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A Multiobjective Simultaneous Learning Framework
for Clustering and Classification

Weiling Cai, Songcan Chen, and Daoqiang Zhang

Abstract—Traditional pattern recognition involves two tasks:
clustering learning and classification learning. Clustering result
can enhance the generalization ability of classification learning,
while the class information can improve the accuracy of clustering
learning. Hence, both learning methods can complement each
other. To fuse the advantages of both learning methods together,
many existing algorithms have been developed in a sequential
fusing way by first optimizing the clustering criterion and then
the classification criterion associated with the obtained clustering
results. However, such kind of algorithms naturally fails to achieve
the simultaneous optimality for two criteria, and thus has to
sacrifice either the clustering performance or the classification
performance. To overcome that problem, in this paper, we present
a multiobjective simultaneous learning framework (MSCC) for
both clustering and classification learning. MSCC utilizes multiple
objective functions to formulate the clustering and classification
problems, respectively, and more importantly, it employs the
Bayesian theory to make these functions all only dependent on
a set of the same parameters, i.e., clustering centers which play
a role of the bridge connecting the clustering and classification
learning. By simultaneously optimizing the clustering centers
embedded in these functions, not only the effective clustering
performance but also the promising classification performance
can be simultaneously attained. Furthermore, from the multiple
Pareto-optimality solutions obtained in MSCC, we can get an
interesting observation that there is complementarity to great
extent between clustering and classification learning processes.
Empirical results on both synthetic and real data sets demonstrate
the effectiveness and potential of MSCC.

Index Terms—Bayesian theory, classification learning, clustering
learning, multiobjective optimization, pattern recognition.

I. INTRODUCTION

T RADITIONAL pattern recognition involves two tasks
[14]: clustering learning and classification learning. In

the case of clustering learning, the problem is to group the
given samples into meaningful clusters based on similarity
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[31]. The formed clusters are appropriate for the exploration of
the underlying structure in data and the better understanding
for the nature of the data. In the case of classification learning,
the problem is to construct the discriminant function for dis-
tinguishing the samples with different class labels [12]. The
discriminant function can provide class labels for the newly
encountered samples.

It has been proven that the clustering results or structures in
data can help enhance the generalization ability of classifica-
tion learning [5], and thus exploiting as much prior knowledge
(including structure in data) as possible about given problem to
boost the generalization performance of a classifier is consistent
with the famous no free lunch (NFL) theorem [12]. Our experi-
mental results (refer to Section IV for more details) also give a
positive validation on the above assertion. On the other hand, the
class information can also help improve performance of clus-
tering learning. For example, by utilizing the class information
to guide the clustering process, some supervised clustering [26],
[28], [33] or semisupervised clustering algorithms [3], [20], [39]
have been developed. The corresponding empirical results all
demonstrated that the class information can significantly im-
prove the effectiveness of the clustering results. Hence, we have
reason to believe that the clustering and classification learning
can complement each other.

Generally, clustering and classification learnings are usually
formulated by different models or criteria, hence it is relatively
difficult to cast both into a single framework. To fuse the advan-
tages of both learners together, many existing algorithms [6],
[7], [16], [19], [23], [27], [30], [32], [36], [37] handle the clus-
tering learning and classification learning in a sequential or in-
dependent manner. As illustrated in Fig. 1, these algorithms first
utilize the clustering criterion to optimize the clustering process
so that the structures in data can be explicitly revealed. Then,
based on the obtained clustering result, these algorithms op-
timize the classification criterion associated with the obtained
structural information to give the class label for new samples.
Such kind of algorithms sequentially optimizes the clustering
criterion and the classification criterion, and thus fails to achieve
the simultaneous optimality for such two criteria. Recently, we
have gone a small step ahead in this research and proposed a si-
multaneous learning algorithm for clustering and classification
(SCC) [8]. In SCC, the classification criterion and clustering cri-
terion are combined to a single objective function by a tradeoff
parameter, which goal is to compromise the classification and
the clustering performances, but its value in optimizing the ob-
jective is generally hard to be optimally chosen except for an
exhaustive search in some range, which is a heavier learning
burden. In fact, the all aforementioned algorithms usually have
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Fig. 1. Sequential optimization for the clustering and classification criteria.

