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Abstract

We study the domain of existence of a solution to a Riemann problem for the pressure gradient equation
in two space dimensions. The Riemann problem is the expansion of a quadrant of gas of constant state into
the other three vacuum quadrants. The global existence of a smooth solution was established in Dai and
Zhang [Z. Dai, T. Zhang, Existence of a global smooth solution for a degenerate Goursat problem of gas
dynamics, Arch. Ration. Mech. Anal. 155 (2000) 277-298] up to the free boundary of vacuum. We prove
that the vacuum boundary is the coordinate axes.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The pressure gradient system

ur+ px =0,
v+ py =0, (1.1)
E: + (pu)x + (pv)y =0,
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Fig. 1. Solution with a presumed vacuum bubble.

where E = (u®> + v%)/2 + p, appeared first in the flux-splitting method of Li and Cao [9] and
Agarwal and Halt [1] in numerical computation of the Euler system of a compressible gas. Later,
an asymptotic derivation was given in Zheng [13,16] from the two-dimensional full Euler system
for an ideal fluid

pr + V- (pu)=0,
(pw); + V- (pu®u+ pl)=0,
(PE)+ V- (pEu+ pu) =0,

where u = (u,v), E = w? +v3)/2+ p/((y — 1)p), and y > 1 is a gas constant. We refer the
reader to the books of Zheng [14] and Li et al. [6] for more background information, and the
papers [2,3,7,10,12,13,15,16] for recent studies. After being decoupled from system (1.1), the
pressure satisfies the following second order quasi-linear hyperbolic equation:

p
(—’) — Ayyp=0. (1.2)
P/

Dai and Zhang [2] studied a Riemann problem for system (1.1), see also Yang and Zhang
[11] by the hodograph method. In the self-similar variables & = x /¢, n = y/¢, the value of the
pressure variable of the Riemann data is

VP (E = /P 0 = pr,

1.3
VP E + (1= /PD)? = pr. (4

pE =¢8> forO<&,n
pE m=n* for0<&,n

NN

Here p; is any positive number. They showed that the Goursat problem for Eq. (1.2) in the self-
similar plane admits a global solution, which is smooth with a possible vacuum near the origin
(see Fig. 1, where a = ,/p1). We are interested in the size of the vacuum boundary {(§, 1) |
p(&,n) = 0} where the pressure gradient equation (1.2) is degenerate. Somewhat surprisingly,
our result shows that the vacuum bubble is trivial and the entire vacuum boundary is the trivial
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Fig. 2. The global solution.

coordinate axes in the self-similar plane (see Fig. 2, where a = ,/p1 ). The result is stated in our
main theorem at the end of Section 3.

Further motivation for the study of the current problem is that the study of boundaries such
as a sonic curve is important in establishing the global existence of a solution to a general
two-dimensional Riemann problem of the pressure gradient system. In addition, the solution
of the current problem covers wave interaction problems in which only some fractions of the
plane waves are involved. Wave interactions of these kinds are common in two-dimensional
Riemann problems. Finally, the study of the pressure gradient system has motivated work on
two-dimensional full Euler systems, see Li [5], Zheng [17,18], and Li and Zheng [8]. In particu-
lar, the latest work [8] has resolved completely the location of the vacuum boundary for the gas
expansion problem for the adiabatic Euler system.

2. Integration along characteristics

In the self-similar variables & = x/f, n = y/t, the pressure gradient equation (1.2) takes the
form

(9 +ndy)*p
= — Agpp
)4 P p

L 8% +ndyp (€3 + ndyp)* _

> 0. 2.1)

In the polar coordinates

!r=¢m,

f = arctan g,
Eq. (2.1) can be decomposed along the characteristics into the following form (see [2,4,7]):

{8+8_p=mpr8_p, 22)

0-04p =—mpy04p,
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provided that p < r2, where

ard

2p?

and

dr =9 £ 19y,

(2.3)
_ /—7»p
b= r2(2=p)°

Note that the equation is invariant under the following scaling transformation:

& nop
, 1, —, —, = 0).
(gnp)_)<«/ﬁ Jpr Pl) (=

Thus, without loss of generality, the corresponding boundary condition (1.3) in the polar coordi-
nates can be set in the form

{P=§2=r200529:4c0s49 onr=2cosf, m/4 <6 <n/2; o

p=n?=r%sin’0 =4sin*0 onr =2sinb, 0<0 < /4.

The solution exists in the interaction zone up to a possible vacuum bubble. See Fig. 3.

The characteristic form (2.2) of the pressure gradient equation enjoys a number of useful prop-
erties. For example, the quantities d+ p keep their positivities/negativities along characteristics
of a plus/minus family, and the sign-persevering quantities yield monotonicity of the primary
variable p (see [2,7], also [4] where the authors propose to call them Riemann sign-persevering
variables), and the fact that a state adjacent to a constant state for the pressure gradient system
must be a simple wave in which p is constant along the characteristics of a plus/minus family [7].

