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Particle filter (PF) is a kind of flexible and powerful sequential Monte-Carlo technique

designed to solve the optimal nonlinear parameter estimation numerically, and the

degradation of particles in generic PF occurs when it is applied to the model switching

dynamic system. To avoid this phenomenon, an ant stochastic decision based particle

filter is proposed to encapsulate model switching information through dividing

probabilistically particles into two model operations, and then a well defined re-

sampling scheme is introduced to gain a better overlap with the true density function.

To show the theoretic consistency with the generic PF, its basic convergence result is

presented as well. Finally, we compare the performance of our proposed algorithm with

that of other estimators (e.g., PF and moving ant estimator), and simulation results

demonstrate its superior robustness of parameter estimation for switching dynamic

system.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

In the recursive Bayesian framework, an unknown
state can be derived from its posterior distribution. If the
observations are received sequentially in time, the poster-
ior distribution is then updated or evolves in time as well
using measurement likelihood function and state transi-
tion function. When the posterior distribution has an
analytical form, it is easy to implement the Bayesian
recursion in a polite manner. However, such case only
applies to few models, such as Gaussian and linear state
space model. In other words, the posterior distribution
generally has no analytical expression for large and
practical engineering applications.

Particle filter (PF), also known as Sequential Monte-
Carlo (SMC), is a kind of flexible and powerful sequential
Monte-Carlo technique designed to solve the optimal
nonlinear parameter estimation numerically, and it has
received tremendous popularity in recent years over a
ll rights reserved.

).
wide range of applications [1–5]. The basic idea behind
the PF is that the state density distribution is approxi-
mated by a group of ‘‘weighted’’ samples, and these
samples are propagated and updated once new measure-
ments are available. Using these ‘‘weighted’’ samples, the
posterior state density distribution can be approximated
by standard Monte-Carlo integration techniques.

It is acknowledged that a successful implementation of
PF resorts to two aspects: (1) how to select appropriately
samples (re-sampling), i.e., how to avoid the phenomenon
of degeneration in which a number of samples are
removed from the sample set due to the lower importance
weights. Specially, for a model switching dynamic system,
the phenomenon of particle degeneration is much more
severe than other cases; (2) how to design an appropriate
proposal distribution to facilitate easy sampling and
further to achieve a large overlap with the true state
density function.

So far, there are three widely used re-sampling
techniques, namely, sampling-importance re-sampling
(SIR), residual re-sampling, and minimum variance sam-
pling [6]. Of the three strategies, minimum variance
sampling has the smallest variance on the number of
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‘‘children’’ of each particle ðNi,i¼ 1,2, . . . ,NÞ, while SIR has
the largest one. However, they share the same computa-
tional complexity O(N). Additionally, it is found that a
specific choice of re-sampling scheme does not signifi-
cantly affect the performance of parameter estimation [6].
Thus, we resort to the design of proposal distribution, and
a commonly accepted choice is that it takes the same
form as the assumed state evolution function due to its
easy-sampling-implementation. However, such technique
does not take advantage of posterior information such as
new measurements, and if the assumed state evolution
function deviates from the true one, it will lead to low
likelihood value or weight and further result in divergence
of estimation. To remedy this, many variants of PF have
been proposed [7–9], such as the extended HN filter based
PF [7], the PF with functional auxiliary sampling density
Kullback–Leibler (FASD-KL) [8], the threshold-based PF
[9], and so on. Besides, evolutionary algorithms, such as
Genetic Algorithm (GA), are incorporated into the generic
PF, and some promising results are reported as well [10].
Inspired from ant stochastic behavior in foraging, we
propose, in our work, an ant stochastic decision based
particle filter, in which each particle evolves either of two
proposal ways to accommodate model variations, and
then particles are selected (re-sampling) according to ant
empiricism acquired from available measurement, which
results in a smaller particle variance than SIR, finally its
convergence is investigated theoretically for a general use.

The remainder of this paper is organized as follows.
In Section 2, we first briefly review the background on the
particle filter, and then an ant stochastic decision based
particle filter is described in detail. Section 3 gives the
convergence proof of our proposed algorithm. Numerical
simulation is carried out and results are analyzed in
Section 4. Finally, conclusions are drawn in Section 5.
2. Ant stochastic behavior based particle filter

2.1. Background on particle filter

The objective of nonlinear filtering is to estimate the
state according to the dynamic model

xtþ1 ¼ f ðxt ,wtÞ

zt ¼ hðxt ,vtÞ ð1Þ

where xt 2 R
nx denotes the state at time t, zt 2 R

nz is
the corresponding measurement, wt and vt represent
the process and measurement noise, respectively. In the
above formula, the system model is characterized
by the mapping f ð�ÞðRnx �Rnw/Rnx Þ, usually assumed
to follow the first order Markov density function
ptjt�1ðxtjxt�1Þ on the state space wDRnx , and the observa-
tion function hð�ÞðRnx �Rnv/Rnz Þ, usually modeled as a
likelihood function ptðzt jxtÞ on the observation space
ZDRnz , respectively.

Given an initial density function p0ðx0Þ of state, the
posterior filtering density at time t can be calculated by
the Bayesian recursion

ptjt�1ðxtjz1:t�1Þ ¼

Z
ptjt�1ðxtjxÞpt�1jt�1ðxjz1:t�1Þdx ð2Þ

ptjtðxtjz1:tÞ ¼
ptðztjxtÞptjt�1ðxtjz1:t�1ÞR
ptðzt jxÞptjt�1ðxjz1:t�1Þdx

ð3Þ

where z1:t ¼ fz1,z2, . . . ,ztg denotes the accumulated
observations up to time t. Once the posterior probabilistic
density function ptjtðxtjz1:tÞ is available, the corresponding
estimate of state xt can be achieved by the maximum a
posterior (MAP) estimator.

To implement the Bayesian recursion, a direct and easy
alternative is the PF or Sequential Monte-Carlo technique.
The PF algorithm is initialized with a set of un-weighted
particles and then undergoes prediction step, update step
and re-sampling step sequentially [9].