Fig. 2. Simultaneous optimization for the clustering and classification criteria.

to sacrifice the clustering performance for the classification per-
formance, or vice versa. As a result, it is not easy for them to
achieve an effective clustering and classification performance
at one time.

To overcome this defect, in this paper, we present a multi-
objective simultaneous learning framework (MSCC) for both
clustering and classification learning. As shown in Fig. 2, we
utilize the multiple functions to formulate the clustering and
classification problems to realize the joint learning in MSCC.
More importantly, we employ the Bayesian theory to bridge a
connection between them and make all these functions only de-
pendent on the same set of the parameters, i.e., the clustering
centers. In all of our experiments, we just utilize the following
two objective functions, i.e., the misclassification rate and the
intracluster compactness in the feature space to evaluate the
classification and clustering performances, respectively. Since
the clustering and classification learnings seek different goals,
thus generally speaking, the objective function established just
for classification focuses on more classifier’ generalization and
less discovering inherent structures in data; conversely, the ob-
jective function established just for the clustering learning con-
cerns more discovering structures in data and less classification
performance. Consequently, the result obtained by optimizing
the classification objective function alone is usually more likely
inconsistent with that obtained by optimizing the clustering ob-
jective function alone. However, this does not imply that the two
objectives can either form a compromise or be more prone to
be consistent for their performance improvement. This is our
starting point of using multiobjective optimization technique
to achieve simultaneous optimality for both. To this end, con-
cretely, we adopt the multiobjective particle swarm optimiza-
tion (MOPSO) [9] to simultaneously optimize the clustering
centers embedded in these two functions; as a result, by such
optimization, we can intuitively obtain a consistent result be-
tween clustering and classification. In the corresponding exper-
iment, an interesting observation is that those clustering centers
which yield relatively low values of the objectives jointly for

Fig. 3. Architecture of RBFNN.

both clustering compactness and classification error rate on the
training data set can empirically result in the best clustering or
classification result on the corresponding test data. This phe-
nomenon again demonstrates the consistency or complemen-
tarity between the clustering and classification learnings, that is,
the optimization of clustering criterion is beneficial to classifi-
cation, or vice versa. The subsequent more experimental results
on both synthetic and real-life data sets all demonstrate also the
effectiveness and potential of MSCC.

The outline of this paper is as follows. In Section II, we dis-
cuss the related work. In Section III, we present the main ideas
of the MSCC algorithm. The experimental results are provided
in Section IV. We conclude in Section V.

II. RELATED WORK

There have been several recent related works to inherit the
merits of both clustering and classification learning. We will
review the main works as follows.

Radial basis function neural network (RBFNN) [23], [36], as
shown in Fig. 3, is a feedforward multilayer network. It usu-
ally consists of three layers: an input layer, a hidden layer, and
an output layer. Each basis function corresponds to a hidden
unit and represents the weight from the th basis function or
hidden unit to the th output units. In the training phase, RBFNN
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Fig. 4. Training process of FRC and RFRC.

first executes unsupervised clustering process to determine the
parameters of the basis function under the guidance of fuzzy
-means (FCM) clustering criterion [23]. Next, it uses the mean

squared error (MSE) classification criterion between the target
and actual outputs to optimize the connection weights be-
tween the hidden and output layers. In RBFNN, the clustering
method can ensure the good classification generalization. How-
ever, such clustering method is just an aid in determining the
parameters of the neural network, rather than a method to re-
veal the inherent structure in data. In fact, RBFNN cannot re-
ally inherit the advantages of both clustering learning and clas-
sification learning in a single algorithm. In addition, another de-
fect of RBFNN is that the connecting weights conceal the
learned knowledge, which leads to the poor transparency and
interpretability for knowledge (representation).

