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Abstract Discretization techniques have played an important role in machine learn-
ing and data mining as most methods in such areas require that the training data
set contains only discrete attributes. Data discretization unification (DDU), one of
the state-of-the-art discretization techniques, trades off classification errors and the
number of discretized intervals, and unifies existing discretization criteria. However,
it suffers from two deficiencies. First, the efficiency of DDU is very low as it
conducts a large number of parameters to search good results, which does not
still guarantee to obtain an optimal solution. Second, DDU does not take into
account the number of inconsistent records produced by discretization, which leads
to unnecessary information loss. To overcome the above deficiencies, this paper
presents a Universal Discretization technique, namely UniDis. We first develop a
non-parametric normalized discretization criteria which avoids the effect of relatively
large difference between classification errors and the number of discretized intervals
on discretization results. In addition, we define a new entropy-based measure
of inconsistency for multi-dimensional variables to effectively control information
loss while producing a concise summarization of continuous variables. Finally, we
propose a heuristic algorithm to guarantee better discretization based on the non-
parametric normalized discretization criteria and the entropy-based inconsistency.
Besides theoretical analysis, experimental results demonstrate that our approach
is statistically comparable to DDU evaluated by a popular statistical test and it
yields a better discretization scheme which significantly improves the accuracy of
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classification than previously other known discretization methods except for DDU
by running J4.8 decision tree and Naive Bayes classifier.

Keywords Discretization · Inconsistency · Entropy · J4.8 decision tree ·
Naive Bayes classifier

1 Introduction

Data mining is a broad area that integrates techniques from several fields including
machine learning, statistics, pattern recognition, artificial intelligence, and database
systems, for the analysis of large volumes of data. There have been a large number
of data mining algorithms rooted in these fields to perform different data analysis
tasks. For example, the novel constrained kNN query method (Mahady et al. 2010) is
proposed to guarantee that the number of cells that are accessed to compute the
constrained kNNs is minimal, and can be several times faster than the previous
method. Jin and Qu (2009) propose a multi-dimension, multi-objective optimum
dynamic programming method under circumstances of complicated information. It
is relatively more universal than other ones, and the optimal result is more accurate.
Wang and Zaniolo (2000) proposes a fast decision tree classifier using multivariate
predictions called CMP, which achieves better decision tree rules.

Data discretization is one of the preprocessing techniques used frequently in
data mining, machine learning and knowledge discovery (Hand et al. 2001; Cios
and Kurgan 2007; Ling and Zhang 2002; Quinlan 1993, 1986). Many real-world
data mining tasks involve continuous attributes. However, almost all of data mining
techniques can not handle such attributes. Therefore, it is necessary and important to
slice the value domain of each continuous attribute into a number of intervals to gen-
erate attributes with a small number of distinct values. Some modern classification
systems such as ID3 (Quinlan 1986) and C4.5 decision trees (Quinlan 1993) have
also implemented discretization methods as built-in functions. A good discretization
algorithm not only produces a concise summarization of continuous attributes to
help the experts and users understand the data but also makes learning efficient and
effective (Liu et al. 2002).

Data discretization has been extensively studied (Dougherty et al. 1995; Kerber
1992; Liu and Setiono 1997; Tay and Shen 2002; Su and Hsu 2005; Fayyad and Irani
1993; Ching et al. 1995; Kurgan and Cios 2004; Tsai et al. 2008; Liu et al. 2004; Biba
et al. 2007; Schmidberger and Frank 2005; Boulle 2006; Bondu et al. 2008). DDU
proposed by Jin et al. (2007) is one of the most efficient and effective discretization
techniques, which uses Minimum Description Length Principle (MDLP) (Fayyad
and Irani 1993; Hansen and Yu 2001) to accomplish the discretization scheme by
trading off classification errors and the number of discretized intervals generated by
discretization. Clearly, the more the discretization intervals discretized, the fewer the
number of classification errors is; and vice versa. In DDU, it is also proved that exist-
ing discretization methods based on information theory and statistical independence
are approximately equivalent. They propose a parametrized discretization criteria
to unify several existing discretization criteria and provide a flexible framework to
access a potentially infinite of discretization criteria. They also design a dynamic
programming algorithm to select the best cut points based on the proposed unified
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discretization criterion and use an experimental validation approach to choose the
optimal parameters.

However, DDU has two deficiencies. First, DDU is a parameter-based method
and has to implement a large number of parameters to search a desirable result. Even
so, it does not still guarantee to find an optimal solution as it is difficult to determine
a good parameter value or scope. This can lead to two extreme cases that data may be
discretized into one interval or not be discretized. Second, DDU does not consider
the number of inconsistencies in multivariate discretized data sets as it only treats
discretization of a single continuous variable as a 1-dimension classification problem,
which may lead to unnecessary information loss after discretization.

The objective of discretization is to find an effective criterion to select a group of
good cut-points on each continuous attribute with minimal information loss, aiming
to produce a concise summarization of continuous variables and making learning
efficient and effective. In this paper, we present a universal discretization technique
(UniDis). The main contributions of this paper are summarized as follows:

1. We propose a non-parametric normalized discretization criteria which avoids the
effect of relatively large difference between classification errors and the number
of discretized intervals on discretization results.

2. We propose a new entropy-based measure of inconsistency for multiple at-
tributes to effectively control information loss while producing a concise sum-
marization of continuous variables.

3. We propose a heuristic algorithm to guarantee better discretization based on
the non-parametric normalized discretization criteria and the entropy-based
inconsistency.

4. We conduct a simulation experiment to evaluate our discretization method. The
simulation results show that our approach is statistically comparable to DDU
evaluated by a popular statistical test and it significantly improves the mean
accuracy of classification than existing ones except for DDU.

The remainder of this paper is organized as follows. We introduce related work in
Section 2. Section 3 presents our proposed method. Experiments and performance
evaluation are introduced in Section 4. Finally, we summarize our work and conclude
this paper in Section 5.