The characteristic decomposition (2.2) has played an important role and was a powerful tool
for building the existence of smooth solutions in the work of Dai and Zhang [2]. We are interested
in the size of the vacuum boundary {(, 9) | p(r, ) = 0} where the pressure gradient equation is
degenerate. For this purpose, we rewrite (2.2) as

{8+8p=q8+p8p—q(3p)2, 2.5)
9-04p =qdypd_p—q(dp)?,
where
2
r
g=— . (2.6)
4p(r? —p)
Define the characteristic curves r% (9) and r_li () by
ari®) _ ari® _ 1
{ @ T TTO®0  and a9 7 00h9).6)° (2.7)
r%(0,) =2sin6,, r2 (6p) = 2cos 6.
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We point out here that for convenience, we also use the notation r¢ (r, 0) (rfL (r, 0), respectively)
which represents the characteristic curve passing through the point (r, ) and intersecting the
lower (upper, respectively) boundary at point a (b, respectively). See Fig. 3.

Now let us rewrite system (2.5) in the form

01 (75 exp [y g4 P (@), §)dp) =qexp [, qi p(rl(¢), ¢)dg,
0 (55 exp [ q0_p(re(9),$)dd) =qexp [, q)_p(ri(®), $)do.

Integrate the above equations along the positive and negative characteristics ri () and r? ()
from 6, and 6, to 6, respectively, with respect to 6, one obtain the iterative expressions of d4 p
and J0_p:

s exp fi) g p(rh (). ¢) dp

= ﬁ(Zcos 0p, 0p) + fgi q(rh. (), ¥)exp fef g4 p(rl (@), o) dedy,
T exp [ qd-p(rt (). ¢)do

= ﬁ(Zsin@a, eu) + fei q(rﬁ(l//), ‘g//) expfefqaip(ri(gb)’ ¢)d¢dw

(2.8)

On the other hand, we use boundary condition (2.4) to find

0

exp/q3+p(ri(¢), ¢)do

O

6
1 1 1
:exp1/<; + m>3+P(Vi(¢),¢) d¢

O
p(rt (9).0)

Lob
_Pi:0).9) exp{l __ dpl}. 29

V2cosp 4 r2(rt) — py
p(2cos0p,0p)

Similarly, one has

0
exp/q3—p(r3(¢),¢) de
Oa
14 p(re(),0)
= prr=9.9) (r_(Q), 9) exp:l / - dpl}. (2.10)

V2siné, 4 r2(r®) — py
p(2sinb,,6,)

Then, we have
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0 v
/q(rmf),w){exp/qa+p(ri(¢),¢)d¢}dvf
O

O
6

1 rzpf’
B 4ﬁc059bé/ ( +(I/f) I/f)
b

PIGACIRD)

1
X € - —d dy, 2.11
XP=4 r2G8) - pr pl} v @1
p(2cosbp,0p)
and
0 ¥
[atervyexe [ ao-pe@).0)asan
[ Oa
0 3
1 ripTi
= ré(y),
4\/§sin9a9/”2—17( W I/f)
. Pl ), ¥) .
- —-—d dyr. 2.12
xexp{4 / oy —— Pl} 4 (2.12)
p(2sinb,,6,)

Finally, by substituting (2.10) and (2.12) into the second equality of (2.8), we obtain a new
iterative expression for d4 p:

exp [, qd-p(r®(¢). ¢)de
T 25in64, 00) + [ qreW). ) exp [ g0 p(re (9). §)dp dy

04 p(r,0) =

p(re(6),0)
~ p4(r 0)exp {3 fp(%mg 0) 7r2(r = dpi}
a I 0rp3/ R
24/2sin” 0, cos b, +f ( W), w)exp{ fp(ZsmG 0a) r2(rf)—py dPl}dlﬂ

(2.13)

Similarly, by substituting (2.9) and (2.11) into the first equality of (2.8), one obtains the new
iterative formula for 0_p :

—exp fggb qd+p(rl(#), ¢)do
ﬁ(Zcos@b, Op) + f(fb q(r? (), ¥) expf(;f qd+p(ri(¢). ¢)dpdy

—0-p(r,0) =

Pt (60),0) )
4p4(r 0)exp{+ fp(2:oseb o T dp1}
N 1 0 r2pis Pt ). )
2V2cos20,sin6, 40 r2—p (+(’=”) ’v”)eXp{ fp(zcoseb ) 7,20 —p dpl}d’ﬁ

(2.14)
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Fig. 3. Presumed vacuum in the polar coordinates.