Setnes et al. proposed fuzzy relational classifier (FRC) [32]
to provide a transparent alternative to the black-box techniques
such as neural networks. Its training process also involves two
main steps which are illustrated in Fig. 4. In the first step, it
adopts the FCM clustering criterion to discover the natural struc-
ture in data. In the second step, by using the obtained fuzzy par-
tition and the given hard class labels (i.e., the samples from the
same class share a common class label), it computes a relation
matrix under the implicit classification criterion to reflect the
relationship between clusters and classes.

Lately, in our previous work, we have presented robust FRC
(RFRC) [7] with the aim of enhancing the robustness of FRC.
According to the two-step training way of FRC, its robustness
is improved from the following two sources: first, use the robust
kernelized FCM (KFCM) [38] to replace FCM; second, employ
the soft class label motivated by the fuzzy -nearest-neighbor
[17] to replace the hard class label. This way, with incorpora-
tion of both KFCM and soft class labels, RFRC makes the con-
structed relation matrix reflect more the relationship between
classes and clusters for the subsequent classification, and thus
significantly boosts the robustness and accuracy of FRC.

FRC and RFRC fuse the merits of clustering and classifica-
tion learning to some extent, but such sequential optimization
cannot be guaranteed to obtain satisfactory clustering and clas-
sification results simultaneously. In addition, the entries in the
relation matrix lack the statistical meaning, thus it is difficult
to judge whether the obtained relationship is really reliable.

Likewise, Kim and Oommen [19] proposed an algorithm
called VQ LVQ3. It first utilizes learning vector quantization
(LVQ) to optimize both the positions and class labels of the
cluster centers, and then applies 1NN classifier to perform clas-
sification on the top of the obtained centers. Actually, LVQ3
is a supervised clustering in which the class information is
used to guide clustering. Similarly to VQ LVQ3, a supervised
clustering and classification algorithm named CCAS [21], [37]
and its extended version ECCAS [22] also fall into such a
two-step framework. Since both VQ LVQ3 and CCAS (or
ECCAS) adopt the 1NN or the weighted -nearest neighbor
(kNN) classifiers in their classifier design phase, respectively,
they actually do not need to experience any training. In other
words, both VQ LVQ3 and CCAS (or ECCAS) have no true
design phase. Their common idea is to seek a set of good
prototypes as class representatives for subsequent classification
using the 1NN classifier.

To sum it all up, all above methods first optimize the clus-
tering criterion, and then the classification criterion associated
with the clustering result, i.e., they adopt a two-step learning
paradigm which fails to realize the simultaneous optimization
for both criteria. This may limit the strength of both clustering
and classification.

III. THE PROPOSED METHOD

To obtain the satisfactory clustering and classification result
and inspired by our previous work [8], we present an MSCC for
both clustering and classification learning. In its implementa-
tion, we first employ the Bayesian theory to bridge the connec-
tion between both and make all their objectives only dependent
on the same set of the cluster centers as the parameters to be op-
timized. Next, we utilize the multiobjective framework to for-
mulate the clustering and classification problems. Finally, we
adopt MOPSO to simultaneously optimize the clustering cen-
ters embedded in these functions.

A. Clustering Mechanism and Classification Mechanism

To realize the simultaneous clustering and classification in
MSCC, one key is to make the clustering and classification re-
sults all only dependent on the same parameters.

In the clustering learning, by using the fuzzy -means
clustering as reference, the clustering membership of the
training sample to the th cluster can be computed

(1)

where represents the distance between the samples and the
centers. When the clustering centers are determined, the clus-
tering mechanism can be established.