2 Related work

Existing discretization techniques can be divided into top-down vs. bottom-up, while
top-down can be further classified into unsupervised vs. supervised (Dougherty et al.
1995). Top-down techniques start from the initial interval and recursively split it
into smaller intervals, while bottom-up techniques begin with the set of single value
intervals and iteratively merge adjacent intervals. Unsupervised methods provide
no class information, such as EQW and EQF (Dougherty et al. 1995), KDE (Biba
et al. 2007), TDE (Schmidberger and Frank 2005). In the unsupervised methods,
continuous ranges are divided into subranges by the user specified width (range
of values) or frequency (number of instances in each interval). The former two
techniques (EQW and EQF) starting with naive methods can be implemented
with a low computational cost. However, This may not give good results in cases
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where the distribution of the continuous values is not uniform. Furthermore it
is vulnerable to outliers as they affect the ranges significantly. Specifically, EQW
method involves sorting the observed values of a continuous attribute and dividing
the range of observed values for the variable into k equally sized bins, where k is a
parameter supplied by the user. EQF method divides a continuous attribute into k
bins, and each bin contains N/k (possibly duplicated) adjacent values, where N is
the number of instances. The latter two techniques (KDE and TDE) are state-of-
the-art unsupervised top-down techniques, which use density estimators to select the
best cut points and automatically adapt subintervals to the data. They determine
the discretized number of intervals by the cross-validated log-likelihood. While,
supervised methods provide class information with each attribute value and they
are much more sophisticate, such as the Chi2-based heuristic algorithms (Kerber
1992; Liu and Setiono 1997; Tay and Shen 2002; Su and Hsu 2005), class-attribute
interdependency-based methods like CADD (Ching et al. 1995), CAIM (Kurgan and
Cios 2004), CACC (Tsai et al. 2008), OCDD (Liu et al. 2004), and entropy-based
discretization (Fayyad and Irani 1993). The Chi2-based methods are famous bottom-
up supervised discretization techniques based on statistical independence. The chi-
square statistic is used to determine whether the current point is to be moved or not.
These algorithms trade off the number of intervals with the number of inconsistent
instances and control the process of discretization by introducing inconsistency with
the aim to control the degree of misclassification. Class-attribute interdependency-
based methods are distinguished top-down supervised discretization techniques with
the objective to maximize the interdependence between the class and the continuous-
valued attribute and to generate a possibly minimal number of discrete intervals.
Entropy-based method recursively selects the cut-points on each target attribute to
minimize the overall entropy and determines the appropriate number of intervals by
using Minimum Description Length Principle (MDLP) (Fayyad and Irani 1993).

Recently, many researchers have focused on the production of new discretization
techniques, i.e., DDU (Jin et al. 2007), MODL (Boulle 2006) and SSDM (Bondu
et al. 2008). Ruoming Jin et al. present a latest unification technique of data
discretization (DDU). They prove that discretization methods based on information
theory and statistical independence are approximately equivalent. A parameterized
goodness function is derived to unify six discretization criteria, providing a flexible
framework to access a potentially infinite of goodness functions. MODL is another
latest discretization method. It builds an optimal criterion based on a Bayesian
model. Three algorithms are developed to find the optimal criteria. Beyond the
supervised and unsupervised methods, Bondu et al. (2008) developed only one semi-
supervised method lately. It is based on the MODL framework and discretizes the
numerical domain of a continuous input variable, while keeping the information
relative to the prediction of classes.

3 A universal discretization technique

In this section, we present a universal discretization technique. First, we analyze
the motivation in detail in Section 3.1. Then, we describe our proposed method in
Section 3.2. Finally, a heuristic algorithm is presented in Section 3.3.
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3.1 Motivation

In this section, we analyze the motivation. First, we state the problem of discretiza-
tion. A discretization task requires a training data consisting of N instances, where
each instance belongs to only one of S classes. Next, there exists a discretization
scheme D, which discretizes the continuous domain of attribute into I intervals
bounded by the pairs of numbers:

D : {[d0, d1], (d1, d2], · · · , (dI−1, dI]
}

where d0 is the minimal value and dI is the maximal value of a continuous attribute.
The values in D are arranged in ascending order. For the purpose of discretization,
the entire dataset is projected onto the targeted continuous attribute. The result of
such a projection is a two dimensional contingency table, see Table 1, with I rows
and S columns. Each row corresponds to an initial data interval, and each column
corresponds to a different class. Nij represents the number of instances with jth class
in the ith interval Ri. N· j is the total number of instances belonging to the jth class.
Ni· is the total number of instances that are within the interval Ri.

As stated in DDU, finding the best discretization is finding the best trade-off
between classification errors and the number of discretized intervals generated by
discretization; DDU uses MDLP to achieve the discretization scheme, and it unifies
six discretization criteria by introducing two parameters. MDLP associates a cost
with each discretization, for the detailed deviation for each discretization function
see Jin et al. (2007). Formally, the unified parametrized cost function is defined as
follows:

costα,β(D) =
I∑

i=1

Ni· Hβ(Ri) + α(I − 1)(S − 1) f (β) (1)

where Hβ(Ri) =
S∑

j=1

Nij

Ni·

[
1 −

( Nij

Ni·

)β]/
β is called the generalized entropy (Mussard

et al. 2003) of interval Ri, f (β) =
[
1 − ( 1

N

)β
]/

β, α > 0, and 0 < β ≤ 1. We can

see from (1) that costα,β(D) evaluates classification errors by
I∑

i=1

Ni· Hβ(Ri) and the

number of discretized intervals (penalty for discretization) by α(I − 1)(S − 1) f (β).
Intuitively, when a classification error increases, the penalty decreases and vice versa.

However, DDU has two deficiencies. First, the efficiency is very low as it conducts
a large number of parameters to search good results. In other words, it is difficult to

Table 1 Notations of
contingency table

Intervals Class label Sum of row

Class 1 Class 2 · · · Class S

R1 : [d0, d1] N11 N12 · · · N1S N1·
R2 : (d1, d2] N21 N22 · · · N2S N2·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

RI : (dI−1, dI ] NI1 NI2 · · · NIS NI·
Sum of column N·1 N·2 · · · N·S N (total)
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determine a good parameter value to guarantee an optimal solution. Although DDU
can find the best discretization theoretically, it is not operational in practice. In the
following, we do simply analysis. To facilitate our discussion, we take the limit β → 0;
lim
β→0

Hβ(Ri) = H(Ri) and lim
β→0

f (β) = ln N (see Theorem 2 in Appendix).