Initialization: One draws N samples equally from the

initial density function p0j0, and yields fxðiÞ0 ,N�1g
N

i ¼ 1. Let

pN
t�1jt�1 be a measure, so we define

pt�1jt�1ðdxt�1jz1:t�1Þ � pN
t�1jt�1ðdxt�1jz1:t�1Þ9

1

N

XN

i ¼ 1

d
xðiÞ

t�1

ðdxt�1Þ

ð4Þ

where pN
t�1jt�1 denotes the empirical distribution close to

pt�1jt�1, and d
xðiÞ

t�1

ð�Þ denotes the delta-Dirac function

centered at xðiÞt�1. If we set t=1, then Eq. (4) corresponds

to the initial step.
Prediction step: This step is carried out for each particle

to obtain predicted particle xðiÞt using the proposal density
function

xðiÞt � qtð�jx
ðiÞ
t�1,ztÞ i¼ 1,2,:::,N ð5Þ

Meanwhile, the individual weight for each particle is
predicted and evaluated by the law

wðiÞtjt�1 ¼
ptjt�1ðx

ðiÞ
t jx
ðiÞ
t�1Þ

qtðx
ðiÞ
t jx
ðiÞ
t�1,ztÞ

wðiÞt�1 ð6Þ

Note that if we take qtðx
ðiÞ
t jx
ðiÞ
t�1,ztÞ ¼ ptjt�1ðx

ðiÞ
t jx
ðiÞ
t�1Þ, then

wðiÞtjt�1 ¼wðiÞt�1. Let pN
tjt�1 be the measure, following Eq. (4),

the empirical one-step predicted distribution is obtained

ptjt�1ðdxtjz1:t�1Þ � pN
tjt�1ðdxtjz1:t�1Þ9

XN

i ¼ 1

wðiÞtjt�1dx
ðiÞ
t
ðdxtÞ

ð7Þ

Update step: Once new measurement zt is available,
and if Eq. (7) is substituted into Eq. (3), we have the
Monte-Carlo approximation of ptjtðdxtjz1:tÞ

ptjtðdxt jz1:tÞ � pN
tjtðdxtjz1:tÞ

9
ptðztjxtÞpN

tjt�1ðdxtjz1:t�1ÞR
ptðztjxÞpN

tjt�1ðdxtjz1:t�1Þdx

¼

PN
i ¼ 1 wðiÞtjt�1ptðztjx

ðiÞ
t Þdx

ðiÞ
t
ðdxtÞPN

i ¼ 1 wðiÞtjt�1ptðztjx
ðiÞ
t Þ

¼
XN

i ¼ 1

wðiÞtjt�1ptðztjx
ðiÞ
t ÞPN

i ¼ 1 wðiÞtjt�1ptðztjx
ðiÞ
t Þ

 !
d

x
ðiÞ
t
ðdxtÞ ð8Þ
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The last term in Eq. (8) can be further written as a
simplified form in terms of updated weight, thus Eq. (8) is
reduced to

ptjtðdxtjz1:tÞ � pN
tjtðdxtjz1:tÞ9

XN

i ¼ 1

wðiÞt dx
ðiÞ
t
ðdxtÞ,

wðiÞt ¼
ptðztjx

ðiÞ
t ÞPN

i ¼ 1 wðiÞtjt�1ptðztjx
ðiÞ
t Þ

wðiÞtjt�1 ð9Þ

Re-sampling step: Finally, the re-sampling step is done

to obtain a set of un-weighted particles fxðiÞt ,N�1g
N

i ¼ 1, and

these particles constitute the empirical distribution close

to ptjtðdxtjz1:tÞ

ptjtðdxtjz1:tÞ � pN
tjtðdxtjz1:tÞ9

1

N

XN

i ¼ 1

d
xðiÞt
ðdxtÞ ð10Þ

So, the final estimate for xt at time t can be written as

x̂t ¼ Eðxt jy1:tÞ ¼
XN

i ¼ 1

N�1xðiÞt ð11Þ

Eqs. (4)–(10) are the numerically implementation of
Bayesian recursion (Eqs. (2) and (3)), and this constitutes
one cycle of generic PF algorithm. It can be observed that

these particles xðiÞt obtained from proposal density func-

tion have a critical and direct effect on the update step
and even the re-sampling step, since these following steps

are done fully based on xðiÞt ði¼ 1,2, . . . ,NÞ. In addition,

these particles xðiÞt obtained from the re-sampling step in

turn affect the generation of particles in Eq. (5) at next
time. Therefore, our proposed algorithm focuses on
variations of the two steps with the help of ants, which
differ conspicuously from the counterparts in PF.

2.2. Ant stochastic behavior based algorithm

In this section, the ant stochastic selection behavior,
acquired from ant colony optimization [11–13], is in-
corporated into the above PF (called generic PF later) to
improve the effectiveness and diversity of particles in
different dynamic systems. The reason why we use the
ant algorithm lies in:
(1)
 Ant probabilistic selection accommodates part of
particles undergoing another Markov transition pro-
cess, i.e., allows for various uncertainties such as
model switching in time and noise level changes in
time.
(2)
 The incorporation of ants into PF could ease the
burden of re-sampling step, i.e., it can guide some
particles toward interested region in advance. As a
result, the degradation phenomenon of particles in
re-sampling step is alleviated in some sense.
1 Note that Nt1 is time-dependent, i.e., the number of particle in

space O1 is time-varying, but the expectation of Nt1 is invariant and

equals to Nq0. Similarly, the above explanation applies to Nt2.
Since our algorithm is a variant of particle filter, it has the
same steps as the PF, namely, prediction step, update step
and re-sampling step. However, particles in prediction
step may follow either the original transitional density
function or a new one, and such selection is based on ants’
stochastic decision. While in the re-sampling step, a direct
or empirical re-sampling scheme is investigated, which
guarantees a smaller variance of the number of particles
and further results in a better overlap with the true
density function.

Prediction step: To accommodate the possibility of
variation during model evolution process, we consider

two proposal density functions denoted by qð1Þt ð�j � ,ztÞ and

qð2Þt ð�j � ,ztÞ. For simplicity, for particle xðiÞt�1 we take

qð1Þt ð�jx
ðiÞ
t�1,ztÞ ¼ ptjt�1ðx

ðiÞ
t jx
ðiÞ
t�1Þ, which means that the state

evolves in the pre-assumed model and is independent of

new measurement zt; while qð2Þt ð�j � ,ztÞ is related to new

measurement zt and called posterior proposal density
functions, which will be detailed later in this section. Note
that the two proposal density function can be designed
in other forms depending on applications. For instance, in
the target tracking field, we employ Singer model [14]
with different noise levels to adapt to model change such
as from the non-maneuvering motion to maneuvering

one, so qð1Þt ð�j � ,ztÞ and qð2Þt ð�j � ,ztÞ may take the Markov

transition density functions corresponding to small and
large process noise, respectively.

For a set of weighted particles fxðiÞt�1,wðiÞt�1g
N

i ¼ 1, they are

pre-divided by the ant’s stochastic decision into two sub-
groups denoted by O1 and O2 according to the following
law

xðiÞt�1-O1 if qrq0

xðiÞt�1-O2 otherwise

8<
: ð12Þ

where q is a random number uniformly distributed in the
range of [0,1], q0 is a threshold which takes the value
between 0 and 1. Parameter q0 plays a role of threshold,
and it determines the ratio of particles assigned into the
two groups.

To improve the efficiency, we use N ants in parallel,
each ant corresponds to a particle, but they use the same
criterion q0. It can be observed that the expectation of the
number of particles in O1 and O2 is Nq0 and N(1�q0),
respectively. In addition, the setting of q0 may affect the
resulting performance, and its sensitiveness will be
investigated in Section 4.