3. The boundary of the vacuum bubble

In this section, we use the iterative formulas (2.13) and (2.14) to prove that the vacuum bubble
{(r,0) | p(r,0) =0,60 € (0, 7/2)} is in fact the trivial origin {(0, 0)} in the self-similar plane. We
use the method of contradiction. Assume to the contrary that there is a bubble with boundary
ro(0) > 0 for all € (0, Z), and ro(9) > 0 for some 6 € (0, Z). That means p(ro(60),0) = 0 for
6 € (0, %), and the solution is smooth in the domain bounded by the bubble boundary ro(¢) and
the upper and lower characteristic boundaries. We intend to deduce contradictions.

Before we start the above procedure, we point out two observations which roughly imply
the nonexistence of the vacuum bubble. For presenting the observations, we assume further that
ro(8) > 0 forall 6 € (0, ).

First, we can compute easily the characteristic slope

1 1

~ ——

" 2sin6 2

do/dr = —) =

along the upper characteristic boundary and in the limit as 6 — /2. Similar result holds on the
lower boundary. Now let us assume that there is a nontrivial bubble with boundary ry(6) > 0O for
all 0 € (0, Z). We see from the definition of X in (2.3) that

p

dojdr == | 5———
[ r2(r2 = p)

-0

as p — 0 (at the vacuum boundary) except for (0, 0) and (O, %). The above computation reveals
that there is some kind of inconsistency for the slopes of the characteristics at (0, 0) and (0, %)
in the polar coordinate plane (i.e. the slope jumps from 0 to —1/2).

Next, let us calculate the decay rate of p along the middle line 6 = 7 /4 (see Fig. 3). By using
the symmetry of system (2.1), we claim that

d+p~ £Mop'/?
asymptotically for some M # 0. To show the details, we propose

dpp ~ £Mopi ™
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Fig. 4. Domain and notation.

as (r, 0) tends to a point of the bubble boundary. Then, by (2.13), we have

p(ré(6),0)
. 1 ! !
0, p(r.0) =4p3(r.0)exp] - f eyl 8 VA Ev ey
P P P{4 r2(rt) — pi p 24/2 sin? 6, cosf,
p(2Sin0a»0a)
P ) 3 P, ¥)
rPpi 1 / !
_— N - —d d
+/ (r2—p)a_p(r_(1//) 1p)eXp{4 20 —p PP
Oa

p(2sinf,,0,)

= 48M0p%+‘S + high order terms,

which forces 46 =1, i.e., § should be %.
Thus, by using (2.3), we have

Moy
O p ~ P

asymptotically as (r, ) tends to a point of the bubble boundary. Therefore,

p’vcexp(—%) (3.1)
r

asymptotically as (r, 6) tends to a point of the bubble boundary on the line # = 7, which implies
that there is no interior vacuum at least on 6 = %.

We point out incidentally that Zheng’s previous numerical computation of the bubble, referred
to in Dai and Zhang [2], is probably caused by the fast exponential decay (3.1).

In what follows, we concentrate on establishing the above formal intuition rigorously. With
the symmetry of system (2.5), let us restrict our argument 6 to be in (0, F]. Fix a point (7, 0)
on the bubble boundary. Let us use (7, #) to represent the bounded domain surrounded by
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the positive and negative characteristic curves starting from (7, ) and (v/2, 7). See Fig. 4. For
0 <€ < 1, define a curve r.(0), 0 € (0, %), by

p(re),6) =e. (3.2)

From (2.13) and (2.14), it is easy to see that

a ,0) >0,
{ PO =0 o< (3.3)
a_p(r,0) <0, 4
Thus, by (2.3) and (3.3), we have
pr(r,0) >0, (3.4)

which implies that the curve r¢(6), 9 € (0, %), defined in (3.2) is smooth if € € (0, 1). Here we
point out that we still denote by r? () and rf’r () the characteristics passing through (r.(0), 0)
although in fact both a = a, and b are dependent on € and 6. Further, we still denote by r¢ (r, 6)
and r_bF (r, 9) the characteristics passing through (r, 8), where a, b depend on (r, 6).

Let us now fix an g € (0, 1). Thus the curve r¢,(6) exists. Define

My = max [y 04 p. —p~¥0p), (3.5)
where
S:={(r.0) |0 €(0.7/2). r¢,(0) <r <V2}.
Then we have

d.p < Mip?,

1 (3.6)
—0_p <M p?,
for all (r, 0) with r 2> r¢,(6). Note that M depends only on €y and does not depend on (7, 0).
Next, for (r,0) € D(7, 0), we first let a be the intersection of the minus characteristic curve
through (7, ) with the boundary, and b the corresponding counterpart. We then let

pre(0).0)
A6 exp[— % f]}(ZbiﬂHaﬂu) W dp1]
(r.0)= 2/2sin2 6, cos b, ’ 37
L GAGK) Ly ’
3 9 exp[_Z p(2cosbp.0p) m pl]
(r.0) = 24/2¢cos2 G sin 6,
Then, let
1 . 1
4p~4(2sinf,, 0,) 4p~4(2cos6p, 6p)
M3, = max max _ ,  max _ , (3.8)
(r.6)eD(F.9) A(r,0) (r,6)eD(,0) B(r,0)
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and
M3 =max{M, M + 1}. (3.9