The paper presents a dynamic programming strategy to find the best dis-
cretization to minimize the parameterized cost function. Let sub-scheme be D[i :
i + k] : {[di−1, di], · · · , (di+k−1, di+k]

}
and F

(
D[i : i + k]) =

( i+k∑

r=i

Nr·
)

× Hβ

( i+k⋃

r=i

Rr

)
.

Let opt(i, i + k) be the optimum which corresponds to the best discretization and can
be calculated recursively as follows:

opt(i, i + k) = min
(

F(D[i : i + k]), min0≤l≤k−1
(
opt(i, i + l) + opt(i + l + 1, i + k)

+α(S − 1) ln N
))

where 1 ≤ i ≤ I − 1 and 1 ≤ k ≤ I − 1. The algorithm ultimately returns opt(1, I) by
calculating opt(i, i + k) recursively for threeply loops: i = 1 to I − 1, k = 1 to I − i
and l = 0 to k − 1. If

F
(
D[1 : I]) < min0≤l≤I−2

(
opt(1, 1 + l) + opt(2 + l, I) + α(S − 1) ln N

)
(2)

then this means that data would be discretized into one interval, i.e.,
{
d0, dI

}
, which

leads to over-discretization and makes learning accuracy worse. Note that F
(
D[1 :

I]) = F(D). However, whether the inequality (2) is true or not would be determined
by α. Whereas, kinds of complicated data sets have different information themselves,
i.e., N, S and the entropy that can reflect the class distribution, so it is difficult to find
a good α value or scope to achieve a good trade-off between classification errors and
the number of discretized intervals. Obviously, it is more unreasonable that DDU
apply an experimental validation approach to choose the optimal parameters in the
same parameter domain for different data sets. In addition, since Hβ(Ri) and f (β)

are the monotonous decreasing functions related to β (see Theorem 1 in Appendix),
similar conclusions can also be derived when β takes on real values from the interval
(0, 1).

We can illustrate this through the following two examples. We take the age
dataset1 in Table 2 as the training data consisting of 18 instances and 2 classes.
Obviously, the best discretization scheme is that the age dataset1 is divided into six
intervals (denoted by 1, 2, 3, 4, 5 and 6, respectively): [15.50, 19.65], (19.65, 23.05],
(23.05, 24.60], (24.60, 27.55], (27.55, 37.40] and (37.40, 48.00]. Interval 1 contains
instances 1–3, interval 2 has instances 4–6, etc.

If DDU is applied to discretize the age dataset1 (let β → 0), opt(1, 6) can be
calculated recursively according to the dynamic programming algorithm as follows:

opt(1, 6) = min
(

F
(
D[1 : 6]), min0≤l≤4

(
opt(1, 1 + l)

+ opt(2 + l, 6) + α · (2 − 1) · ln 18
))
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Table 2 Age dataset1 Person ID Age Occupation (target class)

1 15.5 Education
2 16.2 Education
3 19.0 Education
4 20.3 Work
5 22.1 Work
6 23.0 Work
7 23.1 Education
8 23.5 Education
9 24.2 Education
10 25.0 Work
11 26.4 Work
12 27.1 Work
13 28.0 Education
14 30.0 Education
15 35.2 Education
16 39.6 Work
17 43.8 Work
18 48.0 Work

Specifically calculated results as follows:

opt(1, 2) = min(6, 2.89α)

opt(1, 3) = min
(
8.4, opt(1, 2) + 2.89α

)

opt(1, 4) = min
(

min(12, opt(1, 3) + 2.89α), min(12, opt(1, 2) + 2.89α)
)

opt(1, 5) = min
(
min(14.6,opt(1,4)+2.89α), min(14.6,opt(1, 2)+opt(1, 3)+ 2.89α)

)

opt(1, 6) = min
(

min(18, opt(1, 5) + 2.89α), min(18, opt(1, 2) + opt(1, 4) + 2.89α),

min(18, 2opt(1, 3) + 2.89α)
)

where opt(1, 2)=opt(2, 3)=opt(3, 4)=opt(4, 5)=opt(5, 6), opt(1, 3)=opt(2, 4) =
opt(4, 6), opt(1, 4) = opt(2, 5) = opt(3, 6) and opt(1, 5) = opt(2, 6).

By computing, we can derive that if α > 1.384, then

F
(
D[1 : 6]) < min0≤l≤4

(
opt(1, 1 + l) + opt(2 + l, 6) + 2.89α

)

Therefore, the age dataset1 would be discretized into one interval ([15.5,48.0]) in this
case and this goes to one extreme. In this example, we let β → 0. For other values of
β, we can receive the similar results when β is given, since Hβ(Ri) and f (β) are the
monotonous decreasing functions related to β in the interval (0, 1) (see Theorem 1
in Appendix).

Next, we take another example to illustrate that DDU may go to another extreme.
The age dataset2 in Table 3 is as the training data consisting of 12 instances and 3
classes. Good discretization need to trade off classification errors and the number
of discretized intervals. Therefore, the best discretization scheme is that the age
dataset2 would be divided into two intervals: [8.0, 17.0] and (17.0, 23.6] because it
has smaller interval number and fewer classification errors, intuitively. However, if
α < 0.127 obtained by calculating recursively according to the dynamic programming
strategy of DDU, the age dataset2 would be divided into four intervals: [8.0, 11.85],
(11.85, 12.05], [12.05, 17.0] and (17.0, 23.6], which only considers classification errors
and generates the most intervals.
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Table 3 Age dataset2 Person ID Age Other Education (target class)

1 8.0 · · · Elementary school
2 11.0 · · · Elementary school
3 11.5 · · · Elementary school
4 11.6 · · · Elementary school
5 12.1 · · · Junior high school
6 12.2 · · · Elementary school
7 12.3 · · · Elementary school
8 15.0 · · · Elementary school
9 19.0 · · · Bachelor
10 19.5 · · · Bachelor
11 20.7 · · · Bachelor
12 23.6 · · · Bachelor

Through analyzing the above two examples, DDU may lead to the two extremes.
The reason is that it only considers either classification errors or the discretized
interval number when selecting the bad parameter scope. This means that there is a
relatively large difference between classification errors and the number of discretized
intervals. If a classifier is learning with such a discretized data set, the accuracy would
be worse.

