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A simplified mesh-free method with embedded discontinuities

H. Wang and S. Wang∗,†

Department of Engineering Mechanics, Tsinghua University, Beijing, China

SUMMARY

A simplified mesh-free method with embedded discontinuities is presented. In this method, the crack can
be arbitrarily oriented, but its growth is represented discretely by activation of crack surfaces at individual
particles, so no representation of the crack surface is needed. The crack is modeled by a local enrichment
of the test and trial functions with a sign function, so that the discontinuities are along the direction of
the crack. The discontinuity consists of cohesive crack segments that pass through the entire domain
of influence at the node. A set of cracking rules is developed to avoid spurious cracking. We show by
numerical experiments that complicated crack patterns with branching cracks can be modeled independent
of the mesh. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Besides the existence of numerous powerful computational methods for crack problems [1–9], the
simulation of a large set of evolving cracks by computational methods still poses substantial diffi-
culties. The most pertinent difficulty is tracking the crack path that becomes especially cumbersome
for a large set of evolving cracks. Mesh-free methods are particularly suited for crack problems
since they do not rely on a mesh that needs to be adjusted once a crack propagates. The visibility
method [10–12] or improvements of the visibility method [13] are commonly used for problems
involving cracks. Recently, level set methods have been used by some mesh-free methods for crack
problems [14, 15]. Though no remeshing is needed in mesh-free methods, the need to track the
crack path remains. Recently, mesh-free methods were developed that do not need to track the
crack path [16–19]. In these methods, the crack is modeled by a set of cracked nodes. These can
be arbitrarily oriented, but the growth is represented discretely by activation of crack surfaces at
individual nodes, so no representation of the crack surface is needed. The crack is modeled by a
local enrichment of the test and trial functions with a sign function, so that the discontinuities are
along the direction of the crack. The discontinuity consists of cohesive crack segments that pass
through the entire domain of influence at the node. One major advantage of the method is that it
can handle crack propagation and crack nucleation in the same manner. However, the approach
presented in [16] often leads to spurious cracking adjacent to existing crack and henceforth to an
overestimation of the cohesive fracture energy similar to interface elements [2, 20]. Other recent
mesh-free methods for fracture are given e.g. by [21–30].

We present a modification of the method in [16]. The major goal is to remove spurious cracking
and simultaneously maintain the simplicity of the method. This is accomplished by defining a set
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of cracking rules. Since spurious cracking occurs only at crack propagation, crack propagation has
to be distinguished from crack nucleation. In other words, the cracking rules presented later are
only used for propagating cracks. We show by some numerical experiments that we are able to
capture complicated crack patterns. We also show that we are able to avoid spurious cracking and
get convergence in the cohesive fracture energy even for complicated crack problems.

The paper is outlined as follows: We first describe the element-free Galerkin (EFG) method
and the new cracking method. Then, the discrete equations are derived from the weak form. The
cracking criterion and the cohesive model are described next. At the end, we will show three
examples before we conclude our paper.

2. EFG METHOD

The new cracking method is incorporated in a version of the EFG method [31]. The EFG method
is based on the moving least-square approximation written in terms of a polynomial basis p(X)

and unknown coefficients a(X):

ucon(X, t)= ∑
I∈W

pI (X)aI (X)=pT(X)a(X) (1)

where W is the total set of nodes; pT(X)=(1, X,Y ). Minimization of discrete-weighted L2 error
norm E with respect to the unknown coefficients a

E= ∑
I∈W

(pT(XI )a(XI )−uI )
2w(X−XI ,h) (2)

leads to the final EFG approximation

ucon(X, t)= ∑
I∈W

NI (X)uI (t) (3)

with

NI (X)=pT(X)A−1(X)DI (X) (4)

and

DI (X) = w(X−XI ,h)pT(XI )

AI (X) = ∑
I∈W

w(X−XI ,h)p(XI )pT(XI )
(5)

The superimposed con in Equation (3) denotes the continuous displacement field; w(X−XI ,h) is
the weighting function and h is the interpolation radius of this weighting function. For dynamic
fracture, it is important to express the weighting function in terms of material coordinates since
kernel functions expressed in spatial coordinates can lead to instabilities and numerical fracture as
shown by e.g. [32, 33].