Therefore, the one-step prediction of each particle is
done according to

xðiÞt �
qð1Þt ð�jx

ðiÞ
t�1,ztÞ if xðiÞt�1 2 O1

qð2Þt ð�jx
ðiÞ
t�1,ztÞ if xðiÞt�1 2 O2

8<
: ð13Þ

As discussed earlier, for those particles in O1 we set qð1Þt

ð�jxðiÞt�1,ztÞ ¼ ptjt�1ðx
ðiÞ
t jx
ðiÞ
t�1Þ. Furthermore, if ptjt�1ðx

ðiÞ
t jx
ðiÞ
t�1Þ is

assumed to follow the Gaussian distribution, then it yields

xðiÞt � ptjt�1ðxtjx
ðiÞ
t�1Þ ¼Nðx; f ðxðiÞt�1Þ,Q tÞ with mean f ðxðiÞt�1Þ

and variance Qt. Suppose that there are Nt1
1 particles

in O1 for a given iteration, so its corresponding
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predicted weights

wðiÞtjt�1 ¼
ptjt�1ðx

ðiÞ
t jx
ðiÞ
t�1Þ

qð1Þt ðx
ðiÞ
t jx
ðiÞ
t�1,ztÞ

wðiÞt�1 ¼
ptjt�1ðx

ðiÞ
t jx
ðiÞ
t�1Þ

ptjt�1ðx
ðiÞ
t jx
ðiÞ
t�1Þ

wðiÞt�1 ¼wðiÞt�1,

i¼ 1,2, . . . ,Nt1 ð14Þ

For the remaining Nt2 (where Nt2 ¼N�Nt1) particles in O2,

the posterior proposal density functions qð2Þt ð�j � ,ztÞ is

designed as below. To take advantage of posterior
information on new measurement zt, for particle

xðiÞt�1ði¼Nt1þ1,Nt1þ2, . . . ,NÞ, we choose the region close

to f ðxðjÞt�1Þ as its intended destination, where xðjÞt�1 is

determined by

xðjÞt�1 ¼ arg max
xðjÞ

t�1
2O2

ðptðzt jf ðx
ðjÞ
t�1ÞÞÞ ð15Þ

Now the state of particle xðiÞt�1 is perturbed and changed to

y9xxðjÞt�1 which is close to xðjÞt�1, where x is assumed to be a

Gaussian stochastic variable with mean unity and var-
iance s2. Apparently, the standard deviation s determines

the degree to which xxðjÞt�1 is close to xðjÞt�1. As a result, the

posterior proposal density functions qð2Þt ð�j � ,ztÞ can be

written as

qð2Þt ðxtj

� ,ztÞ ¼ qð2Þt ðxtjztÞ ¼

Z
ptjt�1ðxtjxxðjÞt�1ÞpðxxðjÞt�1jztÞdðxxðjÞt�1Þ

¼

Z
ptjt�1ðxtjyÞpðyÞdy ð16Þ

Since x is a Gaussian random variable with mean unity

and variance s2, then pðy¼ xxðjÞt�1Þ is also a Gaussian

density function with pðy¼ xxðjÞt�1Þ ¼Nðy; xðjÞt�1,Q 1tÞ, where

Q 1t ¼ s2diagððxðj,1Þt�1 Þ
2, . . . ,ðxðj,nxÞ

t�1 Þ
2
Þ with xðj,iÞt�1denoting the ith

component of vector xðjÞt�1. And if ptjt�1ðxtjxxðjÞt�1Þ is assumed

to be a Gaussian function, thus it can be formulated as

ptjt�1ðxtjxxðjÞt�1Þ ¼Nðxt; f ðxxðjÞt�1Þ,Q tÞ. As a result, the integral

form in Eq. (16) can be written asZ
ptjt�1ðxt jxxðjÞt�1ÞpðxxðjÞt�1ÞdðxxðjÞt�1Þ ¼

Z
Nðxt ; f ðyÞ,Q tÞNðy;x

ðjÞ
t�1,Q 1tÞdy

ð17Þ

Lemma 1. Assume that there are three Gaussian density

functions denoted by p1ðvÞ ¼Nðv; z�Hx,RÞ, p2ðxÞ ¼
Nðx;m,PÞ, and p3ðzÞ ¼Nðz;Hm,RþHPHT

Þ, respectively.

And if R and P are positive definite, then we have

p1ðvÞp2ðxÞ

p3ðzÞ
¼

Nðv; z�Hx,RÞ �Nðx;m,PÞ

Nðz;Hm,RþHPHT
Þ

¼
Nðz;Hx,RÞ �Nðx;m,PÞ

Nðz;Hm,RþHPHT
Þ
¼ cNðx;m,PÞ ð18Þ

with m ¼mþPHT R�1
ðz�HmÞ, P ¼ P�PHT

ðHPHT
þRÞ�1

HP, and c is a constant and equals to c¼ ðjP j1=2jRþ
HPHT

j1=2Þ=jRj1=2jPj1=2. (See the proof in Appendix A).

Lemma 2. Given the following matrixes or vectors F,Q,m
and P, each with appropriate dimension, and if Q and P are
positive definite, we haveZ
Nðx; Fy,Q ÞNðy;m,PÞdy¼ ~cNðx; Fm,QþFPFT

Þ ð19aÞ

Proof. Using the result of Lemma 1, the right side of
Eq. (19a) can be rewritten asZ

Nðx; Fy,Q ÞNðy;m,PÞdy

¼

Z
Nðx; Fm,QþFPFT

Þ � ~cNðy;m0,P
0
Þdy

¼ ~cNðx; Fm,QþFPFT
Þ

Z
Nðy;m0,P

0
Þdy

¼ ~cNðx; Fm,QþFPFT
Þ ð19bÞ

where ~c is a constant. Using Lemma 2, Eq. (16) or (17) can
be formulated by

qð2Þt ðxtj � ,ztÞ ¼

Z
ptjt�1ðxtjyÞpðyÞdy

¼

Z
Nðxt; f ðyÞ,Q tÞNðy; x

ðjÞ
t�1,Q 1tÞdy

¼ ĉNðxt; FxðjÞt�1,Q tþFQ 1tF
T
Þ ð20Þ

where

F ¼
@f

@y y ¼ xxðjÞ
t�1

���
and ĉ is a constant which is equal to

ĉ ¼
jQ tþFQ 1tF

T
jjQ 1t�Q 1tF

T
ðQ tþFQ 1tF

T
Þ
�1FQ 1tj

jQ tjjQ 1tj

 !1=2

So far, we have given the analytic formulations of the two
proposal density functions, which are characterized by the
easy-to-sampling, i.e., both in the form of Gaussian
functions.