The second deficiency of DDU is that it does not take into account the number
of inconsistencies in multivariate discretized data sets, which may lead to unnec-
essary information loss after discretization. As it is well known, discretization is
accompanied by information loss. However, most of current efforts only consider the
number of classification errors aiming at discretizing one single continuous attribute,
not taking into account the number of inconsistencies in multivariate discretized
data sets.

3.2 Universal discretization method

In this section, we present a universal discretization method to overcome the above
deficiencies. First, a non-parametric normalized discretization criteria is proposed to
avoid parameter search of low efficiency and the effect of relatively large difference
between classification errors and the number of discretized intervals on discretization
scheme as large difference means that it selects bad choices of parameter values,
which leads to poor discretization results.

Non-parametric normalized discretization criteria First, we analyze the range of the
two components in (1). According to the extremum property of Entropy (Cover and

Thomas 2006), we have Hβ(Ri) ≤ log S. So, the range of
I∑

i=1

Ni· Hβ(Ri) is [0, N ×
log S]. Besides, according to Theorem 1 in Appendix, we have

max
β

{
f (β)

} = max
β

{1 − ( 1
N )β

β

}
= lim

β→0

1 − ( 1
N )β

β
= ln N

So, the range of the other component takes [0, α(I − 1)(S − 1) ln N]. As I and S are
smaller, it is easy to see that the difference between the two ranges is large. To avoid
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parameter-dependent and reduce the effect of difference between classification
errors and the number of discretized intervals on discretization results, we aims
to drop the parameters and normalize the both by mapping their value domain
into [0,1].

The entropy H(Ri) can evaluate classification errors and I measures the number
of discretized intervals. Thus, we can define the new non-parametric normalized
discretization criteria (termed U DT) referring to the two ranges, as follows:

U DT =
I∑

i=1

H(Ri)

/

I log S + (I − 1)
/[

(S − 1) ln N
]

(3)

Note that if I is relatively larger, it may happen that Φ = (I − 1)
/[

(S − 1) ln N
]

>

1. Thus, we have to require a maximal number of the discretized intervals to enable
Φ ∈ [0, 1]. In order to be reliable, it requires that every cell of the contingency table
has an expected value of at least 5. This reliability constraint is equivalent to a
minimum frequency constraint for each interval of the discretization. The purpose
is to approximate the true class attribute distribution from the observed distribution
of the training sample on the basis of intervals. This process can be considered as an
inductive algorithm, therefore subject to overfitting (Tsai et al. 2008; Boulle 2004).
In order to prevent overfitting, a solution is to increase the minimum frequency by
constraining the intervals to have a frequency greater than the square root of the
sample size

√
N. A detailed description can be found in Boulle (2004). So, we can

rewrite (3) as follows:

U DT =
I∑

i=1

H(Ri)

/

I log S + (I − 1)
/[

(S − 1)
√

N
]

(4)

We can see from (4) that this new criteria is parameterless and normalize the both
into domain [0, 1], which can reduce the difference of both and avoid extreme situa-
tions of the examples appeared in Section 3.1. If our proposed algorithm presented
in Section 3.3 based on the new discretization criteria is applied to discretize the
age dataset1 and dataset2 in Section 3.1, the best discretization claimed would be
achieved. Actually, the main components in desired discretization criterion is the
measure of classification errors and the measure of the discretized interval number.
Indeed, (4) is equivalent to trade off these two terms with normalization.

To sum up, the new non-parametric normalized discretization criteria has the
following properties:

– It is parameterless and only implements discretization one time to find better
scheme, unlike DDU that searches a large number of parameters to find desired
results and does not still guarantee to obtain an optimal solution.

– It conducts with the effect of information themselves of data, i.e., sample points
N and the number of classes S. Intuitively, the larger sample points N and the
number of classes S, the more the number of classification errors, and so need
slightly more discretized interval number, and vice versa.
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For bottom-up discretization, we find the adjacent two intervals in all the candi-
date interval pairs, which have minimal U DT value after merging them, and then
we first merge them; for top-down discretization, we find the cut point in all the
candidate cut points, which have minimal U DT value after splitting an interval, and
then we first add it.

In the following, we propose an entropy-based measure of inconsistency that
considers the number of inconsistencies generated by discretization in multivariate
discretized data sets.

Entropy-based measure of inconsistency Authors Kerber (1992), Liu and Setiono
(1997), Tay and Shen (2002), Su and Hsu (2005) have proposed the measures
of inconsistencies as stopping rules to control information loss and automate the
discretization process. Nevertheless, these measures of inconsistency either has low
fidelity of the original data set or discretize data in such a conservative way that it
does not allow any loss of information. The detailed shortcomings can be listed as
follows:

– In Chi2 (Liu and Setiono 1997), some input variables are removed according to
the larger inconsistency count. However, these results are obtained on the basis of
decreasing the fidelity of the original data because the calculation of inconsistency
rate in Chi2 is the total number of the instances minus the largest number of the
instances of class label, considering only the largest number, not the difference
among all the number of the instances of class label.

– In Mod-Chi2 (Tay and Shen 2002), it replaces the measure of inconsistency
in Chi2 with the level of consistency in RST (Pawlak 1982), which guarantees
that the fidelity of the training data can be maintained to be the same after
discretization. However, this measure is defined too strictly. Suppose that there
are 100 inconsistent instances for a consistent data after discretization, among
which 99 instances and 1 instance belong to two different classes, respectively. If
the level of consistency is applied as the stopping criterion, these two adjacent
intervals can not be merged. But, merging the interval pair does not generate
misclassification of the training data basically.

