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A novel direction-adaptive wavelet based image compression
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Abstract

Directional wavelet can effectively capture the directional dependence in images. However, the computational complexity is
high. Based on the image statistics estimated by the structure tensor, a novel directional lifting image coder locally adapting
the filtering directions to image content is presented. Before performing wavelet transform (WT), the proposed algorithm
detects all the image blocks in a given image to decide whether the block is homogenous or not. For homogeneous block, the
conventional 2-D discrete WT is used. This will considerably reduce the computational complexity and the number of bits
needed to code the directional information. On the other hand, heterogeneous block is decomposed using directional lifting
wavelet transform, which can effectively capture the directional dependence in the selected image and improve the coding
gain of the image coder. Experimental results have shown that, compared to some existing methods, the proposed scheme
has a better performance in terms of peak signal to noise ratio (PSNR) and subjective quality.
� 2009 Elsevier GmbH. All rights reserved.
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1. Introduction

Discrete Wavelet Transform (DWT) has become one of
the most important tools in image analysis and coding over
the last two decades [1–6]. Thanks to its super performance,
DWT is adopted as the heart of the JPEG2000 image com-
pression standard. Unfortunately, the DWT lifting scheme
is usually only applied in horizontal and vertical directions.
This prevents the DWT transform from effectively capturing
the dependence in other directions and therefore distribut-
ing the energies of such edges into several subbands. The
reason is that image representation in separable orthonormal
bases such as Fourier, local cosine or wavelets cannot take
advantage of the geometrical regularity of image structure.
Standard wavelet bases are optimal to represent functions
with piecewise singularities. However, they fail to capture
the geometric regularity because of their isotropic support.
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Many new schemes, such as curvelets [7], contourlets
[8], bandlets [10,11], and wedgelets [9], have emerged, try-
ing to overcome the limitation of standard wavelets. But all
of them suffer from problems such as computational com-
plexity, filter design involved in, and so forth. Therefore,
they are not commonly used in compression. Direction-
lets [12,21] provide more computational and filter design
simplicity as compared with the above wavelet transforms.
However, in this method, independent processing of image
blocks fails to exploit the correlation across block bound-
aries, and may produce block artifacts. Several other direc-
tional approaches that also use lifting scheme [13–15,20],
[22] were recently proposed. A separable directional lifting-
based wavelet transform that is directionally adaptive has
been proposed in [13]. An implementation based on separa-
ble standard wavelets and satisfying both the directionality
and anisotropy, has been proposed in [14,15]. Moreover,
the implementation extends the range of directions. In seg-
mentation driven direction-adaptive discrete wavelet trans-
form (SD-DADWT) [22], the adaptation of the directional
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wavelet bases is performed on the segments describing the
natural geometry of the image. Whereas, adaptive lifting
scheme [20] adapts the filtering directions to the orienta-
tions of image features and the statistic properties of image
signal. These implementations achieve better coding gains
through adaptive directional lifting. However, they suffer
from high computational complexity. The reason is that be-
fore performing directional adaptive wavelet transform, they
first predict and update all candidates’ directions, and then
decide which direction is the best.

We propose a new direction-adaptive lifting wavelet trans-
form scheme which partitions the image to be compressed
into nonoverlapping blocks. The motivation is based on the
following two phenomena:

(1) Some blocks have little directional information. For
these blocks, using horizontal and vertical directions
lifting transform will considerably reduce the computa-
tional complexity for wavelet transform and avoid the
coding bit for directional information.

(2) For heterogeneous blocks with many edges and con-
tours, using neighboring pixel to directionally predict
the current pixels will increase the prediction accuracy.
This will effectively capture the directional dependence
in image and increase the coding gain of the image
coder.

The rest of the paper is organized as follows. Section 2
describes the structure tensor and how to estimate the
heterogeneous and homogeneous property of each block.
Section 3 presents our results along with their analysis. The
conclusions are finally described in Section 4.

2. Direction-adaptive wavelet transform

Three critical problems must be solved in the proposed
algorithm. (1) How to decide the subimage (block) size. (2)
How to avoid the block artifacts which result due to par-
titioning the image to be compressed into nonoverlapping
blocks. (3) How to decide the direction of wavelet trans-
form and the corresponding model (using directional lifting
wavelet transform or using conventional horizontal/vertical
lifting wavelet transform) in each block due to great varia-
tion in image objects and textures. In the following section,
we will explain our solution, focusing on the analysis of di-
rectional lifting and wavelet transform model selection. The
first problem was solved through an optimized method which
will be described in detail in Section 2.3. Meanwhile we use
adjacent block’s pixels to predict the current block’s bound-
ary pixels. This will solve the block artifacts problem. For
the third problem, we use the structure tensor to adaptively
estimate the homogeneous property of each nonoverlapping
block, and then decide on the direction and corresponding
model of the selected wavelet transform.