So, following Eq. (14), for those particles in O2,

wðiÞtjt�1 ¼
ptjt�1ðx

ðiÞ
t jx
ðiÞ
t�1Þ

qð2Þt ðx
ðiÞ
t jx
ðiÞ
t�1,ztÞ

wðiÞt�1,i¼Nt1þ1,Nt1þ2, . . . ,N
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Nt2

ð21Þ

Let pNt1

tjt�1 and pNt2

tjt�1 be the measures, the respective

empirical one-step predicted distributions are obtained

pNt1

tjt�1ðdxtjz1:t�1Þ9
XNt1

i ¼ 1

wðiÞtjt�1dx
ðiÞ
t
ðdxtÞ

pNt2

tjt�1ðdxtjz1:t�1Þ9
XN

i ¼ Nt1þ1

wðiÞtjt�1dx
ðiÞ
t
ðdxtÞ ð22Þ

Moreover, we let

ptjt�1ðdxtjz1:t�1Þ � pN ¼ Nt1þNt2

tjt�1 ðdxtjz1:t�1Þ

¼ pNt1

tjt�1ðdxtjz1:t�1ÞþpNt2

tjt�1ðdxtjz1:t�1Þ ð23Þ

Update step: This step is done in the similar way as the
generic PF, and when the new measurement arrives, the
weight of each particle is updated

wðiÞt ¼
ptðztjx

ðiÞ
t ÞPN

i ¼ 1 wðiÞtjt�1ptðztjx
ðiÞ
t Þ

wðiÞtjt�1 ð24Þ
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Let pN
tjt be the measure, we have

ptjtðdxtjz1:tÞ � pN
tjtðdxtjz1:tÞ9

XN

i ¼ 1

wðiÞt dx
ðiÞ
t
ðdxtÞ ð25Þ

Re-sampling step: As discussed earlier, sampling-
importance re-sampling, residual re-sampling, and
minimum variance sampling are the currently widely
used re-sampling schemes. Although each has different
variances on the number of ‘‘children’’ of each particle,
these schemes have no significant effects on the perfor-
mance of PF. In our algorithm, the ant’s stochastic
behavior will be utilized to develop an easy-to-imple-
mentation re-sampling scheme, which could yield a
smaller variance on the number of ‘‘children’’ of each
particle. Besides this, to the best of our knowledge,
the ant’s stochastic behavior has been investigated to
develop various parameter estimators, such as moving ant
estimator in [15] and ACO-estimator in [16]. The former is
a recursive estimation technique suitable for real-time
target tracking, while the latter is based on the time-
consuming batch processing technique.

Next, we will describe our re-sampling scheme
inspired from the ant’s stochastic probabilistic behavior.
As shown in Fig. 1, an ant samples sequentially particles
starting from the first particle to the last particle, i.e., from
the right to the left. Note that the ant will face N selections
or operations, and for each selection, there are two cases
of being sampled for a given particle i, namely, the ant is
now either located at particle i or at other particle j (jai).

Case 1: Assume that an ant is located at particle i, for
the remaining N�1 particles, the ant first selects particle j

as its potential location according to

PðjÞ ¼
wðjÞtPN

k ¼ 1,kai wðkÞt

ð26Þ

Then the ant will make a decision whether it move
towards particle j or not. However, it decides to stay its
original position with probability

PðiÞ ¼
wðiÞt

wðiÞt þwðjÞt

ð27Þ
i
Particles

( ) ( )P j P i

i
Particles

Fig. 1. The ant decision proces
Eqs. (26) and (27) describe the decision probability of
particle i being selected or sampled for a given sampling,
and the resulting probability is denoted by

~wðiÞt ¼
wðiÞt

wðiÞt þwðjÞt

wðjÞtPN
k ¼ 1,kai wðkÞt

ð28Þ

Case 2: If the ant is currently located at particle j (jai),
then the ant selects particle i as its potential location
according to

PðiÞ ¼
wðiÞtPN

k ¼ 1,kaj wðkÞt

ð29Þ

Thus, particle i is to be chosen or sampled by

~wðiÞt ¼
wðiÞt

wðiÞt þwðjÞt

wðiÞtPN
k ¼ 1,kai wðkÞt

ð30Þ

Without loss of generality, we now detail the expectation
of particle i being sampled during N selection tries of ant,
and the discussion on other remaining particles performs
in a similar way.

This stochastic decision process of ant behaves simi-
larly to the event that particle i is re-sampled in SIR.
However, the probability of particle i being selected is less
than the original one done in SIR, i.e., ~wðiÞt rwðiÞt (See the
proof in Appendix B), which further results in a smaller
variance of particles var(Ni), in the form of varðNiÞ ¼

NwðiÞt ð1�wðiÞt Þ, than that in SIR. The direct benefit is that the
obtained empirical distribution has a better overlap with
the true one due to ~wðiÞt rwðiÞt . Furthermore, it is observed
that the computational complexity remains invariant and
is O(N).

When all particles move towards their individual
positions under ants’ guidance, we obtain a set of
un-weighted particles fxðiÞt ,N�1g

N

i ¼ 1, and these particles
constitute the empirical distribution

ptjtðdxtjz1:tÞ � pN
tjtðdxtjz1:tÞ9

1

N

XN

i ¼ 1

d
xðiÞt
ðdxtÞ ð31Þ

So far, we have presented a whole cycle of ant stochastic
decision based particle filter, and its corresponding main
steps are summarized in Table 1.
j

( ) 1 ( )P j P i

j

( ) 1 ( )P i P i
( ) ( )P i P i

s. (a) Case 1 and case 2.
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Table 1
The framework of our ant stochastic decision based PF.

Step (1) Initialization: sample N particles fxðiÞ0 ,N�1g
N

i ¼ 1 from p0ðx0Þ;

Step (2) Prediction: first, divide N particles into two groups O1 and

O2, and then obtain one-step prediction of each particle according

to

xðiÞt �
qð1Þt ð�jx

ðiÞ
t�1 ,zt Þ if xðiÞt�1 2 O1

qð2Þt ð�jx
ðiÞ
t�1 ,zt Þ if xðiÞt�1 2 O2

8<
:

Step (3) Update: according to obtained one-step prediction of

weight, using the available measurement to update the weight of

each particle

wðiÞtjt�1 ¼
ptjt�1ðx

ðiÞ
t jx

ðiÞ
t�1Þ

qð1Þt ðx
ðiÞ
t jx

ðiÞ
t�1 ,zt Þ

wðiÞt�1 ¼
ptjt�1ðx

ðiÞ
t jx

ðiÞ
t�1Þ

ptjt�1ðx
ðiÞ
t jx

ðiÞ
t�1Þ

wðiÞt�1 ¼wðiÞt�1

if xðiÞt�1 2 O1

wðiÞtjt�1 ¼
ptjt�1ðx

ðiÞ
t jx

ðiÞ
t�1Þ

qð2Þt ðx
ðiÞ
t jx

ðiÞ
t�1 ,zt Þ

wðiÞt�1 , if xðiÞt�1 2 O2

wðiÞt ¼
pt ðzt jx

ðiÞ
t ÞPN

i ¼ 1 wðiÞtjt�1pt ðzt jx
ðiÞ
t Þ

wðiÞtjt�1 i¼ 1,2, . . . ,N

Step (4) Re-sample: particle i is to be chosen or sampled by ant

stochastic behavior

~wðiÞt ¼
wðiÞt

wðiÞt þwðjÞt

wðjÞtPN
k ¼ 1,kai wðkÞt

for case 1

~wðiÞt ¼
wðiÞt

wðiÞt þwðjÞt

wðiÞtPN
k ¼ 1,kai wðkÞt

for case 2

Step (5) Repeat from Step (2) until the last sampling time.
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3. Convergence analysis