– Ext-Chi2 (Su and Hsu 2005) introduces the measure of the relative degree of
misclassification between two sets in variable precision rough sets (V PRS) model
(Ziarko 1993) to determine the inconsistency rate. The termination criterion
is defined as the point at which the discretized inconsistency rate exceeds the
predefined rate determined by the original data. However, this stopping criterion
may lead to more misclassification since it generates more inconsistent instances
after discretization. In the process of discretization, Ext-Chi2 proceeds to dis-
cretize data by decreasing the significance level α. We find that the number of
the inconsistent instances is more and more with the reduction in the significance
level α from 0.5 to 0.0005. However, the discretized inconsistency rate still does
not exceed 0.4 even if α has been decreased to 0.0005. Thus, more misclas-
sifications are generated when data continues to be discretized.

In this paper, we propose a novel entropy-based measure of inconsistency for
multi-dimensional variables. Entropy is a measure of the uncertainty (inconsistency)
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associated with random variables and can commendably measure information loss.
We first formally introduce a notion of entropy as follows:

Definition 1 The entropy of a discrete random variable X is a measure of the
amount of uncertainty associated with the value of X, is defined in (5)

H(X) = −
∑

x∈�x

p(x) log p(x) (5)

where �x is the set of all messages {x1, x2, . . . , xn} that X could be, and p(x) is the
probability of X given some x ∈ �x.

Let A = {a1, a2, · · · , am}. m is the number of attribute variables and ai denotes
the ith continuous variable, 1 ≤ i ≤ m. Based on Definition 1, the entropy of multi-
dimensional variables is defined as follows:

Definition 2 The extended entropy of multi-dimensional variables is defined

H(A) =
I1∑

i1=1

I2∑

i2=1

· · ·
Im∑

im=1

S∑

j=1

Ni1i2···im j

N
log

N
Ni1i2···im j

(6)

where Ii is the discretized interval number of the ith attribute and ai denotes
the ith attribute, Ni1i2···im· is the number of instances in the input variables cell
(a1, a2, · · · , am), and Ni1i2···im j is the number of instances of class j in the input
variables cell (a1, a2, · · · , am). This entropy-based inconsistency criteria can exactly
measure the uncertainty of entire data in the process of discretization. The heuristic
algorithm presented in Section 3.3 just uses the entropy-based measure of inconsis-
tency to control information loss and decide when the algorithm stops discretization.

3.3 A heuristic algorithm

In this section, we design a heuristic algorithm (UniDis). The objective of this
algorithm is to adopt our proposed U DT criteria and entropy-based measure of
inconsistency to find best discretization scheme with minimal information loss. The
algorithm includes two phases. The first phase is the initialization. The second phase
is the optimization stage of the discretization. We explain the rationale behind each
step as follows:

3.3.1 Initialization

A good initialization can lead to fewer updates. So, we define a reasonable heuristic
initial number of the discretized intervals for each input variable as follows:

Iinitial(i) =
√

S × N
m

+ MI(ai) (7)

where MI(ai) = ∑I
′
i

j=1
∑S

r=1 N jr log2
N jr

N j· N·r , I
′
i denotes the original number of inter-

vals. It is called Mutual Information (Ching et al. 1995) between input variables and
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output variable. It reflects the interdependence. In fact, it is known that the Mutual
Information between input and output variables takes maximum value if input and
output are totally dependent, and the mutual information takes minimum value if
they are totally independent. Note that, originally each distinct value of an attribute
is considered to be one interval.

Generally, the fewer the number of classification errors for univariate, the more
discretization intervals created. Besides, the number of intervals is also close to some
prior information. Intuitively, the fewer the sample points and the number of classes,
and the larger the number of attributes, then there should be fewer the number
of the discretized intervals, and vice versa. Therefore, we use

√
S × N

/
m as one

component of Iinitial(i), and the reason for square root is that S × N is much larger
than m in most cases and it need to be reduced the order of magnitude. In addition,
each input variable has a certain important degree with regard to output variable.
In other words, there is an interdependence between them. The smaller the Mutual
Information value, the lower the interdependence between the class labels and the
continuous attribute, and thus the number of the discretized intervals can be fewer,
and vice versa. So, (7) can synthetically reflects the initial number of intervals as a
heuristic function. After creating the initial number of intervals, the algorithm finds
Iinitial(i) cut points which minimize U DT value for each continuous variable.

3.3.2 Optimization

Based on initialization, we further optimize the discretization process. In this algo-
rithm, we use the entropy-based measure of inconsistency H(A) (Definition 1) to
control information loss and as a stopping rule of discretization process. After initial-
ization, the algorithm optimizes the discretization process, mainly in the following
two forms:

– If H(A) > ξ , it shows that there is an intolerable information loss. Thus, the
algorithm has to discover an optimal split from all the continuous variables
with the aim to reduce information loss. ξ is a predefined tolerable amount of
information loss supplied by the user.

– If H(A) ≤ ξ , it shows that there is no information loss or a tolerable information
loss. Thus, the algorithm can discover an optimal split and an optimal merge from
all the continuous variables.

The heuristic algorithm UniDis can be described as shown in Algorithm 1.
The proposed U DT criterion plays an important role in Algorithm 1. The best

split when H(A) > ξ is that the algorithm searches such a cut point in all the
candidate cut points, which has minimal U DT value and can reduce information
loss after adding the searched cut point to data. The best merge when H(A) ≤ ξ is
that the algorithm searches such an interval pair in all the candidate interval pairs,
which has minimal U DT value and can reduce information loss after merging the
searched intervals. If the searched target cut point with minimal U DT value can not
reduce information loss, we have to search the next one with sub-optimal value, and
so on. And, if the searched target pair of intervals with minimal U DT value increase
information loss, we have to search the next one with sub-optimal value, and so on.