Next, we will employ the Bayesian theory to design a classi-
fication mechanism only relying on . In the classification
learning, when the posterior probabilities can be mod-
eled, the output class label can be determined

(2)
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To introduce the cluster information into , we resort to
the formed clusters to reformulate through the
total probability theorem as

(3)

where denotes the th class, represents the th cluster,
represents the posterior probabilities of the presence of

corresponding samples, and denotes the cluster poste-
rior probabilities of class membership. Notice that
has no relationship with , and thus can be simplified as

. According to the intuitive meaning of , it
can also be computed by (1). Now can be computed
through Bayesian theorem

(4)

where is the prior probability and can be calculated by
the proportion of the samples in the th clusters, i.e.,

; is the joint distribution, and similarly, it can be
computed in terms of the proportion of the samples in the th
cluster, and in the th class, i.e., and .
Therefore, can be rewritten as

and
(5)

For each cluster , the constraint should
be satisfied where is the class number. Equation (5) indicates
that when is large (small), the proportion of samples in
cluster from the class is large (small). Now all the
can constitute a matrix denoted by

(6)

It is obvious that such a relation matrix can reveal the sta-
tistical relationship between the formed clusters and the given
classes.

For a given training data set with class labels, the clustering
result described by or is only relevant to the
clustering centers. On the other hand, the classification result
yielded by ’s also relies on the clustering centers. The
underlying reason is that the matrix is dependent on the clus-
tering partition and its value is determined by assigning each
sample to the nearest clustering centers. In summary, by using
the Bayesian theory, the proposed clustering and classification
mechanism are all only determined by the cluster centers.

B. Multiobjective Functions for Clustering and Classification

Based on the above description of clustering and classifica-
tion mechanism, the multiobjective clustering and classification
learning can be formulated by

(7)

where is the number of objective functions and
is the th objective function depending only on the clustering
centers. Note that among the multiple objective functions, there
is at least one objective function evaluating the clustering (clas-
sification) performance.

First, based on the intraclass compactness and interclass sepa-
rability, different clustering objective functions can be designed.
Here we just introduce three clustering criteria:

1) Xie-Bi index [25] which is presented by

(8)

2) index [18] which is proposed by Kim

(9)

where is the set of the samples falling into the cluster
and is the number of samples in ;

3) in order to introduce the kernel trick to the clustering ob-
jective function, we design the intracluster compactness in
the feature space

(10)

where is an implicit nonlinear map from the input space
to a higher dimensional feature space. By using the kernel
to substitute the inner product in (10), equation (10) can be
rewritten

(11)
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When RBF kernel is adopted, can be simplified as

(12)

where is the membership of to the cluster . Note
that is the function of the cluster center and deter-
mined by the distance between the samples and the centers in
the feature space. The final objective function can be written as

(13)

Second, based on the classification mechanism designed in
Section III-A, the different classification objective functions can
be designed. Here we just list the two classification criteria:

1) minimization of the misclassification rate

(14)

where is the class label of and ;
2) minimization of a squared error between the target outputs

and the actual outputs

(15)

where is the class posterior probabilities of
and is the membership of to the th class. Here
is represented by one-of- coding. For example, if there
are four classes in the given data set and the sample
belongs to the third class, then its class label is encoded
by .

In this paper, without loss of generality, we just adopt the two
functions to formulate the clustering and classification problems

(16)

where is the misclassification rate and
measures the compactness in the feature space. Equation (16)
aims to simultaneously minimize the classification criterion

and the clustering criteria . No matter what
clustering or classification criterion is selected from the above
criteria, the values of all only depend on a set of
the cluster centers. By just optimizing the centers embedded
in , the clustering and classification criteria can be
optimized at the same time.

C. Optimization of Multiobjective Functions

To describe the concept of optimality in the multiobjective
functions, we will introduce a few definitions [9] involved in
multiobjective optimization.

Definition 1 (Dominance): For a given multiobjective
problem , the so-

Fig. 5. Pareto front of a set of solutions in a two objective space.

lution dominates or the solution is inferior to
(denoted as ) if the following two conditions

are held: 1) ; and 2)
.

Definition 2 (Pareto Optimality): The solution is Pareto
optimal if there exists no solution such that .

Definition 3 (Pareto Optimal Set): The Pareto optimal set is
defined as .

