynamics of (6).

This has brought difficulties for general methods. Now, we

take a control law of the form

εv̇ = −v + (1 − αε) vT + [h (yd) − h (y)]
u = ust (η, ξ) + v (7)

where vT (t) = v (t − T ) , ε > 0, h : R → R denotes a

continuous strictly increasing function and ust : Dη ×Dξ →
R is a state feedback law employed to stabilize the state of

the underlying plant. The functions h (·) and ust (·) are both

locally Lipschitz. On the other hand, the continuous function

v represents a feedforward input which will drive the output

y of (6) to track the given desired trajectory yd ∈ C1
PT . Next,

we write the resulting closed-loop system as follows

Eẋ = F (x) + Bd (8)

where

x =

⎡
⎣ v

η
ξ

⎤
⎦ , F (x) =

⎡
⎣ −v + (1 − αε) vT − h (ξ)

φ (η, ξ)
ust (η, ξ) + v

⎤
⎦ ,

E = diag (ε, In) , B = diag (k, In) , d =
[

yd dT
η dξ

]T
.

The closed-loop system (8) is a functional differential equa-

tion. A definition is needed for developing the following

theorem.

Definition 1 [12]. The solutions x (t0, ϕ) (t) of system

(8) with x (t0 + θ) = φ (θ) , θ ∈ [−τ, 0] are said to

be uniformly ultimately bounded with ultimate bound B,

if for each A > 0 there exists K (A,B) > 0 such

that [t0 ∈ R, ϕ ∈ C, ‖ϕ‖ < A, t ≥ t0 + K (A,B)] imply that

‖x (t0, ϕ) (t)‖ < B.
Theorem 1. Suppose that the solutions of the resulting

closed-loop system in (8) are uniformly ultimately bounded.
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Then the resulting closed-loop system in (8) has a T-periodic

solution. If the solutions of (8) approach the T-periodic

solution, then

‖h (yd) − h (y)‖a ≤ ε (‖v̇‖a + α ‖v‖a) .

Furthermore, if ‖v̇‖a and ‖v‖a are bounded in t uniformly

w.r.t ε as ε → 0, then lim
t→∞,ε→0

‖e (t, ε)‖a = 0.

Proof: Define ẋ = f (x, t) := F (x) + Bd. Since d ∈
Cn+1

PT , we have f (x, t) = f (x, t + T ). Furthermore, f (x, t)
is locally Lipschitz. Since the solutions of the resulting

closed-loop system (8) are uniformly ultimately bounded, the

resulting closed-loop system in (8) has a T-periodic solution

according to [12]. By using (7), it follows that

h (yd) − h (y) = εv̇ + v − (1 − αε) vT .

Taking ‖·‖a on both sides of the equation above yields

‖h (yd) − h (y)‖a = ‖ε (v̇ + αvT ) + v − vT ‖a

≤ ‖ε (v̇ + αvT )‖a + ‖v − vT ‖a

≤ ε (‖v̇‖a + α ‖v‖a)

where the condition that the solutions of (8) approach the

T-periodic solution is used. If ‖v̇‖a and ‖v‖a are bounded in

t uniformly w.r.t ε as ε → 0, then ε (‖v̇‖a + α ‖v‖a) → 0 as

ε → 0. This implies that ‖h (yd) − h (y)‖a → 0 as ε → 0.

Note that h (·) is a continuous strictly increasing function.

Then lim
t→∞,ε→0

‖e (t, ε)‖a = 0. �
Remark 1: It can be proved that the solutions of (8) will

approach the T-periodic solution under suitable conditions

[13]. So far, however, the conditions on F (·) are usually

conservative. Generally speaking, through many observations

from experiments and simulations, we observe that stable

systems will always eventually oscillate on being driven by

an external periodic signal. Moreover, the oscillation period

is the same as that of the external signal. Therefore, the

condition that the solutions of (8) approach the T-periodic

solution does not need to be verified in practice. In the worst

situation, the solutions of the resulting closed-loop system

in (8) are uniformly ultimately bounded. So, it is flexible in

practice to decide whether or not to adopt this control scheme

depending on the tracking performance.

IV. AN APPLICATION

Consider a concrete system in the form of (6) that

η̇ = sin η + ξ + dη

ξ̇ = u + dξ (9)

y = ξ

where η (0) = 1 and ξ (0) = 0. The desired trajectory

yd = sin t. The disturbances are assumed to be dη = 0.1 sin t
and dξ = 0.2 sin t. Since the zero dynamics are unstable,

system (9) is a non-minimum phase nonlinear system. The

control is required not only to cause y to track yd, but also to

stabilize the internal dynamics. If the usual method is used

to handle this problem, then it may be difficult to obtain the

ideal internal dynamics, for the disturbance in the internal

dynamics is unknown. Now, we will take a control law of

the form (7), and design ust and v to make sure the solutions

of the resulting closed-loop system are uniformly ultimately

bounded.