U DT merely reflects discretization trade-off of a single continuous attribute
as a 1-dimension classification problem. While the entropy-based measure of
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Algorithm 1: The heuristic algorithm (UniDis)
Input : Data set with m attributes, N instances and S target classes
Output : Discretization scheme with Ii intervals for each continuous attribute ai

Initialization:1

Create an initial number of intervals Iinitial(i) for each continuous attribute2

according to (7);
for each continuous attribute do3

Sort variable values in ascending order;4

Find Iinitial(i) cut points which minimize U DT value;5

Optimization of the discretization:6

Calculate initial H(A) value of information system;7

Set the predefined tolerable amount of information loss ξ ;8

while H(A) > ξ do9

Search for the best split in all the continuous attributes;10

Calculate current H(A) value;11

while H(A) ≤ ξ do12

Search for the best merge in all the continuous attributes;13

Calculate current H(A) value;14

inconsistency H(A) reflects the number of inconsistencies generated by discretiza-
tion in multivariate discretized data sets. So, we find the best target interval pairs
or cut points by U DT criterion and control information loss by H(A). To sum up,
the goal of discretization is to create minimal number of discretization intervals with
minimal information loss for multi-dimension data sets.

The computational complexity of Algorithm 1 is analyzed as follows. For ini-
tialization, the time complexity of computing Iinitial(i) and U DT is O(mN), but
each sort needs O(N log N). So for m continuous attributes, the complexity of
initialization is O(mN log N). For, the optimization of the discretization process, the
time complexity of calculating H(a1, a2, · · · , am) is O(mN2), and the complexity of
searching best split or merge is also O(mN2). Hence, the computational complexity
of Algorithm 1 is O(mN log N + mN2), i.e., O(mN2). Since m is often smaller, the
complexity can be O(N2).

4 Experiments and performance evaluation

In order to evaluate UniDis in a real-world situation, eleven data sets are selected
from the UC Irvine machine learning data repository (Hettich and Bay 1999) with
numeric features and varying data sizes, including one large data sets. The data are
fully consistent or correct (inconsistency rate is zero) except for artificial data sets,
and contain real-life information from the medical and scientific fields which have
been used widely in testing pattern recognition and machine learning methods. A
summary of data sets can be found in Table 4.
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Table 4 The summary of
data sets

Data sets Number of Number of Number of Number of
continuous discrete classes instances
attributes attributes

Artificial 6 1 10 5109
Breast 9 0 2 683
Bupa 6 0 2 345
Chapman 6 0 2 200
Glass 9 0 7 214
Heart 6 7 2 296
Iris 4 0 3 150
Ionosphere 32 2 2 351
Pima 8 0 2 768
Vehicle 18 0 4 846
Wine 13 0 3 178

We compare our proposed method UniDis with the following techniques for
performance evaluation.

1. Con: classification performance evaluation on the continuous data using data
mining tools;

2. Ext-Chi2: the newest bottom-up algorithm (Su and Hsu 2005);
3. CACC: the latest top-down method (Tsai et al. 2008);
4. DDU: unified discretization technique (Jin et al. 2007);
5. MODL: one of the latest discretization techniques (Boulle 2006);
6. MDLP: entropy-based method using the minimum description length principle

(Fayyad and Irani 1993);
7. EQF: a typical unsupervised top-down method (Dougherty et al. 1995).

Among the discretization methods, EQF, DDU and Ext-Chi2 require the user
to specify in advance some parameters of discretization. For EQF, the number of
intervals is set to 10. For Ext-Chi2, we set the level of significance to 0.9995. The
parameters set of DDU is similar to Jin et al. (2007). CACC, MODL and MDLP have
their respective automatic stopping rule and do not require any parameter setting.

Many machine learning methods, i.e. J4.8 decision trees (Witten and Frank
2000) and Naive Bayes classifier (Hand et al. 2001), require that the training data
contains only discrete values. J4.8 is an open source Java implementation of the C4.5
algorithm in the weka data mining tool (Weka 3 Data mining software in Java 2007).
Although C4.5 has implemented discretization as built-in function, it is only a simple
discretization process. So, we need to investigate more effective discretization for
continuous data to improve the performance of these machine learning methods.
In the following experiments, each data set is discretized respectively by the eight
methods mentioned above. The 10-fold cross-validation test method is applied to all
data sets. Each data set is divided into ten parts, among which nine parts are used
as the training sets and one as the testing set. The experiments are repeated ten
times. The final predictive accuracy is taken as the average predictive accuracy. As
suggested by Demsar (2006), we use the Friedman test and the Holm’s post-hoc tests
with significance level α = 0.05 to statistically verify the hypothesis of performance
improvement on the classification accuracy of J4.8 decision trees and Naive Bayes
classifier.
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Table 5 The predictive accuracy (percent) using J48 with different discretization methods

Data sets J4.8 (mean accuracy %)

Con Ext-Chi2 CACC UniDis DDU MODL MDLP EQF

Artificial 57.6 56.9 60.5 62.4 60.9 61.2 59.7 56.1
Breast 94.4 96.3 94.8 97.6 95.9 95.3 95.0 93.8
Bupa 63.7 67.5 62.3 65.2 69.4 65.9 61.2 57.8
Chapman 75.5 81.0 87.0 86.0 86.0 85.0 86.0 81.0
Glass 66.7 70.6 78.6 74.1 74.8 73.7 73.2 57.9
Heart 79.7 85.6 81.3 87.9 83.4 84.6 83.4 77.9
Iris 94.4 94.7 92.6 94.7 96.9 95.2 93.3 92.6
Ionosphere 90.4 92.9 90.0 94.7 92.9 91.6 86.8 82.6
Pima 73.9 75.8 67.9 80.6 77.6 75.2 70.3 66.2
Vehicle 70.2 70.9 67.8 75.6 72.0 71.4 67.7 65.4
Wine 94.0 96.4 92.3 97.1 96.0 95.3 83.3 90.7

Mean rank 5.91 3.68 5.14 1.86 2.45 3.45 5.77 7.73

The predictive accuracy of these eight methods are presented in Tables 5 and 6.
The comparison results show that on the average, UniDis achieves the highest
classification accuracy, which demonstrates that UniDis can produce a high quality
discretization scheme. Quick comparisons of the eight methods can be obtained
by checking the mean rank in the last row in Tables 5 and 6. Each value of this
row is acquired by average ranking of each discretization method for all the eleven
data sets. We rank the algorithms for each data set separately, the algorithm with
the best performance gets the rank of 1, the second best gets the rank of 2, and
so on.