Definition 4 (Pareto Front): For a given Pareto optimal
set , the Pareto front is defined as

.
To explain the above concepts clearly, we give Fig. 5 under

the condition of two objective functions. The empty circle de-
notes a dominated solution and the filled circle represents a
Pareto-optimal solution which is also termed nondominated so-
lution. According to Definition 1, the solution dominates
and ; the solution denoted by the empty circle is Pareto-op-
timal in terms of Definition 2; all the filled circles constitute the
Pareto optimal set in terms of Definition 3; according to Defi-
nition 4, Pareto front is composed of the objective values of all
the filled circles.

Next, we employ the above concepts to briefly discuss the ex-
isting optimization methods for multiobjective problems. Clas-
sical methods suggest converting the multiobjective optimiza-
tion problem to a single-objective optimization problem by ob-
jective weighting. By introducing a weight parameter , the op-
timization for the multiobjective functions in (16) can be trans-
formed to

(17)

By optimizing (17) instead of (16), a single Pareto-optimal so-
lution (i.e., clustering centers) that makes a balance between the
clustering performance and the classification performance can
be obtained. However, this single point solution is usually sen-
sitive to the weight [11]. As a result, in order to get a solution
as optimal as possible, multiple sets of different weights have to
be used, leading to the same problem being solved many times.
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In recent years, a number of multiobjective evolutionary al-
gorithms (MOEA) [9]–[11] have been suggested such as non-
dominated sorting genetic algorithm (NSGA) [11] and Pareto
archive evolutionary strategy (PAES) [10]. The primary reason
for this is their ability to find multiple Pareto-optimal solutions
rather than a single solution in one single simulation run. Some
researchers suggested that multiobjective search and optimiza-
tion might be a problem area where evolutionary algorithms
(EAs) do better than other blind search strategies [10], [11].
In 2004, Coello [9] et al. proposed an MOPSO and proved its
good performance and high speed of convergence. MOPSO is
an evolutionary technique through individual improvement plus
population cooperation and competition. Many works [29], [40]
have shown that PSO-type methods are the prevailing popula-
tion-based optimization algorithms and they have been success-
fully applied to a wide variety of learning tasks such as attribute
selection in a bioinformatics data set, time-series prediction, and
face classification problems. MOPSO utilizes an external repos-
itory to keep a historical record of the nondominated solutions
found along the search process. In its implementation, MOPSO
employs this repository to guide the flight of the current parti-
cles and store the nondominated solutions.

In this paper, we adopt the simplified version of MOPSO to
solve the multiobjective optimization of the MSCC. By using
the MOPSO, the multiple sets of Pareto-optimal clustering cen-
ters can be acquired in the two objective spaces. Since the clus-
tering and classification learning methods can complement each
other, the corresponding two criteria can also have the comple-
mentarity to some extent. As a result, those Pareto-optimal clus-
tering centers which attain relatively low values jointly for both
the clustering compactness and the classification error rate on
the training data can consistently achieve the best clustering or
classification result on the corresponding test data (later given
in experiments).

In the MOPSO, each individual of the population is called
a “particle,” which, in fact, represents a solution to a problem.
Here a particle in MSCC
is a vector composed of all the clustering centers and its
dimension is . Each particle “flies” around
in the multidimensional research spaces with a velocity

. This velocity is
updated by the experience of particle itself and repository

(18)

where is the current iteration number, is inertia
weight and set to 0.4, and and are two indepen-
dent random numbers uniformly distributed in the range
of . rep-
resents the best position that the th particle has had.

is a value randomly taken from the repository
and is the selected index. The position of each particle at each
generation is updated by

(19)

The whole process of using the simplified version MOPSO can
be summarized as follows.

MSCC Learning Algorithm

Step 1: Set the number of particles to 500, the maximum
number of iterations to 100, and the current iteration number

to 1; initialize the particles with random positions and
velocities.

Step 2: Evaluate the two objective values of all particles
according to (13) and (14) and set of each particle
equal to its current position.

Step 3: Store the positions of the particles that represent
nondominated solutions in the repository.

Step 4: While :

(a) Compute the speed of each particle by (18).

(b) Compute the new position of each particle according
to (19).