In this section, to verify the effectiveness of our
algorithm in theory, we will discuss its convergence in
terms of the average mean-square error E½ð/pN

tjt ,jS�
/ptjt ,jSÞ2� for any function j 2 BðRnx Þ, where BðRnx Þ is
the set of bounded Borel measurable function on Rnx , and
/ptjt ,jS denotes the inner product and has the form

/ptjt ,jS¼
Z

ptjtðxtjz1:tÞjðxtÞdxt ð32Þ

Inspired from literature [17,18], we will prove the
convergence of our proposed algorithm. Let fmNg

1

N ¼ 1 be
a sequence of probability measures, we say that mN

converges to m as N-N for 8j 2 BðRnx Þ, and if the
following conditions are satisfied
(1)
 The state transition function ptjt�1ðxtjxt�1Þ is a
bounded one and Feller;
(2)
 The likelihood function ptðztjxtÞ is bounded;

(3)
 Assume that the importance sampling ratios concern-

ing qð1Þt and qð2Þt are bounded, namely, Jptjt�1=qð1Þt Jr
C1, Jptjt�1=qð2Þt JrC2, where C1 and C2 are real
constant values.
Then we have three lemmas as below:

Lemma 3. Suppose that for any j 2 BðRnx Þ, if

E½ð/pN
t�1jt�1,jS�/pt�1jt�1,jSÞ2�r ðat�1jt�1=NÞJjJ2 holds,
there exists a constant atjt�1 such that

E½ð/pN
tjt�1,jS�/ptjt�1,jSÞ2�r

atjt�1

N
jjjjj2 ð33Þ

Lemma 4. Suppose that for any j 2 BðRnx Þ, if

E½ð/pN
tjt�1,jS�/ptjt�1,jSÞ2�r ðatjt�1=NÞJjJ2 holds, then

there exists a constant atjt such that

E½ð/pN
tjt ,jS�/ptjt ,jSÞ2�r ðatjt=NÞJjJ2

ð34Þ

Lemma 5. Suppose that for any j 2 BðRnx Þ, if

E½ð/pN
tjt ,jS�/ptjt ,jSÞ2�r ðatjt=NÞJjJ2, then there exists a

constant atjt such that

E½ð/pN
tjt ,jS�/ptjt ,jSÞ2�rðatjt=NÞJjJ2

ð35Þ

where JjJ denotes the suprenum norm of j on BðRnx Þ. For

the proof of each lemma, readers are referred to Appendix C.

4. Simulation and results

In this section, the tracking ability of our proposed
algorithm is investigated through various tracking exam-
ples including linear and nonlinear cases of system motion
model, and corresponding performance comparison is done
among the generic PF, moving ant estimator [15], and our
proposed algorithm. Moreover, all examples are conducted
on a DELL 6 GHz processor with 1.99 GB RAM.

Consider a parameter estimation in the field of
bearings-only tracking (BOT) of a bistatic system, namely,
we assume that two observers are utilized to measure the
target’s bearing at each sampling time, and the state of
observer s(s=1,2) is denoted by Xos

t ¼ ½x
os
t ,0,yos

t ,0�T , thus
the measurement equation is described as:

bM
t ¼

bM,1
t

bM,1
t

2
4

3
5¼ hðxt ,vtÞ ¼

tan�1 xt�xo1
t

yt�yo1
t

� �

tan�1 xt�xo2
t

yt�yo2
t

� �
0
BBBB@

1
CCCCAþvt ð36Þ

where bM
t denotes the bearing measurement vector, and

vt is the measurement Gaussian white noise, assumed to
be zero mean with a 2�2 covariance R.

4.1. Linear example

Suppose that the target moves in a straight line, so its
motion model can be formulated as

xtþ1 ¼ f ðxt ,wtÞ ¼ Fxt�1þwt ð37Þ

where F denotes the state transition matrix and equals to

F ¼

1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

2
6664

3
7775

with sampling interval T, and wt is the system process
Gaussian white noise assumed to be zero mean with 4�4
covariance Q(t).
�
 If the two observers are fixed at (0,0) and (�2 km,0),
respectively, in a surveillance region, each having an



ARTICLE IN PRESS

B. Xu et al. / Signal Processing 90 (2010) 2731–2748 2737
identical measurement noise 0:020, and the sampling
interval is set to T=1 s, The target makes a uniform
rectilinear motion, lasting for 100 samples, with a
given initial state x0 ¼ ½0 m,45 m=s,14816 m,�30 m=s�T

and process noise covariance Q ðtÞ ¼ diagð52,52,52,52
Þ.
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Concerning the PF and our ant based PF, we use N=200
particles or ants, q0=0.9 and s=20.
Given the initial estimate of state and covariance, i.e.,
x̂0 ¼ ½0:1 km,50 m=s,16 km,�20 m=s�T and P̂0 ¼ diagð1000,
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50,1000,50Þ, it yields the following results based on the
average of 20 Monte-Carlo runs.

Fig. 2 plots the root mean squared error (RMSE) curves,
and it can be observed that our ant based PF achieves
smaller errors than the generic PF after the 30th sampling.
Fig. 3 presents a direct performance comparison in terms
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of the obtained tracks, and our proposed algorithm fits the
true track better than the generic PF. Additionally, Fig. 4
illustrates the individual estimated positions in the x and
y directions, respectively, and the above conclusions
applies to this case as well. To show the enjoyable
performance of our algorithm, we give the deviation
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values over 20 Monte-Carlo runs in the x and y

directions, respectively, as shown in Fig. 5. Note that the
deviation is defined as DevðiÞ ¼ stdð ~X

ðiÞ
Þ with ~X

ðiÞ
¼

½x̂
ðiÞ
1 �x1,x̂

ðiÞ
2 �x2, . . . �T , where superscript i denotes the ith
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time t. It can be observed that our ant based PF results in a
smaller deviation at most runs.
10 12 14 16 18 20
Monte-Carlo

PF

Ant based PF

10 12 14 16 18 20
Monte-Carlo

PF

Ant based PF

directions by PF and ant based PF.

150 200 250
e step

ased PF

track in X

150 200 250
e step

 based PF

e track in Y

directions by PF and ant based PF.