In order to obtain the statistical support, we then use the Friedman test to check if
the measured mean ranks statistically reach significant differences. If the Friedman
test shows that there is a significant difference, the Bonferroni-Dunn test in the

Table 6 The predictive accuracy (percent) using Naive Bayes with different discretization methods

Data sets Naive Bayes (mean accuracy %)

Con Ext-Chi2 CACC UniDis DDU MODL MDLP EQF

Artificial 57.6 59.9 59.5 63.5 62.7 60.4 60.1 56.7
Breast 94.4 96.9 97.0 97.6 97.6 97.6 95.0 95.0
Bupa 55.2 62.3 64.7 78.6 79.1 75.3 63.8 60.6
Chapman 78.0 83.5 85.0 88.5 87.0 87.5 86.5 81.5
Glass 46.3 81.6 75.8 85.3 86.4 83.2 72.3 68.2
Heart 79.5 87.7 84.3 88.2 87.9 86.3 83.2 81.4
Iris 95.7 97.1 96.7 96.7 97.1 96.5 94.2 92.6
Ionosphere 91.4 91.2 93.4 95.7 94.6 92.3 93.5 93.4
Pima 73.5 83.4 85.3 87.2 86.5 86.1 76.4 72.6
Vehicle 44.9 66.2 66.9 67.9 64.7 66.7 65.8 62.7
Wine 90.6 94.7 94.5 96.2 96.9 96.5 89.5 92.4

Mean rank 7.09 4.68 4.36 1.68 2.14 3.27 5.5 6.91
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Holm’s post-hoc test is used to further analyze the comparisons of all the methods
against UniDis. The Friedman statistic is described as follows:

χ2
F = 12Q

P(P + 1)

[∑

j

L2
j − P(P + 1)2

4

]
(8)

where P is the number of discretization algorithms, Q is the number of data sets,
L j = 1

Q

∑
i u j

i , and u j
i is the rank of the jth of P algorithms on the ith of Q data sets.

The Friedman statistic is distributed according to χ2
F with v − 1 degrees of freedom,

when P and Q are big enough (as a rule of a thumb, Q > 10 and P > 5). For a
smaller number of algorithms and data sets, exact critical values have been computed
(Zar 1998).

For the measured mean ranks in Table 5, the corresponding value of the Friedman
test is

χ2
F = 12 · 11

8 × 9

[
(5.912 + 3.682 + 5.142 + 1.862 + 2.452 + 3.452

+5.772 + 7.732) − 8 × 92

4

]
= 71.8722

which is larger than the threshold 14.1. So, the visualization of the Bonferroni-Dunn
test in the Holm’s post-hoc test can be illustrated in Fig. 1 according to Demsar
(2006). We can see that the top line in the figure is the axis on which we plot
the average ranks of all the methods while a method on the left side means that
it performs better. A method with rank outside the marked interval in Fig. 1A
means that it is significantly different from UniDis. We can see from Fig. 1A that

22 3 4 5 6 7
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MODL
MDLP
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EQF
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B 1 2 3 4
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MODL

Ext-Chi2

UniDis

DDU

Fig. 1 Comparison of J4.8 performance with Holm’s post-hoc tests (α = 0.05)
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the mean predictive accuracy of UniDis is statistically comparable to that of DDU,
MODL and Ext-Chi2, and it performs significantly better than that of all the other
seven methods. The comparison of the measured mean ranks among UniDis, DDU,
MODL and Ext-Chi2 does not achieve statistically significant difference since we
compare all eight algorithms. If we remove Con, CACC, MDLP and EQF, we can
obtain Fig. 1B in which UniDis and DDU perform significantly better than MODL
and Ext-Chi2. Note that the mean predictive accuracy of UniDis is statistically
comparable to that of DDU from the statistical point of view though mean rank
of UniDis is higher than that of DDU. Similarly, for Table 6 we can see from
Fig. 2A that the mean predictive accuracy of UniDis is statistically comparable to
that of DDU, MODL and CACC. If we remove Con, Ext-Chi2, MDLP and EQF,
we can obtain Fig. 2B in which the mean predictive accuracy of UniDis is statistically
comparable to that of DDU, and they perform significantly better than MODL and
CACC. For MODL, it is one of the latest discretization techniques based on entropy
and information theory properties, and the criterion measures classification errors
and the number of discretized intervals. It can be viewed as a specific form derived
by the parameter-based criterion in DDU. As there is a relatively large difference
between classification errors and the number of discretized intervals, DDU may
lead to the two extremes analyzed in Section 3.1. So, MODL may have the same
defects. Our proposed normalized discretization criteria can avoid such a situation
and achieve higher calssification accuracy.

In the following, we validate information loss generated by discretization by using
the level of consistency (Tay and Shen 2002; Pawlak 1982) that is an important
knowledge in Rough Set Theory. The level of consistency (0 ≤ Lc(A) ≤ 1) can
accurately reflect information validity of the processed data. Specifically, let U
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Fig. 2 Comparison of Naive Bayes performance with Holm’s post-hoc tests (α = 0.05)
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Table 7 The predictive accuracy (percent) using J48 with different discretization methods