3. DISPLACEMENT FIELD

Consider a displacement field that is continuous in the entire domain except at the crack where a
discontinuity occurs in the displacement field. To describe this discontinuity, the displacement is
decomposed into continuous and discontinuous parts:

u(X)= ucon(X)︸ ︷︷ ︸
continuous

+ udis(X)︸ ︷︷ ︸
discontinuous

(6)

In [16], the crack is modeled by a set of discrete cracks that cross the entire domain of influence
of a node. These discrete cracks are restricted to lie on a plane passing through this node, see
Figure 1. The major advantage is that no representation for the geometry of the crack is needed.
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crack

(a) (b)

Figure 1. (a) Continuous crack and (b) representation of the crack with discrete cohesive crack segments.

Figure 2. Normal of the crack segment.

The approximation of the discontinuous displacement field is

udis(X)= ∑
I∈Wc

NI (X)H(X)qI (7)

where Wc is the set of cracked nodes, qI are additional unknowns and H(X) is the step function
that introduces the jump in the displacement field. Note that only cracked nodes are enriched that
significantly simplify the implementation of the method. Only a small portion of the entire nodes
are affected by the crack and the crack surface is entirely determined by the position vector of the
cracked node and its normal that is obtained from the cracking criterion explained later, Figure 2:

H(X)=
{
1 if n·(X−XI )>0

−1 if n·(X−XI )<0
(8)

The crack normal in the initial configuration is obtained by Nanson’s law. The jump in the
displacement field only depends on the additional unknowns q and is given by

[[u]](X)= ∑
I∈Wc

2NI (X)qI (9)
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The test functions �u have a similar structure:

�u(X)= ∑
I∈W

NI (X)�uI (t)+ ∑
I∈Wc

NI (X)H(X)�qI (10)

Note that we use the same shape functions and same domain of influence for continuous and
discontinuous displacement field.

As noted in the introduction, without further modification of the method, spurious crack nucle-
ation is obtained when the crack propagates. This will be demonstrated later for some numerical
examples. Therefore, we suggest the following modifications:

• A criterion is needed that distinguishes crack nucleation from crack propagation.
• A criterion is needed for crack branching.
• A criterion is needed to avoid spurious cracking.

Crack nucleation is distinguished from crack propagation by searching for existing cracked
nodes in the vicinity of a newly inserted cracked node. The search domain is a circle of radius
�rm with rm being the interpolation radius of the weighting function and � is a parameter. In all
computations, the parameter � is set to 1.2 though results did not significantly change for any
1.2<�<2.0.

Spurious cracking can occur adjacent to an existing crack, Figure 3, or close to the crack tip,
Figure 4. The first type of spurious cracking is avoided by an exclusion zone that does not allow
development of parallel cracks far away from the crack tip, Figure 3. The crack tip is defined as
the last cracked node for the case ‘crack propagation’.

In most dynamic computations, cracking criterion is met at several material points around the
crack tip due to similar stress states, Figure 3. This can lead to branching cracks. Allowing only
one node in front of the crack tip to crack avoids crack branching completely. Therefore, a criterion
for crack branching has to be introduced first. A crack is assumed to branch if the angle between an
existing crack tip node and newly initiated cracks exceeds a certain value. Therefore, we compute

(a) (b)

Figure 3. (a) Spurious cracking during crack propagation and (b) crack
propagation without spurious cracking.
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Figure 4. Crack with crack tip node (solid line) at time n and nodes that meet cracking
criterion at time n+1 (dashed line).

deviation in the crack direction, Figure 4:

�max= max︸︷︷︸
I∈W̃c

(nct ·nI ) ∀I ∈W̃c (11)

�min= min︸︷︷︸
I∈W̃c

(nct ·nI ) ∀I ∈W̃c (12)

where W̃c⊂Wc is the set of newly cracked nodes, i.e. between time step n and time step n+1. If
�max−�min� TOL, the crack branches. In the current implementation, we allow only two branches
though this is not compulsory.

After deciding if crack branches or not, a criterion has to be implemented that avoids spurious
cracking. Let K =1 or 2 denote the number of crack branches of an associated advancing crack.
Then, K number of cracked nodes are introduced in front of an existing crack tip. The closest
node(s) where the cracking criterion is met will be cracked. If K =2, two crack tips (of the original
1 crack) will exist in the next time step.

