Contents lists available at ScienceDirect

Materials Research Bulletin

journal homepage: www.elsevier.com/locate/matresbu

Short communication

A new strategy to diminish the 4 V voltage plateau of LiNi_{0.5}Mn_{1.5}O₄

Guoqiang Liu*, Lingxi Zhang, Lu Sun, Lun Wang

School of Material and Metallurgy, Northeastern University, Shenyang 110819, China

ARTICLE INFO

ABSTRACT

Article history: Received 8 May 2013 Received in revised form 22 June 2013 Accepted 5 July 2013 Available online 18 July 2013

Keywords: A. Inorganic compounds B. Chemical synthesis C. X-ray diffraction D. Electrochemical properties As for spinel $\text{LiNi}_{0.5}\text{Mn}_{1.5}\text{O}_4$, there is 4 V voltage plateau in the charge–discharge profiles. This voltage plateau can be reduced by an annealing process, however it is hard to avoid it completely. In this study, a new strategy of partial substitution for Mn by Mg is applied. There is no 4 V voltage plateau in the charge–discharge profiles of Mg-doped compound $\text{LiNi}_{0.5}\text{Mn}_{1.45}\text{Mg}_{0.05}\text{O}_4$. This compound exhibits good electrochemical properties which can be used as cathode material of lithium ion batteries. At 1 C rate, it can deliver a capacity of around 129 mAh g⁻¹ and remain good cycle performance.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The spinel Li[Ni_{0.5}Mn_{1.5}]O₄ is considered a promising cathode material for a Li-ion battery owing to its high working voltage of ca. 4.7 V versus Li. The high working voltage can elevate power density of batteries. In fact, in the 4.7 V plateau, there are two distinct voltages which are attributed to the Ni(III)/Ni(II) and Ni(IV)/Ni(II) redox couples when Li ion is extracted from or inserted into crystal LiNi_{0.5}Mn_{1.5}O₄ [1,2].

In most cases, there is a 4 V shoulder originating from the oxidation and reduction of the Mn(IV)/Mn(III) couple. This 4 V voltage plateau will lower the power density of $LiNi_{0.5}Mn_{1.5}O_4$. In synthesizing spinel $LiNi_{0.5}Mn_{1.5}O_4$, oxygen deficiency usually takes place when the temperature increases above 700 °C. This process can be expressed by the following reaction [3–5]:

$$LiNi_{0.5}Mn_{1.5}O_4 \rightarrow Li_xNi_{1-x}O + LiNi_{0.5-v}Mn_{1.5-v}O_{4-x} + O_2$$

In order to keep the charge neutrality for the new product $\text{LiNi}_{0.5-y}\text{Mn}_{1.5-y}\text{O}_{4-x}$, there should be some amount of Mn^{3+} in the product $\text{LiNi}_{0.5-y}\text{Mn}_{1.5-y}\text{O}_{4-x}$.

In the past, many attempts have been made to diminish the 4 V plateau. Among these attempts, annealing process is the most effective one because it can compensate for the loss of oxygen in $LiNi_{0.5}Mn_{1.5}O_{4-x}$, and makes Mn^{3+} transfer into Mn^{4+} . However it is

E-mail address: liugq@smm.neu.edu.cn (G. Liu).

0025-5408/\$ - see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.materresbull.2013.07.002 hard to eliminate Mn³⁺ completely by means of a single annealing process [6].

In this study, we employ another strategy to eliminate Mn^{3+} in LiNi_{0.5}Mn_{1.5}O_{4-x}. Partial substitution of Mn by Mg is applied. Because Mg²⁺ is a stable oxide state, the chemical valence of Mn should be +4 in order to maintain the charge neutrality for LiNi_{0.5}Mn_{1.5}O₄. In the final product, the 4 V plateau is eliminated almost completely.

2. Experimental

Stoichiometric amounts $Ni(NO_3)_2 \cdot 6H_2O$, of LiNO₃, Mn(CH₃COO)₂·4H₂O and Mg(NO₃)₂·6H₂O were used as starting materials and malic acid as chelating agent. The mole ratio of Li:Ni:Mn:Mg was 1:0.5:1.45:0.05. To compensate for the lithium loss at high temperature, small amount of the extra Li salt was added in this solution. At first, the starting materials were dissolved in distilled water and stirred for some time, and then malic acid was added into aqueous solution drop by drop. After stirring for 2 h, the mixed solution was evaporated at 100 °C to form a precursor. At last, the precursor was calcined at 900 °C for 8 h, and then annealed for 6 h before cooling to room temperature. In order to make a comparison, an undoped sample $LiNi_{0.5}Mn_{1.5}O_4$ was also prepared in the same way, only the annealing time was 20 h.

X-ray diffraction pattern was carried out on a Philips X-ray diffractometer equipped with Cu K α radiation. The morphologies of the products were examined with a Hitachi scanning electron microscope (SEM).

CrossMark

^{*} Corresponding author. Tel.: +86 24 83673860.

Fig. 1. XRD patterns of the as prepared samples.

Electrochemical performances were measured with coin halfcells composed of the nominal spinel cathode and metallic-lithium anode with 1 mol L⁻¹ LiPF₆ in 1:1 diethyl carbonate/ethylene carbonate electrolyte and Celgard polypropylene separators. The cathodes were prepared by mixing 85 wt% active material with 10 wt% acetylene black and 5 wt% PVDF binder in NMP; the mixture was coated on aluminum foil, dried in an oven and punched out circular discs of 1.23 cm in diameter. All coin cells were assembled in an argon-filled glovebox. The cells were galvanostatically cycled at 1 C-charge/1 C-discharge rate between 3.50 V and 4.90 V.