Data sets Inconsistent rate
Ext-Chi2 CACC UniDis DDU MODL MDLP EQF

Artificial 0.013 0.435 0.013 0.125 0.104 0.238 0.018
Breast 0.00 0.126 0.01 0.105 0.086 0.134 0.013
Bupa 0.00 0.933 0.01 0.496 0.461 0.525 0.293
Chapman 0.00 0.785 0.01 0.365 0.269 0.455 0.111
Glass 0.00 0.224 0.01 0.156 0.073 0.009 0.084
Heart 0.00 0.064 0.01 0.014 0.021 0.057 0.00
Iris 0.00 0.127 0.01 0.00 0.014 0.122 0.153
Ionosphere 0.00 0.413 0.01 0.00 0.259 0.00 0.00
Pima 0.00 0.676 0.01 0.007 0.164 0.302 0.12
Vehicle 0.00 0.085 0.01 0.458 0.326 0.566 0.151
Wine 0.00 0.00 0.01 0.00 0.00 0.00 0.00

denote the set of instances. We say two instances xi and x j are indiscernible if
their projection in space A are the same. For any instance xi ∈ U , we use [xi]A to
denote its equivalence class with regard to the indiscernible relationship. Let Yi be
an equivalent class in the subspace defined by the class attribute. We define

s(A, Yi) = {x | [x]A ⊆ Yi} (9)

that is, s(A, Yi) is the set of instances whose equivalent classes in the space defined by
A are entirely contained within a single equivalent class Yi in the subspace defined
by the class attribute. The level of consistency of A with respect to the class label is
defined as follows:

Lc(A) =
∑

i | s(A, Yi) |
| U | (10)

where Yi is the ith equivalence class in the subspace defined by the class attribute.
Thus, the inconsistent rate can be indicated by 1 − Lc(A). Table 7 presents the

inconsistent rate with different discretization methods. The results show that CACC,

Swiss N=2000

Fig. 3 Swiss dataset and sampled points with N = 2000
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MODL and MDLP generate higher mean inconsistent rate as these algorithms do
not consider information loss when discretizing continuous data. DDU and EQF
generate relatively lower inconsistent rate. While the mean accuracy of EQF is low
as it is an unsupervised discretization method although EQF generates a relatively
lower inconsistent rate. For Ext-Chi2, it allows no information loss for consistent
data. For our proposed method, ξ value in Algorithm 1 is similar to that of the
bottom-up discretization methods (Kerber 1992; Liu and Setiono 1997; Tay and Shen
2002; Su and Hsu 2005). However, the ξ choice of these bottom-up algorithms either
leads to low fidelity of the original data set or discretize data in such a conservative
way that it does not allow any loss of information. So, how to determine the best ξ

which can result in the maximal classification accuracy is still an open question and
beyond the scope of this paper. Here, we set ξ to a smaller value (ξ = 0.01) for all
of the data sets except ’Artificial’ data set. This aims to achieve a less information
loss after discretizing continuous data. We will open a new way of tackling the choice
problems of the threshold ξ in further versions.

Besides the above real-world data from UCI datasets, we also evaluate the
classification performance on the Swiss dataset (Roweis and Saul 2000) that is the
artificially generated dataset in R

3 as shown in Fig. 3. The aim is to explore the
classification performance of the proposed method in different types of data. As the
Swiss dataset is not real-world data, so we give an individual test. Figure 3 shows
the scatter plot of the Swiss dataset. As we can see, the Swiss data are 2000 points
generated randomly, and each point belongs to one of two classes. In this experiment,
we use J48 to evaluate the classification performance of different discretization
methods on the Swiss dataset. Figure 4 shows that our proposed UniDis method
achieves the highest J4.8 classification accuracy.

5 Conclusions

Discretization algorithms have played an important role in data mining and knowl-
edge discovery. They not only produce a concise summarization of continuous
attributes to help the experts understand the data more easily, but also make learning
more accurate and faster. In this paper, we propose a universal discretization tech-
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nique UniDis, which develops a non-parametric normalized discretization criteria
to avoid the effect of relatively large difference between classification errors and
the number of discretized intervals on discretization results. In addition, we seam-
lessly define a new entropy-based measure of inconsistency for multi-dimensional
variables with the aim to effectively control information loss while producing a
concise summarization of continuous variables. A heuristic discretization algorithm
is designed to search the best discretization based on the new non-parametric criteria
and the entropy-based inconsistency. We conduct experiments on 11 real data sets
demonstrate that our approach is statistically comparable to DDU and it generates
a good discretization scheme which significantly improves the mean accuracy of
classification than existing discretization methods except for DDU by running J4.8
decision tree.
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Appendix

In this section, we show the monotonicity of f (β) and Hβ(Ri) with regard to β.

Theorem 1 f (β) and Hβ(Ri) are the monotonous decreasing functions of β in the
interval (0,1].

Proof Let β1 and β2 are two values in the interval (0,1], and β1 < β2. For f (β) in (1),
we have

f (β1) − f (β2) = 1 − ( 1
N )β1

β1
− 1 − ( 1

N )β2

β2

= β2 − β1 + β1
( 1

N

)β2 − β2
( 1

N

)β1

β1β2

∵ 0 < β1 < β2 ≤ 1
∴ β2 − β1 > 0, β1β2 > 0, β1

( 1
N

)β2 − β2
( 1

N

)β1
< 0

∵ N � 1
∴ β2 − β1 >| β1

( 1
N

)β2 − β2
( 1

N

)β1 |
∴ f (β1) > f (β2)

Therefore, f (β) increases with the reduction of β in the interval (0,1]. Similarly,
Hβ1(Ri) > Hβ2(Ri). Therefore, Hβ(Ri) is also monotone decreasing with regard to β

in the interval (0,1]. 	


Theorem 2 f (β) ∈ [
1 − 1

N , ln N
]
, and H1(Ri) ≤ Hβ(Ri) ≤ log S.



J Intell Inf Syst (2013) 40:327–348 347

Proof According to Theorem 1, f (β) achieves a minimum value when β = 1 and
achieves a maximum value when β → 0. Then, we have

1 − 1
N

≤ f (β) < lim
β→0

1 − ( 1
N )β

β
= ln N

Similarly,

H1(Ri) ≤ Hβ(Ri) < lim
β→0

Hβ(Ri)

= lim
β→0

S∑

j=1

Nij

Ni·

[
1 −

(
Nij

Ni·

)β ]/
β

=
S∑

j=1

Nij

Ni·
log

Ni·
Nij

= H(Ri)

where H(Ri) is Shannon’s entropy (Cover and Thomas 2006) of interval Ri. Accord-
ing to the extremum property of entropy, H(Ri) ≤ log S. Therefore, the theorem is
proven. 	
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