It is instructive to mention that generally cracking criterion is met at several material points
under crack initiation. In this case, we also allow only one node to crack at a time. The position of
the cracked node is obtained by an average procedure. The closest node to the averaged position
vector of all nodes that meets cracking criterion is cracked.

4. WEAK FORM AND DISCRETIZATION

The linear momentum equation is

∇ ·P+�b=�ü, X∈� (13)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2010; 26:1404–1416
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where P is the nominal stress tensor, � is the density, b are body forces and the superimposed dots
denote material time derivatives. The displacement and traction boundary conditions are

u= ū, X∈�u (14)

nt ·P= t̄, X∈�t (15)

nc ·P= tc([[u]]), X∈�c (16)

where the index c refers to the crack, the index t refers to traction boundaries and the index u
refers to displacement boundaries. The weak form of the linear momentum equation is: Find u∈U
and �u∈U0 such that

�W =�Wint−�Wext+�Winertia+�Wcoh=0 (17)

with

�Wint =
∫

�
∇�u :Pd�

�Wext =
∫

�t

�u· t̄d�+
∫

�
��u·bd�

�Winertia =
∫

�
��u·üd�

�Wcoh =
∫

�c

�[[u]]·tc d�

(18)

and U and U0 are the approximation spaces for the trial and test functions:

U = {u(X, t)|u∈H1, u= ū on �u, u discontinuous on �c}
U0 = {�u|�u∈H1, �u=0 on �u, �u discontinuous on �c}

(19)

The discretized equations are obtained by substituting the test and trial functions into Equation (17):

n∑
J=1

∫
�J

∇�uJ :Pd�−
n∑

J=1

∫
�t,J

�u· t̄d�−
n∑

J=1

∫
�J

��u·bd�

+
∫

�c,J

�[[u]]·tc d�+
n∑

J=1

∫
�J

��u·üd�=0 (20)

The final system of equations in matrix form is given by[
Muu

I J Muq
I J

Mqu
I J Mqq

I J

]
·
[
üJ

q̈J

]
=

[
fuI,ext−fuI,int

fqI,ext−fqI,int

]
(21)

with

fuI,ext =
∫

�t

(Nu
I )

T td�+
∫

�
(Nu

I )
Tbd� (22)

fqI,ext =
∫

�t

(Nq
I )

Ttd�+
∫

�
(Nq

I )
Tbd�

+
∫

�c

[[(Nq
I )

T]] tc d� with Nq
I =NI�(X) (23)

fuI,int =
∫

�
(Bu

I )
TPd� (24)
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Figure 5. Cracked nodes with crack segments (solid line) and Voronoi cells (dashed line).

fqI,int =
∫

�
(Bq

I )
TPd� with Bq

I =�(X)∇NI (25)

Muu
I J = Mqq

I J =
∫

�
�NI NT

J d�

Muq
I J = Mqu

I J =
∫

�
��(X) NI NT

J d�

(26)

The integrals are evaluated by stress point integration as explained detailed in [16]. We use explicit
central difference time integration. To benefit from explicit time integration, one generally takes
advantage of lumped mass matrix. However, in the presence of additional degrees of freedom q,
standard mass lumping might lead to negative masses.

Cueto et al. [34] showed that the lumped mass matrix obtained via the volume of Voronoi cells
(M=V ·�, where V is the volume of the Voronoi cell and � is the density of the material) is
identical to lumped mass matrix from standard row-sum technique. We therefore build the lumped
mass matrix from Voronoi cells. The mass of the (enriched) cracked node is modified according
to its area ratio, Figure 5. Results by this method were similar to the results obtained from using
consistent mass matrix. Since the cracked node always lies in the middle of the associated Voronoi
cell, Figure 5, the critical time step is influenced only marginal. We use a Courant number of 0.5
and did not observe any instabilities.

5. CRACKING CRITERION AND COHESIVE LAW

Rankine criterion determines the onset of cracking and crack propagation. The crack is introduced
perpendicular to the direction of the maximum principal stress. The traction acting across the
crack surface is related to the jump in the displacement, Equation (9). It can be decomposed into
a normal and tangential part:

�n = [[u]]·n (27)

�t = |[[u]]s=|[[u]]−�nn| (28)

We use the cohesive law proposed by Pandolfi et al. [35] that makes use of effective crack opening
displacement

�=
√

�2�2t −�2n (29)
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Figure 6. Plate with a horizontal initial notch under tensile tractions.