ARTICLE IN PRESS

B. Xu et al. / Signal Processing 90 (2010) 2731–2748 2741
4.2. Non-linear example

We will extend our algorithm to the non-linear case
and investigate its resulting performance, which is our
main purpose to develop the ant based PF.
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Suppose that the target follows the dynamic model as
Eq. (37) during the first 150 samples phase with the same
initial conditions as the linear example, and then the
target executes a constant rate turn with an=3.5 m/s2,
which lasts 50 samples. Note that during the turning
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period, we adopt another state transition matrix
represented by

F ¼

1
sinðotTÞ

ot
0 �

1�cosðotTÞ

ot

0 cosðotTÞ 0 �sinðotTÞ

0
1�cosðotTÞ

ot
1

sinðotTÞ

ot

0 sinðotTÞ 0 cosðotTÞ

2
66666664

3
77777775

ð38Þ
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Fig. 14. The estimated tracks

Table 3
The deviation sensitivity analysis in y direction with respect to parameters s a

Average deviation in y direction s

10 15

q0 0.70 301.0434 30

0.75 304.0371 31

0.80 302.7003 30

0.85 303.0106 29

0.90 296.5718 30

Table 2
The deviation sensitivity analysis in x direction with respect to parameters s a

Average deviation in x direction s

10 1

q0 0.70 68.6679 6

0.75 63.7259 7

0.80 63.4821 6

0.85 57.5554 5
0.90 59.3388 6
with turn rate ot. Finally, after the maneuver the target
maintains a constant velocity lasting about 50 samples. As
mentioned above, all initial conditions are the same as the
linear example except for adopting a smaller process
noise covariance Q ðtÞ ¼ diagð2:52,2:52,2:52,2:52

Þ. As
shown in Figs. 6–9, the generic PF fails to deal with the
model switching case, i.e., the generic PF loses track,
illustrated in Figs. 7 and 8, or leads to tracking error
divergence depicted in Fig. 6. Furthermore, the obtained
00 8000 10000 12000

inate in (m)

Ant based PF
PF
True track

by PF and ant based PF.

nd q0.

20 25 30

8.6211 315.9457 320.0349 306.0266

0.4306 308.7123 295.8866 309.9126

4.1744 294.9048 302.4232 307.8475

9.3038 308.1803 290.2453 291.2302
0.4598 290.8575 293.0848 304.3757

nd q0.

5 20 25 30

6.1778 73.5333 69.8424 64.4496

1.3825 74.2402 64.5417 64.5383

6.2929 56.7081 62.4278 59.8730

7.1549 65.5156 56.6699 58.8815

0.8777 65.9728 56.3477 65.2788
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Table 4
Average required time (per time step) for different recursive techniques.

Number of particles or ants

100 200 400

Our algorithm 0.0406s 0.1378s 0.4615s

Generic PF 0.0353s 0.0688s 0.1379s

B. Xu et al. / Signal Processing 90 (2010) 2731–27482744
deviation values of the generic PF is obviously larger
than those in our proposed ant based PF, as indicated
in Fig. 9.

Figs. 10–13 present the performance comparison of
two ant-related estimators: moving ant estimator
proposed in [15] and ant based PF proposed in this
paper. In the initial phase of tracking, the moving ant
estimator has a smaller RMSE than that of our proposed
algorithm, but, as the tracking evolves, the two algorithms
almost enjoy nice tracking performance, as illustrated in
Figs. 10–12. As depicted in Fig. 13, compared to the
moving ant estimator, the ant based PF has a smaller
deviation in the x direction, while has a larger one in the y

direction, thus we can say those two ant-related
estimators have nearly identical performance in our
discussed benchmark problem.

As mentioned in Section 2.2, there are two parameters
introduced in our ant based PF, namely, s and q0.
Parameter s determines the deviation of particles gener-
ated according to qð2Þt ð�j � ,ztÞ from particle f ðxðjÞt�1Þ, and a
larger s generally increases the distribution range of
particles, but it in turn reduces the speed of convergence.
While parameter q0 determines the number of particles
which are generated from the proposal density function
qð2Þt ð�j � ,ztÞ, and a smaller q0 means a large number of
particles that are involved in O2. So we may decrease
slightly the value of q0 for model switching system to
increase the possibility of catching true state. Tables 2 and
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Fig. 15. The estimated positio
3 give the statistic results of average deviations in x and y

directions for the above non-linear example, and the five
smallest values are selected in a Italic and Bold style. It is
observed that a smart choice of s and q0 lies in the
approximate range of [20,25] and [0.85, 0.90],
respectively.

Figs. 14 and 15 plot the tracking results of the non-
linear example when N=400. It is seen that, as more
particles are employed (e.g., from N=200 to 400), the
resulting performances of both algorithms are improved
slightly (compared with Figs. 7 and 8). However, the
generic PF can not catch the motion of maneuvering
target. Table 4 further illustrates the comparison of
computation time required by the generic PF and our
proposed algorithm. Although our proposed algorithm
needs more time than the generic PF, it is suitable for real-
time target tracking since the average execution time per
step is less than the sample interval (T=1 s).
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5. Conclusions

In this work, we propose an intelligent and ant-based
particle filter, in which two theoretic proposal density
functions are developed to encapsulate model switching
information by dividing probabilistically particles into
respective model operations. On the basis of it, a nice but
simple re-sampling scheme, which is developed from ant
stochastic behavior as well, is proposed to achieve a better
overlap with the true density function. Numerical simula-
tions are carried out and the performance comparison is
done among various estimators. It is found, firstly, that our
proposed algorithm performs better than the generic PF
both in a linear example and in a non-linear example, and
the generic PF fails to estimate the state of non-linear
system when the system begins to switch between models.
Secondly, our proposed algorithm is competitive with
another ant-related estimator (moving ant estimator)
through a benchmark nonlinear example. Finally, the
appropriate values taken by s and q0 are suggested to
guarantee the tracking accuracy of our algorithm.
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Appendix A

Given p1ðvÞ ¼Nðv; z�Hx,RÞ, p2ðxÞ ¼Nðx;m,PÞ, and p3ðzÞ ¼Nðz;Hm,RþHPHT
Þ, one computes the following ratio as

p1ðvÞp2ðxÞ

p3ðzÞ
¼

Nðv; z�Hx,RÞ �Nðx;m,PÞ

Nðz;Hm,RþHPHT
Þ
¼

Nðz;Hx,RÞ �Nðx;m,PÞ

Nðz;Hm,RþHPHT
Þ

¼
j2pRj�1=2j2pPj�1=2

j2pðRþHPHT
Þj�1=2

e�1=2ððz�HxÞT R�1
ðz�HxÞþ ðx�mÞT P�1

ðx�mÞ�ðz�HmÞT ðRþHPHT
Þ
�1
ðz�HmÞÞ ðA:1Þ

And moreover, the exponential term in Eq. (A.1) can be written as a square form, so it simplifies to