(c) Evaluate the two objective values of particles in terms of
(13) and (14).

(d) Find all the currently nondominated locations (the
nondominated solutions found at each iteration):

For :
Non_dominated_flag
For :

If is dominated by
Non_dominated_flag

End
End
If Non_dominated_flag

is the currently nondominated location.
End

End

(e) Insert all the currently nondominated locations into
;

Eliminate any dominated locations from the .

(f) If the current position of the particle dominates

else if the dominates

is kept

else if neither of them is dominated by the other

is updated or kept randomly

End

(g) Update .
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TABLE I
CLUSTERING RESULTS OF THE TEST SAMPLES ON THE COIL DATA SET

D. Time Complexity Analysis of MSCC

The time complexity of MSCC is
where is the maximum iteration number,

is the particle number, is the objective function number,
is the cluster number, is the data dimension, is the sample
number, and is the class number. In our experiment, , , and

are the user-specified parameters and they are set to the con-
stant values 500, 100, and 2, respectively. Moreover, , , ,
and are the variable parameters dependent on the chosen data
set. It is worth pointing out that the larger the cluster number (or
the data dimension, the sample number, the class number), the
more the computational time there is.

E. A Toy Illustration for MSCC Benefit

Here we give a toy illustration on the data set Coil [24] to ex-
plain why simultaneous classification and clustering learnings
can give more than just either classification learning or clus-
tering learning.1 The full Coil data set consists of images of 100
objects where the images of the objects were taken at pose inter-
vals of 5 , i.e., 72 poses per object. In this paper, we have used a

1Coil is available at http://www.cs.columbia.edu/CAVE

TABLE II
CLASSIFICATION RESULTS AND THE PARAMETERS ON COIL DATA SET

part of the Coil database by involving only the first two objects,
with 144 images in total. The training set consists of 36 images
(one for every 10 ) for each object, and the test set consists of
the remaining 36 images for each object [35]. For such data set,
classification algorithms only pay attention to the class informa-
tion of objects; clustering algorithms only care similarity among
objects. In contrast, our algorithm utilizes both the class infor-
mation and the structural information to not only classify the ob-
jects to different classes, but also discover the objects with sim-
ilar poses. As shown in Table I, the objects grouped to the same
clusters have very similar poses, which indicates that the struc-
ture hidden in the data is discovered. Moreover, the relation ma-
trix in Table II means that the objects falling into clusters , ,
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Fig. 6. Pareto fronts obtained on the data sets Glass, Bupa, Heart_disease, and Balance_scale, respectively.

TABLE III
MISCLASSIFIED RATE AND CLUSTERING COMPACTNESS ON THE TRAINING AND TEST DATA SET OF GLASS

, and belong to class , and similarly, the objects in clus-
ters , , , and belong to class . Due to the correct clus-
tering and so-generated relationship matrix , MSCC achieves
the classification accuracy of 100%. From this example, we can
see that MSCC discovers both structures hidden in the data and
the relationship between the structures and their classes, which
makes Coil data set prone to be transparent and interpretable.
However, SVM has difficulty to great extent to simultaneously
achieve the two aspects.

IV. EXPERIMENTAL RESULTS

A. Pareto Optimal Solution

To investigate the property of the Pareto-optimal solutions,
we give the Pareto-optimal front on the data sets Glass, Bupa,
Heart_disease, and Balance_scale, respectively, in Fig. 6. It can

be observed that MSCC acquires 4, 6, 8, and 9 Pareto optimal
solutions on these four data sets, respectively. This result im-
plies that a solution inconsistency can in general occur in this
multiple objective problem [9].