2.1. Local homogeneous analysis using structure
tensor

Structure tensor has been widely used in local coherence
estimation [16,17]. In image processing, structure tensor is
defined for a 2D neighborhood I (x, y) by

ST =
[

I11 I12

I12 I22

]
, (1)

G =
[

Ix

Iy

]
, (2)

where I11 = I 2
x , I12 = Ix Iy , I22 = I 2

y , Ix , Iy represent the
image gradient in the horizontal and vertical directions, re-
spectively.

In our experiment, a 3 × 3 Sobel gradient is used to esti-
mate the gradient. Using Eq. (3), we can easily compute the
eigenvalues �1, �2 of the matrix ST :

�1,2 = (I11 + I22 ±
√

(I11 − I22)2 + 4I 2
12)/2. (3)

From the analysis of gradient structure tensor, we can
have an insight into the following properties.

Anisotropy: Confidence measure is the confidence of
structure orientation estimation, defined as

� = (�1 − �2)/(�1 + �2). (4)

If �1 ≈ �2, then � = 0, and the structure is isotropic. If
�1?�2, then �=1, and the structure is linear or anisotropic.

Coherence C : Local structure is estimated from �1 and
�2. Homogeneous regions are characterized by �1 ≈ �2 ≈
0, edges by �1?�2 ≈ 0. Structure coherence measures the
coherence within a window, defined by C = |�̄1 − �̄1| =√

( Ī11 − Ī22)2 + 4 Ī 2
12 , where Ī11, Ī22, Ī12 is the average

value in one block. Large value of C means the block (sub-
image) is heterogeneous.

2.2. Adaptive block’s homogeneous estimating

Based on the aforementioned structure tensor, we esti-
mate the homogeneous property of block. In order to get
the homogeneous information adaptively, the image to be
compressed is partitioned into nonoverlapping blocks with
initial size equal to 32×32. For the image to be compressed,
the structure tensor is used to get the global threshold
using

cthreshold =
∑N

i=1
∑M

j=1Ci, j

N × M
, (5)

where Ci, j is the coherence coefficient in a given block and
N × M is the total block numbers of the image. After that,
for each block, the following equation is used to estimate
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Fig. 1. Original images and directional map of test images: (a)
Foreman, (b) corresponding directional map of Foreman, (c) Bike,
(d) corresponding directional map of Bike, (e) Barbara, and (f)
corresponding directional map of Barbara.

the homogeneous property:

C H =
{

1, C �cthreshold,

0, C < cthreshold,
(6)

C H = 1, this means that the block is heterogeneous and
it contains rich directional information. Therefore, wavelet
adaptive filtering should be used. This will effectively cap-
ture the dependence along the directions in the image. C H =
0, this means that the block is homogeneous and the wavelet
used to decompose it needs not to be directional. Only us-
ing conventional horizontal and vertical directions lifting
transform can effectively decrease the correlation among the
pixels in the block. This will reduce the computational com-
plexity and the number of bits needed to code the directional
information.

In order to verify our method, we use Barbara, Foreman,
and Bike to test the directional block selection.

In Fig. 1, the white blocks represent the heterogeneous
block in the original image. The black blocks correspond to
the homogeneous blocks in the original image. From Fig. 1,
we can see that it is easy to effectively estimate the blocks’
heterogeneous feature. For example in Fig. 1(e), the floor
area in the Barbara is more homogeneous than other regions.
Correspondingly, the black blocks in Fig. 1(f) are concen-
trated on the floor part in the original image.

Mode 1↵ Mode 2↵ Mode 3↵

Fig. 2. The three partition block modes.

2.3. Adaptive direction and block mode prediction
scheme

After adaptively estimating the heterogeneous and homo-
geneous features of each block, 11 candidate directions (out
of the heterogeneous blocks) were used to estimate which
direction is the best. To reduce the overhead bits needed to
signal the direction, we made a block-wise selection rather
than pixel-wise selection. Also, the block size must be adap-
tive. During our experiments, the block size was further cat-
egorized into three modes (illustrated in Fig. 2): 32 × 32
block (mode 1), 16 × 16 block (mode 2), and 8 × 8 block
(mode 3). For each 32 × 32 block, the optimized R-D al-
gorithm is used to estimate the best block-partition mode
and transform direction. In the first direction-adaptive lift-
ing (corresponding to the vertical lifting in the traditional
lifting scheme), the criterion is based on the minimal value
of the following cost function:

E =
∑

m

∑
n

|h(m, n)| + �v Rv , (7)

where h(m, n) are the coefficients for high frequency sub-
band after the first direction-adaptive lifting, Rv are the bits
needed to code the directional information and the corre-
sponding block mode. �v is the Lagrangian multiplier with
value of 20.