ðz�HxÞT R�1
ðz�HxÞþðx�mÞT P�1

ðx�mÞ�ðz�HmÞT ðRþHPHT
Þ
�1
ðz�HmÞ

¼ ðx�m�PHT R�1
ðz�HmÞÞT ðP�1

þHT R�1HÞðx�m�PHT R�1
ðz�HmÞÞ9ðx�mÞT P

�1
ðx�mÞ ðA:2Þ

where m ¼mþPHT R�1
ðz�HmÞ, P

�1
¼ P�1

þHT R�1H.
In addition, according to matrix inversion lemma

ðAþBCBT
Þ
�1
¼A�1

�A�1BðBT A�1BþC�1
Þ
�1BT A�1

ðA:3Þ

We obtain

P ¼ P�PHT
ðHPHT

þRÞ�1HP ðA:4Þ

So, Eq. (A.1) is written as a Gaussian function

p1ðvÞp2ðxÞ

p3ðzÞ
¼

Nðz;Hx,RÞ �Nðx;m,PÞ

Nðz;Hm,RþHPHT
Þ
¼
jP j1=2jRþHPHT

j1=2

jRj1=2jPj1=2
Nðx;m,P Þ9cNðx;m,P Þ ðA:5Þ

with c¼ jP j1=2jRþHPHT
j1=2=jRj1=2jPj1=2.
Appendix B

Case 1:
According to Eq. (24), we have

PN
i ¼ 1 wðiÞt ¼ 1, and we denote

ŵ
ðjÞ
t 9

wðjÞtPN
k ¼ 1,kai wðkÞt

¼
wðjÞt

1�wðiÞt

so the following inequality is required to hold

~wðiÞt ¼
wðiÞt

wðiÞt þwðjÞt

wðjÞtPN
k ¼ 1,kai wðkÞt

rwðiÞt ðB:1Þ
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Rewriting (B.1) into a simplified form, we have

1

wðiÞt þwðjÞt

ŵ
ðjÞ
t r1 ðB:2Þ

(by simple mathematical operation)

ŵ
ðjÞ
t rwðiÞt þwðjÞt 2

wðjÞt

1�wðiÞt

�wðjÞt rwðiÞt 2wðjÞt wðjÞt rwðiÞt �ðw
ðiÞ
t Þ

22wðjÞt wðjÞt r1 �wðiÞt �ðw
ðiÞ
t Þ

22wðjÞt wðjÞt

rwðiÞt

XN

i ¼ 1

wðiÞt �ðw
ðiÞ
t Þ

22wðjÞt wðjÞt rwðiÞt ðw
ð1Þ
t þ � � � þwðiÞt þ � � � þwðjÞt þ � � �w

ðNÞ
t Þ�ðw

ðiÞ
t Þ

220

rwðjÞt ðw
ð1Þ
t þ � � � þwði�1Þ

t þwðiþ1Þ
t þ � � � þwðj�1Þ

t þwðjþ1Þ
t þ � � �wðNÞt Þ ðB:3Þ
Case 2: We now prove the inequality

~wðiÞt ¼
wðiÞt

wðiÞt þwðjÞt

wðiÞtPN
k ¼ 1,kaj wðkÞt

rwðiÞt

holds.
Following the same step as in Case 1, the inequality proof can be simplified as

1

wðiÞt þwðjÞt

ŵ
ðiÞ
t r1 ðB:4Þ

where ŵ
ðiÞ
t ¼wðiÞt =

PN
k ¼ 1,kaj wðkÞt .

ŵ
ðiÞ
t rwðiÞt þwðjÞt 2

wðiÞt

1�wðjÞt

�wðiÞt rwðjÞt 2wðiÞt �wðiÞt þwðiÞt wðjÞt rwðjÞt �ðw
ðjÞ
t Þ

22wðiÞt wðjÞt r1 �wðjÞt �ðw
ðjÞ
t Þ

22wðiÞt wðjÞt

rwðjÞt

XN

i ¼ 1

wðiÞt �ðw
ðjÞ
t Þ

22wðiÞt wðjÞt rwðjÞt ðw
ð1Þ
t þ � � � þwðiÞt þ � � � þwðjÞt þ � � �w

ðNÞ
t Þ�ðw

ðjÞ
t Þ

220

rwðjÞt ðw
ð1Þ
t þ � � � þwði�1Þ

t þwðiþ1Þ
t þ � � � þwðj�1Þ

t þwðjþ1Þ
t þ � � �wðNÞt Þ ðB:5Þ
Appendix C
Proof of Lemma 3. Suppose that one-step predicted distribution ptjt�1 can be decomposed into p0tjt�1 and p00tjt�1, i.e. ,

ptjt�1 ¼ p0tjt�1þp
00

tjt�1, so the prior condition E½ð/pN
t�1jt�1,jS�/pt�1jt�1,jSÞ2�r ðat�1jt�1=NÞJjJ2 can be described by

E½ð/pNt1

t�1jt�1,jS�/p0t�1jt�1,jSÞ2�r ða0t�1jt�1=NÞJjJ2 and E½ð/pNt2

t�1jt�1,jS�/p00t�1jt�1,jSÞ2�r ða00t�1jt�1=NÞJjJ2, respectively.

According to Eq. (23), we obtain

E½ð/pN
tjt�1,jS�/ptjt�1,jSÞ2�1=2 ¼ E½ð/pNt1

tjt�1þp
Nt2

tjt�1,jS�/p0tjt�1þp
00

tjt�1,jSÞ2�1=2 ¼ E½ð/pNt1

tjt�1,jS�/p0tjt�1,jS

þ/pNt2

tjt�1,jS�/p00tjt�1,jSÞ2�1=2 ðC:1Þ

From the Minkowski’s inequality, the above equation satisfies the following relation

E½ð/pNt1

tjt�1,jS�/p0tjt�1,jSþ/pNt2

tjt�1,jS�/p00tjt�1,jSÞ2�1=2rE½ð/pNt1

tjt�1,jS�/p0tjt�1,jSÞ2�1=2þE½ð/pNt2

tjt�1,jS�/p00tjt�1,jSÞ2�1=2

ðC:2Þ

For the first term at the right side of (C.2), it will be found to be a bounded function.

Using the mathematical inequality, we have

j/pNt1

tjt�1,jS�/p0tjt�1,jSjr j/pNt1

tjt�1,jS�/pNt1

t�1jt�1,ptjt�1jSjþj/pNt1

t�1jt�1,ptjt�1jS�/p0t�1jt�1,ptjt�1jSj ðC:3Þ

Let Gt�1 be the s-algebra generated by particles fxðiÞt�1g
Nt1

i ¼ 1, then

/pNt1

t�1jt�1,ptjt�1jS¼ E½/pNt1

tjt�1,jSjGt�1� ðC:4Þ

According to the first term at the right side of (C.3), and independence of particles, we obtain

E½ð/pNt1

tjt�1,jS�/pNt1

t�1jt�1,ptjt�1jSÞ2jGt�1�

¼ E½ð/pNt1

tjt�1,jS�E½/pNt1

tjt�1,jSjGt�1�Þ
2
jGt�1�

¼ E½ð/pNt1

tjt�1,jSÞ2jGt�1��ð/pNt1

t�1jt�1,ptjt�1jSÞ2
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¼
XNt1

i ¼ 1

E½ðwðiÞtjt�1jÞ
2
jGt�1��

XNt1

i ¼ 1

1

N
ptjt�1j

� �2

¼
XNt1

i ¼ 1

E½ðwðiÞtjt�1jÞ
2
jGt�1��

1

N
ptjt�1j

� �2
 !