Just as what we had pointed out before, the intersections a and b in (3.7) and (3.8) vary with
(7, ), which are not expressed explicitly for notational brevity. We intend to prove that inequal-
ities (3.6) are still valid for all points (7, 0) € D(7, 9) with M, being replaced by M3. Namely,
there hold

1

1

{ WP SMPE 9y e D D), (3.10)
—0-p < M3pz,

Note that the positive constant M3 (> M) is independent of (r, 0) € D(7, ), but depends on the

fixed (7, 6).

We start to prove (3.10). Suppose that (3.10) is correct up to a line segment r.(8) C D(7, 6),
then we improve (3.10) to strict inequalities on the line segment r.(f) in the same domain. In
fact, for (r, 0) € D(7, 0) with r < T¢,(0), let us compute:

0, _3
1 rep 4
dp(r,0) =4pi(r, 9)/{14(1’, 0) + / 7z, (r“ ). v)

a

(). ¥)

1 1
><exp|:‘—L / —rz(rf)—pl dp1i|d1//}

pL(©).0)

3
—4pi(r, 9)/{A(r 9)+/ﬁ(ﬂ(¢),w)

(). ¥)

1 1
- —d d
xeXp|:4 / 2609 = P1i| 1/f}
p(re(0).0)
Pet©0) s
M3A(r,0) —zp 4r
{7 + / — (), ¥)

2

<Mspi(r0) [ T

p(2sinb,,60,)
Pl ), ¥)

1 1
- —d d
i T e

p(rl(©),0)

M3pi(r.6)
(r2(9),0) _3
AL + 107 [y g~ PP
1
Mzpi(r, 0
_ 3p*(r,0) ’ G.11)
MALO) L £(O0-)pT(.0) — p~T(2sinby. 0
7 pa(r, P sinfy, 64)]
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where

pG©7).07)
r2

_ o 1 1
o= )e"p[z / ﬁd”}

p(rl(0).9)

p(rl(07),07)
1 1
> exp 7 ﬁdpl
p(re().0)

[P(ri(é’), 67) — p(re®), 9)]
=exp 3 > 1

(3.12)
with some 6, <0~ <6 and A(r, 0) is defined in (3.7). Thus, by (3.9), (3.11) and (3.12), we have

Mspi (r,0)

04 p(r,0) <
%(rﬁ) + [p*%(r,é) — p*%(Zsinea,Qa)]

< M3pi(r,0). (3.13)
Similarly, by (2.8), (2.9) and (2.11), we have

%

1 2p-%
_a_p(r,e)=4pz(r,9)/{3(r,9)—/r Pt ). )

r2—p
Op

FIGACHND)
1 / 1 ipy | dv
xexp — - api
4 r2(rl) = pi
p(.(0),0)
_ M3pi(r.6)
~ 1 1 9
MB) 4 o(6+)[p~7(r,0) — p~T(2c086p, 6p)]

(3.14)

where

prhh).0h)
1 1
b (g+\ g+
——(r?(67),67) exp| - / ———dpi
S| o
p(rt (6).0)
p(r8©1),0%)
1
> exp 7 f ﬁdp1:|
p(rh.(0),0)
b n+ + b
0t),01) — 0),6
zexp[p(u( ) )8 p(ri(0) )]>1
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with some 6 < 01 < 6, and B(r, 0) is given in (3.7). Thus, the similar estimate as (3.13) holds:

—0_p(r.0) < M3p(r,6). (3.15)

Since M3 depends only on (7, #), and in particularly, it is independent of (r,0) € D(r, #), the
proof of (3.10) follows by (3.13) and (3.15).
Now with the aid of (2.3), we add up (3.13) and (3.15) to yield

M; 2M;

< < —=
IS Ty SR

for all (r, 6) in a small neighborhood of (7, 8) in D(7, 6). Thus, a simple integration of the above
inequality with respect to r from 7 to r yields

p(F,0) > p(r,6) exp{—ZA_/I—;(r — F)} forr <r. (3.16)
r

On the other hand, by (3.4) and the fact that p(ro(6), 6) = 0, we have
pr,0)>0

for all (r, 9) with r > ro(8), which together with (3.16) result in that p(7, 8) > 0. Since (7, 0) is
a point on the bubble, we arrive at a contradiction.
Summing up, we have in fact proven the following theorem.

Theorem 1. The Riemann problem (1.2), (2.4) for the pressure gradient equation admits a unique
smooth solution. The pressure of the solution is strictly positive in € > 0,n > 0.
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