The stabilizing controller ust is designed by using back-

stepping method. We start with the scalar system

η̇ = sin η + ξ + dη

with ξ viewed as the input and proceed to design the feedback

control as ξ = z − q1η − sin η. Then we obtain η̇ = −q1η +
z + dη. To backstep, we use the change of variables z =
ξ + q1η + sin η to transform the system into the form

ż = u + (q1 + cos η) (−q1η + z) + dξ + dη (q1 + cos η) .

Based on the equation above, the controller is designed to be

εv̇ = −v + (1 − αε) vT + ρ (yd − y)
u = − (q1 + cos η) (−q1η + z) − kz − q2η + v (10)

where the coefficients are specified later to ensure that the

solutions of the resulting closed-loop system are uniformly

ultimately bounded. Then the closed-loop system becomes

εv̇ = −v + (1 − αε) vT − ρ (z − q1η − sin η) + ρyd

η̇ = −q1η + z + dη

ż = −kz − q2η + v + dξ + dη (q1 + cos η) . (11)

Design a Lyapunov functional to be

V =
1
2
p1η

2 +
1
2
p2z

2 +
ε

2
v2 +

∫ 0

−T

v2
θdθ.

Taking the derivative of V along the solutions of (11) results

in

V̇ = p1ηη̇ + p2zż + εvv̇ +
1
2

(
v2 − v2

T

)

= −p1q1η
2 − p2kz2 − αε (2 − αε)

2
v2

+ (p1 − p2q2) ηz + (p2 − ρ) zv + v (q1η + sin η)
+ p1ηdη + p2 [dξ − dη (q1 + cos η)] z + ρvyd.

By choosing p1, q1 appropriately and p2 = ρ, if k is chosen

sufficiently large, then we have

−p1q1η
2 − p2kz2 − αε (2 − αε)

2
v2 + (p1 − p2q2) ηz

+ (p2 − ρ) zv + v (q1η + sin η) ≤ −θ1η
2 − θ2z

2 − θ3v
2

where θ1, θ2, θ3 are positive numbers. Furthermore, there

exists a class K function χ : [0,∞) → [0,∞) such that

[14]

V̇ ≤ −θ′1η
2 − θ′2z

2 − θ′3v
2 +χ

(
‖yd‖2

∞ + ‖dη‖2
∞ + ‖dξ‖2

∞
)
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where θ′1, θ
′
2, θ

′
3 are positive numbers. Therefore, the given

Lyapunov functional satisfies

γ0 ‖x (t)‖2 ≤ V ≤ γ1 ‖x (t)‖2 +
1
2

∫ 0

−T

‖xθ‖2
dθ

V̇ ≤ −γ2 ‖x (t)‖2 + χ
(
‖yd‖2

∞ + ‖dη‖2
∞ + ‖dξ‖2

∞
)

where γ0 = min
(

1
2p1,

1
2p2,

ε
2

)
, γ1 = max

(
1
2p1,

1
2p2,

ε
2

)
and

γ2 = min (θ′1, θ
′
2, θ

′
3) .

According to Theorem 4 in [12], the solutions of (11)

are uniformly ultimately bounded. Furthermore, ξ is also

uniformly ultimately bounded by using the relationship ξ =
z − q1η − sin η. By Theorem 1, the resulting closed-loop

system has a T-periodic solution. If the solutions of (8)

approach the T-periodic solution, then the tracking error

satisfies ‖e‖a ≤ ερ−1 (‖v̇‖a + α ‖v‖a) . The controller (10)

is chosen to be

0.1v̇ = −v + 0.99vT + 5 (yd − y) , v (θ) = 0, θ ∈ [−T, 0]
u = − (1 + cos η) (−1 + z) − 2z − η + v.

Then the performance of the proposed controller is shown in

Figs 6-7. Fig. 6 shows the response of the closed-loop system

from the given initial condition. The output very quickly

tracks the desired trajectory actually, in two periods. The

internal state is also bounded. In Fig. 7, we present the time

history of the stabilizing controller ust, the feedforward input

v and finally the controller output u = ust + v. It is obvious

that they are all bounded.

0 5 10 15 20 25 30 35 40 45 50

−1

0

1

2

3

4

5

6

t(sec)

Internal state η(t)
Output Trajectory y(t)
Desired Trajectory yd(t)

Fig. 6. Time responses of the closed-loop system.

V. CONCLUSIONS

A new viewpoint on IMP is given. Guided by this view-

point, a method is given to design repetitive controllers

for periodic signal tracking of non-minimum phase nonlin-

ear systems, where the internal dynamics are subject to a

periodic disturbance. A simulation example illustrates the

effectiveness of the proposed method. As we expect, the

0 5 10 15 20 25 30 35 40 45 50
−15

−10

−5

0

5

10

15

20

t(sec)

Stabilizing Controller ust(t)
Feedforward Learning v(t)
Controller Output u(t)

Fig. 7. Time responses of the controller output.

new method really overcomes some weaknesses of existing

methods which are applicable to the general signal tracking.

This also coincides with the basic idea of the IMP.
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