¼
XNt1

i ¼ 1

E
ptjt�1

qð1Þt

1

N
j

 !2

jGt�1

2
4

3
5� 1

N
ptjt�1j

� �2
0
@

1
A

r
1

N
JjJ2 Jptjt�1J

2
þ:

ptjt�1

qð1Þt

:2

 !
ðC:5Þ

From (C.3) and Minkowski’s inequality, it yields

E½ð/pNt1

tjt�1,jS�/p0tjt�1,jSÞ2�1=2

rE½ð/pNt1

tjt�1,jS�/pNt1

t�1jt�1,ptjt�1jSÞ2�1=2þE½ð/pNt1

t�1jt�1,ptjt�1jS�/p0t�1jt�1,ptjt�1jSÞ2�1=2

r
1ffiffiffiffi
N
p JjJ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jptjt�1J

2
þ:

ptjt�1

qð1Þt

:2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0t�1jt�1

q !
ðC:6Þ

Similarly, for the second term at the right side of (C.2), we have

E½ð/pNt2

tjt�1,jS�/p00tjt�1,jSÞ2�1=2r
1ffiffiffiffi
N
p JjJ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jptjt�1J

2
þ:

ptjt�1

qð2Þt

:2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
00

t�1jt�1

q !
ðC:7Þ

Thus we obtain

E½ð/pN
tjt�1,jS�/ptjt�1,jSÞ2�1=2 ¼ E½ð/pNt1

tjt�1,jS�/p0tjt�1,jSþ/pNt2

tjt�1,jS�/p00tjt�1,jSÞ2�1=2

r
1ffiffiffiffi
N
p JjJ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jptjt�1J

2
þ:

ptjt�1

qð1Þt

:2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0t�1jt�1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jptjt�1J

2
þ:

ptjt�1

qð2Þt

:2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
00

t�1jt�1

q !

ðC:8Þ

Consequently, it yields

E½ð/pN
tjt�1,jS�/ptjt�1,jSÞ2�r

atjt�1

N
JjJ2

ðC:9Þ

where

atjt�19

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jptjt�1J

2
þ:

ptjt�1

qð1Þt

:2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0t�1jt�1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jptjt�1J

2
þ:

ptjt�1

qð2Þt

:2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
00

t�1jt�1

q !2

:

Proof of Lemma 4. We consider
/pN
tjt ,jS�/ptjt ,jS¼

/pN
tjt�1,ptjS

/pN
tjt�1,ptS

�
/ptjt�1,ptjS
/ptjt�1,ptS

¼
/pN

tjt�1,ptjS

/pN
tjt�1,ptS

�
/pN

tjt�1,ptjS

/ptjt�1,ptS
þ

/pN
tjt�1,ptjS

/ptjt�1,ptS
�
/ptjt�1,ptjS
/ptjt�1,ptS

ðC:10Þ

Note that in the above Eq. (C.10) the first two terms can be written as

/pN
tjt�1,ptjS

/pN
tjt�1,ptS

�
/pN

tjt�1,ptjS

/ptjt�1,ptS

�����
�����¼ /pN

tjt�1,ptjSj/ptjt�1,ptS�/pN
tjt�1,ptSj

/pN
tjt�1,ptS/ptjt�1,ptS

r
JjJ

/ptjt�1,ptS
j/ptjt�1,ptS�/pN

tjt�1,ptSj

ðC:11Þ

And the last two terms in Eq. (C.10) satisfy the inequality

/pN
tjt�1,ptjS

/ptjt�1,ptS
�
/ptjt�1,ptjS
/ptjt�1,ptS

�����
�����r j/p

N
tjt�1,ptjS�/ptjt�1,ptjSj

/ptjt�1,ptS
ðC:12Þ

Consequently, using Minkowski’s inequality, we have

E½ð/pN
tjt ,jS�/ptjt ,jSÞ2�1=2

r
JjJ

/ptjt�1,ptS
E½j/ptjt�1,ptS�/pN

tjt�1,ptSj2�1=2þ
1

/ptjt�1,ptS
E½j/pN

tjt�1,ptjS�/ptjt�1,ptjSj2�1=2

r
JjJ

/ptjt�1,ptS
JptJ

ffiffiffiffiffiffiffiffiffiffiffi
atjt�1

N

r !
þ

1

/ptjt�1,ptS
JptjJ

ffiffiffiffiffiffiffiffiffiffiffi
atjt�1

N

r !
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r
1ffiffiffiffi
N
p JjJ

2

/ptjt�1,ptS
JptJ

ffiffiffiffiffiffiffiffiffiffiffi
atjt�1

p� �
9

1ffiffiffiffi
N
p JjJ

ffiffiffiffiffiffiffi
atjt

q
ðC:13Þ

where

atjt ¼
2

/ptjt�1,ptS
JptJ

ffiffiffiffiffiffiffiffiffiffiffi
atjt�1

p� �2

:

Proof of Lemma 5. We consider
/pN
tjt ,jS�/ptjt ,jS¼/pN

tjt ,jS�/pN
tjt ,jSþ/pN

tjt ,jS�/ptjt ,jS ðC:14Þ

Using Minkowski’s inequality, it yields

E½ð/pN
tjt ,jS�/ptjt ,jSÞ2�1=2rE½ð/pN

tjt ,jS�/pN
tjt ,jSÞ2�1=2þE½ð/pN

tjt ,jS�/ptjt ,jSÞ2�1=2 ðC:15Þ

Let J t be the be the s-algebra generated by particles fxðiÞt g
N

i ¼ 1, according to the assumption of independence of particles
and Lemma 6, we have

E½ð/pN
tjt ,jS�/pN

tjt ,jSÞ2jJ t� ¼ E½ð/pN
tjt ,jS�E½/pN

tjt ,jSjJ t �Þ
2
jJ t�r22E½j/pN

tjt ,jSj2�r22
XN

i ¼ 1

E
1

N
j

� �2
" #

r
22

N
JjJ2

ðC:16Þ

Using the conclusion in Lemma 4, (C.15) yields

E½ð/pN
tjt ,jS�/ptjt ,jSÞ2�1=2r

2ffiffiffiffi
N
p JjJþ

1ffiffiffiffi
N
p JjJ

ffiffiffiffiffiffiffi
atjt

q
¼

1ffiffiffiffi
N
p JjJð2þ

ffiffiffiffiffiffiffi
atjt

q
Þ ¼

1ffiffiffiffi
N
p JjJ

ffiffiffiffiffiffiffi
atjt

p
ðC:17Þ

Lemma 6. If EjZjpo1, then, for any p41, we have EjZ�EZjpr2pEjZjp.
Proof. According to Jensen inequality, for p41, ðEjZjÞprEjZjp holds. Using Minkowski’s inequality

ðEjZ�EZjpÞ1=prðEjZpjÞ
1=p
þjEjZjjr2ðEjZjpÞ1=p

ðC:18Þ
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