After the first direction-adaptive lifting, we get the low
subband signal l(m, n) and high subband signal h(m, n). We
perform the second directional lifting on the l(m, n) subband
(corresponding to the horizontal lifting in the traditional lift-
ing scheme). The block mode and direction may be different
from the first lifting. The criterion is based on the following
function:

E =
∑

m

∑
n

|lh(m, n)| + �h Rh , (8)

where lh(m, n) are the coefficients for lh high frequency
subband after performing two-step direction-adaptive lifting.
Rhand �h remain the same as given in Eq. (7).

To further increase the efficiency of the prediction step,
each 32 × 32 block may be further partitioned into four
16 × 16 blocks or 16 8 × 8 blocks. Based on the minimal
values from Eqs. (7) and (8), the best block-partition for
each block and the best direction for each sub-block are then
selected.

The prediction scheme is illustrated by Fig. 3. For all the
11 candidate directions, we use the 9/7-M wavelet to perform
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Fig. 3. The diagram of prediction directions.

the directional lifting between the gray solid pixels and black
pixel such as (v, v0), (v, v1) and so on. The main purpose of
predicting directions (v, v1), (v, v2), (v, v3), (v, v4), (v, v5),
(v, v6), (v, v7), (v, v8), (v, v9), and (v, v10) are to improve
the spatial prediction accuracy.

Note that we only do the direction selection for the 32×32
mode. This is because we store the temporary results in the
process of estimating each candidate’s direction. So from
the temporary results, we can get the optimal directions for
modes 2 and 3. Once the optimal direction is selected, we
use the 9/7-M wavelet to perform the directional lifting. Its
lifting scheme is as follows:{dl = d0

l + 1
16 ((s0

l+2 + s0
l−1) − 9(s0

l + s0
l+1)),

sl = s0
l + 1

4 (dl + dl−1) + 1/2,
(9)

where sl and dl represent low and high frequency subbands,
respectively.

2.4. Directional information coding

Directional information is used to predict and update the
lifting direction, and must be lossless encoded. We use
the block in the top and left of the current block to predict
the lifting direction of the current block which is illustrated
in Fig. 4. Here, c is the current block’s direction being
coded (1>c>11); a and b are the directions of adjacent
block used to predict the current block’s direction.

Let the prediction direction p equals the minimal value
of a and b. If c is equal to p, which means the prediction
direction is equal to the real lifting direction, we encode it
with only one bit; otherwise we encode it with 5 bits in the
form of 1xxxx , where xxxx is the binary representation
of c. For example, if c is equal to 8, xxxx is represented
by 1000.

a c

b

Fig. 4. The sketch map of the direction prediction.

In summary, we generalize our algorithm as follows:

(1) Partition the original image into many nonoverlapping
blocks, the initial size of each block is 32 × 32.

(2) For each block, use Eqs. (1)–(6) to adaptively decide
the lifting model (normal horizontal/vertical lifting or
directional lifting).

(3) For homogeneous block, use conventional horizon-
tal/vertical 9/7-M lifting wavelet to perform the required
wavelet transform.

(4) For heterogeneous block, use 9/7-M directional lifting
along the selected optimal direction decided by Eqs. (7)
and (8) to perform the required directional lifting.

(5) Encode the direction and block mode of each block and
place it at the head of total bitstream.

(6) For lossy compression, use SPIHT [18] algorithm to en-
code the wavelet coefficients, while for lossless com-
pression, use arithmetic coder [19] to encode the wavelet
coefficients.

(7) When decoding, do the inverse process.

3. Experimental results and comparisons

In the experiments, six schemes (9/7-M wavelet,
DA-DWT method, directionlets, adaptive lifting, segmen-
tation driven direction adaptive (SD-DADWT), and the
present scheme) were used on several natural images.
The algorithms were implemented on AMD DualCore
Turion 64X2 TL-56, 1.8GHz personal computer with
2G memory using Matlab. The images used during our
experiments are 512 × 512 pixels wide with 8-bit gray
levels.