3. Results and discussion

Fig. 1 shows the X-ray diffractions of the as prepared products $\text{LiNi}_{0.5}\text{Mn}_{1.45}\text{Mg}_{0.05}\text{O}_4$ and $\text{LiNi}_{0.5}\text{Mn}_{1.5}\text{O}_4$. It can be seen that all peaks can be indexed as the cubic spinel $\text{LiNi}_{0.5}\text{Mn}_{1.5}\text{O}_4$ phase. There are no apparent impurity peaks at 37.5°, 43.7° and 63.6°, indicating no $\text{Li}_x\text{Ni}_{1-x}\text{O}$ phase in the samples [7–9]. The lattice constants are calculated to be 8.1726 Å and 8.1613 Å for $\text{LiNi}_{0.5}\text{Mn}_{1.45}\text{Mg}_{0.05}\text{O}_4$ and $\text{LiNi}_{0.5}\text{Mn}_{1.5}\text{O}_4$ respectively by the least squares method. Because the ionic radius of Mg^{2+} is larger than that of Mn^{4+} , there is a difference in lattice constant between the two samples.

The morphological feature of the as-prepared sample is characterized by scanning electron microscopy, as displayed in Fig. 2. The sample is polyhedral shape and well crystallized. Most particles range from 1 to 3 μ m in size.

Fig. 3 shows the first charge and discharge curves of the as prepared samples at 1 C rate. For the $LiNi_{0.5}Mn_{1.5}O_4$ sample, there

Fig. 3. Charge and discharge curves of the as prepared samples.

is still a small 4 V voltage plateau. It indicates that there are small amounts of Mn^{3+} in the sample. For the Mg-doped sample $LiNi_{0.5}Mn_{1.45}Mg_{0.05}O_4$, there is no obvious 4 V voltage plateau. So the doped Mg element can make the chemical valence of Mn move to Mn^{4+} in order to keep the positive and negative charge balance in $LiNi_{0.5}Mn_{1.45}Mg_{0.05}O_4$. It is worth mentioning that the annealing time for sample $LiNi_{0.5}Mn_{1.5}O_4$ is longer than that for sample $LiNi_{0.5}Mn_{1.45}Mg_{0.05}O_4$. It can be inferred that doping Mg is an effective method to eliminate the 4 V voltage plateau. We define that the 4-V region is the voltage range of 4.40–3.50 V, and the amount of Mn^{3+} in sample $LiNi_{0.5}Mn_{1.5}O_4$ can be calculated as 0.048 per formula unit. In order to keep the charge neutrality, the product should be $LiNi_{0.5}Mn_{1.5}O_{3.976}$.

On the one hand, the larger lattice constant is propitious for the transportation of Li ions in the bulk of electrode materials. On the other hand, a portion of the Mn^{3+} ions on the surface of the sample may undergo the disproportionation reaction $2Mn^{3+} = Mn^{2+} + Mn^{4+}$, and the Mn^{2+} tends to dissolve in the electrolyte and migrate to the anode to degrade cell [6]. After doping Mg, the Mn^{3+} is transferred to Mn^{4+} . Therefore the cycle performance of LiNi_{0.5}Mn_{1.45}Mg_{0.05}O₄ should be better than that of sample LiNi_{0.5}Mn_{1.45}Mg_{0.05}O₄ and LiNi_{0.5}Mn_{1.5}O_{3.976} remain 92.2% and 81.3% after 100 cycles.

Fig. 2. SEM images of the as prepared samples (a) LiNi_{0.5}Mn_{1.45}Mg_{0.05}O₄ and (b) LiNi_{0.5}Mn_{1.5}O₄.

Fig. 4. Cycle performance of the as prepared samples.

4. Conclusions

Doping Mg in LiNi_{0.5}Mn_{1.5}O₄ can enlarge the lattice constant of LiNi_{0.5}Mn_{1.5}O₄, and reduce the amount of Mn^{3+} in the crystal.

Therefore, doping Mg is an effective way to diminish the 4 V voltage plateau during charge and discharge process of LiNi_{0.5}Mn_{1.5}O₄. The harmful effect of Mn³⁺ on the surface of LiNi_{0.5}Mn_{1.5}O₄ can also be diminished. The Mg-doped compound LiNi_{0.5}Mn_{1.45}Mg_{0.05}O₄ can deliver a capacity of 129 mAh g⁻¹ at 1 C rate and the capacity retention is 92.2% after 100 cycles.

References

- [1] Q.M. Zhong, A. Bonakdarpour, M.J. Zhang, Y. Gao, J.R. Dahn, J. Electrochem. Soc. 144 (1997) 205.
- [2] C. Sigala, D. Guyomard, A. Verbaere, Y. Piffard, M. Tournoux, Solid State Ionics 81 (1995) 167.
- [3] L. Wang, H. Li, X. Huang, E. Baudrin, Solid State Ionics 193 (2011) 32.
- [4] T. Yang, K. Sun, Z. Le, N. Zhang, Y. Lang, J. Alloy. Compd. 502 (2010) 212.
- [5] Y.C. Jin, C.Y. Lin, J.G. Duh, Electrochim. Acta 69 (2012) 45.
- [6] J. Song, D.W. Shin, Y.H. Lu, C.D. Amos, A. Manthiram, J.B. Goodenough, Chem. Mater. 24 (2012) 3101.
- [7] J. Hassoun, K.S. Lee, Y.K. Sun, B. Scrosati, J. Am. Chem. Soc. 133 (2011) 3139.
- [8] J.C. Arrebola, A. Caballero, M. Cruz, L. Hernan, J. Morales, E.R. Castellon, Adv. Funct. Mater. 16 (2006) 1904.
- [9] K.M. Shaju, P.G. Bruce, Dalton Trans. 41 (2008) 5471.