(a) (b)

(c) (d)

Figure 7. Crack pattern for the crack branching problem: (a) 4141 nodes, with spurious
cracking; (b) 16 281 nodes, with spurious cracking; (c) 4141 nodes, without spurious cracking;

and (d) 16 281 nodes, without spurious cracking.
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Figure 8. Crack tip speed for the crack branching problem: (a) without spurious cracking and (b) comparison
with and without spurious cracking.
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Figure 9. Cohesive fracture energy of the branching crack problem.
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Figure 10. Kalthoff problem.

where the parameter � defines the ratio between tangential and normal critical traction. The effective
traction-separation law is given by

t= tmax

�max
� if ���max or �̇<0 (30)
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(a) (b)

(c) (d)

Figure 11. Final crack path of the Kalthoff problem: (a) 10 201 nodes, with spurious cracking;
(b) 10 201 nodes, without spurious cracking; (c) 40 804 nodes, with spurious cracking; and

(d) 40 804 nodes, without spurious cracking.
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Figure 12. Crack tip speed and cohesive fracture energy of the Kalthoff problem: (a) crack tip
speed and (b) cohesive fracture energy.

The traction vector is then computed by

t= t

�
(�2[[u]]s+�nn) (31)

More details are given in [35].

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2010; 26:1404–1416
DOI: 10.1002/cnm



1414 H. WANG AND S. WANG

6. RESULTS

6.1. Crack branching

The first example is the pre-notched specimen under tensile loading, �=1MPa, shown in Figure 6.
Numerical results for this problem are reported in [16, 20, 36] and experimental results with
different dimensions are available in [37–39]. Young’s modulus is E=32000MPa and Poisson’s
ratio is �=0.20. The initial Rayleigh wave speed is cR=2119.0m/s. This problem is studied
with different refinements. The tolerance angle deciding about crack branching was 30◦. We also
studied this problem without the set of cracking rules proposed in the previous sections.

The pattern of crack propagation at different stages of the simulation is shown in Figure 7.
Without avoiding spurious cracking, the crack pattern is fringy and the width of the crack varies.
These observations agree with the results in [16]. The speed of the crack tip is shown in Figure 8.
The spurious cracks do not seem to have any influence on the crack speed. This suggests that the
spurious cracks occur adjacent to the crack far away from the crack tip. We also observe increase
in the crack speed before the crack branches. Afterwards, the crack speed decreases. This is in
agreement with results reported by other authors [37–39].

The cohesive fracture energy is reported in Figure 9. It is lower when spurious cracking is
avoided. The cohesive fracture energy diverges or converges very slowly when spurious cracking
is not suppressed.

6.2. The Kalthoff experiment

Kalthoff and Winkler [40] reported experimental results in which a plate with two initial edge
notches is impacted by a projectile. The experimental set-up is shown in Figure 10. The impact
velocity is 20m/s. In the experiment, a crack propagated with angle of about 70◦ versus the
horizontal axis. We study this problem. Only the upper part of the plate is modeled due to symmetry.
The material properties of the steel used in the experiment [41] are Young’s modulus E=190GPa,
density �=8000kg/m3 and Poisson’s ratio �=0.3. The crack path at the end of the simulation is
illustrated in Figure 11 and agrees well with the experimental results. The crack speed is shown
in Figure 12(a). It is not influenced by spurious cracking. However, the cohesive fracture energy
is significantly higher when spurious cracking is not suppressed, Figure 12.

7. CONCLUSIONS

We presented a set of cracking rules to avoid spurious cracking in a simplified meshless method
with embedded discontinuities. The simplified method is based on local partition of unity and
introduces discrete cracks at nodes. The crack is represented by a set of discrete cracked nodes.
No representation of crack surface is needed that makes the method appealing for many cracks.

We showed that the method can handle complicated problems with many cracks and also
branching cracks. We showed improvements in the crack pattern and showed that with the cracking
rules, convergence in the cohesive fracture energy is obtained.
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