3.1. Lossy compression experiment

Results from the first experiment, as depicted in
Tables 1–3, evaluate the time computational complex-
ity of our method and peak signal to noise ratio (PSNR)
with DA-DWT for different images Barbara, Building, and
Bike. Here, BN represents block numbers needed by the
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Table 1. Comparison of performance for Barbara.

Method Threshold 1
18

1
6

1
4

2
5

1
2

5
9

3
5

5
7

4
5

Our method BN 212 185 166 146 129 122 113 106 97
Times (s) 3.90 3.62 3.43 3.20 3.03 2.96 2.88 2.74 2.61
Overhead bit (bpp) 0.0214 0.0205 0.0190 0.0182 0.0176 0.0172 0.0163 0.0157 0.0148
PSNR 30.13 30.11 30.13 30.13 30.11 30.12 30.11 30.04 30.00

DA-DWT PSNR 30.10
Times (s) 4.15

Table 2. Compression performance comparison for Building.

Method Threshold 1
30

1
6

1
5

1
3

1
2

3
5

9
13

6
7

6
5

Our method BN 170 162 158 144 133 129 124 117 104
Times (s) 3.45 3.37 3.26 3.14 3.05 2.97 2.90 2.83 2.67
Overhead bit (bpp) 0.0241 0.0234 0.0233 0.0228 0.0222 0.0220 0.0218 0.0207 0.0179
PSNR 27.41 27.41 27.40 27.38 27.36 27.36 27.32 27.29 27.17

DA-DWT PSNR 27.34
Times (s) 4.16

Table 3. Compression performance comparison for Bike.

Method Threshold 1
16

1
7

4
11

9
14

13
14

7
6

7
5

11
6 2

Our method BN 178 168 149 119 90 70 62 50 45
Times (s) 3.48 3.37 3.12 2.79 2.46 2.24 2.10 1.88 1.82
Overhead bit (bpp) 0.0180 0.0178 0.0167 0.0146 0.0122 0.0102 0.0088 0.0068 0.0059
PSNR 35.15 35.10 34.81 34.41 33.77 33.48 33.33 32.96 32.83

DA-DWT PSNR 35.11
Times (s) 4.14

directional lifting wavelet transform in the first level decom-
position. Overhead bit is used to code the directional infor-
mation and block mode information, and time represents
the time needed for the forward wavelet transform. From
Tables 1–3, we can see that when maintaining similar per-
formance in terms of PSNR, the computational complexity
of our method is only 75% of that of DA-DWT. The reason
is that according to our algorithm, some blocks (subimage)
directly use the normal lifting wavelet. This reduces the
computational complexity and the number of overhead bits
for directional information and block mode coding.

From Tables 1–3, we can see that as the threshold be-
come larger, the blocks needed for directional lifting become
smaller. Also, the time needed for the wavelet transform, and
overhead bits coded for the directional information and block
mode decreased. This is because larger threshold means
more blocks are estimated to be homogeneous, which may
decrease the computational complexity of wavelet transform
and bits needed for directional information and block mode
coding.

Barbara
38

36

34

32

30

28

26

24

22

P
S

N
R

 (d
B

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
rate (bpp)

DA-DWT
Out method
9/7-M
SD DADWT
Adaptive lifting
Directionlets

Fig. 5. The PSNR versus bpp curve for Barbara.
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In order to further verify the performance of the pro-
posed method, compression performance curves (at differ-
ent bit rates) corresponding to the six schemes are shown in

Building
36

34

32

30

28

26

24

22

P
S

N
R

 (d
B

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
rate (bpp)

DA-DWT

Our method

9/7-M

SD-DADWT

Adaptive lifting

Directionlets

Fig. 6. The PSNR versus bpp curve for Building.

Bike
46

44

42

40

38

36

34

32

30

28

26

P
S

N
R

 (d
B

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
rate (bpp)

DA-DWT
Our method
9/7-M
SD-DADWT
Adaptive lifting
Directionlets

Fig. 7. The PSNR versus bpp curve for Bike.

Fig. 8. Original test images: (a) Barbara, (b) Building, and (c) Bike.

Figs. 5–7. From Fig. 5, we can see that our algorithm is
better than the one using 9/7-M wavelet. Thus, for Bar-
bara, a gain of up to 2dB can be obtained. Compared to
DA-DWT method, the proposed algorithm maintains similar
image compression performance in terms of PSNR at differ-
ent bit rates. Also, Figs. 5–7 show that when using SPIHT to
encode the wavelet coefficients, our method is a little better
than adaptive lifting scheme and directionlets. Basically, all
the three methods, that is adaptive lifting, directionlets, and
the one we hereby present, have similar performance at low
bit rates. From Figs. 5–7, we can notice that our method out-
performs SD-DADWT (for about 0.8dB) for the three test
images in Fig. 8.

Part of the Barbara image is shown in Fig. 9, along with
the reconstructions at 0.3bpp. The subjective quality from
the proposed method around the arm and along the stripes
on the fabrics in Barbara is significantly better than that
from the 9/7-M scheme. These results show that, compared
to conventional 9/7-M approach, the proposed method is
better in handling sharp image features. Compared to the
DA-DWT method, reconstruction image with our method
has similar visual quality. However, the computational
complexity is less with our method than with DA-DWT
scheme (Tables 1–3). When compared with directionlets,
our method has better subjective quality. This can be verified
by comparing Fig. 9(c) and (e). Some block effect remains
in Fig. 9(e).

Considering the Building and Bike test images, the orig-
inal and the reconstruction test images using four methods
(9/7-M, the DA-DWT, directionlets, and our method) are
shown in Figs. 10 and 11. We can see that our method out-
performs the 9/7-M wavelet and has similar performance
with DA-DWT method, with lower computational complex-
ity. Some local effects for directionlets shown in Fig. 10(e)
are not as good as those shown in Fig. 10(c).

3.2. Lossless compression experiment

In this part, we compare the performance of three meth-
ods (9/7-M, DA-DWT, and our method) using lossless com-
pression. During our experiment, wavelet coefficients are
encoded using an arithmetic coder [19]. Results are shown
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Fig. 9. Local effects of Barbara at 0.3 bpp. (a) Original Barbara image; (b)–(e) reconstruction image using 9/7-M wavelet, our method,
DA-DWT, and Directionlets, respectively.

Fig. 10. Local effects of Building at 0.3 bpp. (a) Original building image; (b)–(e) reconstruction image by 9/7-M wavelet, our method,
DA-DWT, and Directionlets, respectively.

in Tables 4 and 5. In this experiment, the directional informa-
tion is considered. The overhead bits are added at the head of
the total bitstream. From the result, we can see that although
the directional lifting wavelet needs some additional bit-
stream, the proposed directional lifting always outperforms
the conventional 9/7-M wavelet. For Barbara, a performance
of up to 0.2bpp can be achieved in different decomposed
levels. This is because the directional lifting can effectively
capture the directional dependence in the Barbara image.
Compared to DA-DWT method, the performance is fairly
the same; but the computational complexity is reduced. The
reason is that DA-DWT performs directional lifting wavelet

transform for all the pixels in the image; while our method
only does it in heterogeneous block which is estimated by
structure tensor.

4. Conclusion

In this paper, a new image coding method based on
adaptively selecting directional lifting or normal horizon-
tal/vertical lifting is presented. In our algorithm, image
is partitioned into many nonoverlapping blocks. For each
block, structure tensor is used to decide which of directional
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Fig. 11. Local effect of Bike at 0.3 bpp. (a) Original Bike image; (b)–(e) reconstruction image by 9/7-M wavelet, our method, DA-DWT,
and Directionlets, respectively.

Table 4. Comparison of performance for Barbara.

Decomposition level 2 3 4 5

Normal 9/7-M (bpp) 4.8712 4.7753 4.7486 4.7360
DA-DWT (bpp) 4.6579 4.5663 4.5423 4.5223
Our method (bpp) 4.6935 4.6001 4.5793 4.5651

Table 5. Comparison of performance for Bike.

Decomposition level 2 3 4 5

Normal 9/7-M (bpp) 3.2281 3.2328 3.2289 3.2140
DA-DWT (bpp) 3.0684 3.0753 3.0780 3.0668
Our method (bpp) 3.0707 3.0768 3.0792 3.0683

lifting wavelet transform or horizontal/vertical lifting should
be used. It is worth mentioning that the directional lifting
though much more complex than the horizontal/vertical
lifting can effectively capture the directional dependence.

Theoretical analysis and experimental results prove that
the proposed method is more powerful than the normal
9/7-M wavelet method. It outperforms it both using lossy and
lossless compressions. Compared to the DA-DWT method,
the proposed algorithm can reduce the computational com-
plexity of wavelet transform, while maintaining similar com-
pression performance in terms of PSNR. Compared to some
other existing methods, our method outperforms them in
terms of PSNR.

In the future, we will further analyze image statistic char-
acteristics and use proper threshold to adaptively estimate
the directional information. If that works, better results could
be obtained.
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