Furthermore, Tables III– VI list the values and values
of the Pareto-optimal solutions on both training data and test
data of Glass, Bupa, Heart_disease, and Balance_scale, respec-
tively. From these tables, we can find that on the test data sets,
S2, S2, S7, and S2 in each table obtain the best classification per-
formance, and S3, S3, S5, and S8 achieve the best clustering per-
formance. From this result, we have an interesting observation
that the best performance of clustering or classification on the
test data sets corresponds to those solutions which achieve rel-
atively low values of the objectives of both clustering compact-
ness and classification error rate on the training data sets. This
conclusion empirically demonstrates the consistency or comple-
mentarity between the clustering and classification learnings. In
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TABLE IV
MISCLASSIFIED RATE AND CLUSTERING COMPACTNESS ON THE TRAINING AND TEST DATA SET OF BUPA

TABLE V
MISCLASSIFIED RATE AND CLUSTERING COMPACTNESS ON THE TRAINING AND TEST DATA SET OF HEART_DISEASE

TABLE VI
MISCLASSIFIED RATE AND CLUSTERING COMPACTNESS ON THE TRAINING AND TEST DATA SET OF BALANCE_SCALE

other words, the pursuit for good clustering compactness is ben-
eficial to classification learning, while the pursuit for high clas-
sification accuracy is helpful for the clustering compactness.

B. Synthetic Data Set

We apply RBFNN, RFRC, VQ LVQ3, SCC, and MSCC on
a synthetic data set in Table VII to compare both their classi-
fication and clustering abilities. Here the number of cluster
centers is set to 5 and the scale factor of the RBF kernel is 1.
To evaluate their clustering effectiveness, we list the obtained

TABLE VII
SYNTHETIC DATA SET WITH THREE CLASSES IN FIVE GROUPS
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Fig. 7. Cluster centers obtained by RFRC, RBFNN, VQ�LVQ3, SCC, and MSCC, respectively.

clustering centers in Fig. 7. It can be seen from this figure that
in RBFNN and RFRC, the samples localized in the upper part
of each panel are characterized by one clustering center, but in
fact these samples come from different classes (i.e., Classes 1
and 2) and hence should be categorized into different clusters
in terms of their class labels. In VQ LVQ3, there exists a clus-
tering center deviated from the distribution of the given sam-
ples, thus failing to precisely describe the data distribution. In
SCC, when a proper value is selected for , the correct clus-
tering result is obtained as show in Fig. 7(d); however, when an
improper value is selected, the obtained clustering result is un-

able to uncover the structure in data as shown in Fig. 7(e). So
in order to get a solution as optimal as possible, multiple sets
of different weights have to be used, thus leading to the same
problem having to be solved many times. In contrast, MSCC
removes the weight parameter and obtains the correct clus-
tering centers located in the proper places, and thus reflects the
inherent structure in this data relatively correctly.

To further compare the classification effectiveness, we
present the relation matrices (connecting weights) and classifi-
cation accuracy in Table VIII. From this table, we can make the
following analyses. 1) The connecting weights in RBFNN are
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Fig. 8. Iterative process of MSCC.

TABLE VIII
PARAMETER COMPARISON AMONG RFRC, RBFNN, VQ�LVQ3, AND MSCC

yielded by optimizing the MSE criterion between target and
actual outputs. As a result, their values do not have any intuitive

meaning. The relation matrix in RFRC is obtained by the com-
posite operators, and thus it lacks the statistical meaning. In
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TABLE IX
PARAMETERS OF MSCC AT DIFFERENT ITERATION STEP

VQ+LVQ3, its relation matrix is determined by the class labels
of clustering centers, and such hard values cannot quantatively
reflect the fuzzy belonging degree between clusters and classes.
In SCC, the larger the value is, the more attention the ob-
jective function pays to the classification problem; the smaller
the value is, the more attention the objective function pays
to the clustering problem. As a result, a proper value should
be selected for so that a balance can be created between the
classification and clustering performances, and thus the correct
result can be obtained as shown in Table VIII . In
MSCC, the relation matrix can not only reveal the underlying
logical relationship in data but also a quite precise statistical
relationship between the formed clusters and given classes.
2) Due to the wrong clustering centers and imprecise relation
matrix (connecting weights), RBFNN, RFRC, and VQ LVQ3
fail to achieve the satisfying classification performance. SCC
can achieve the high classification accuracy of 98.5%, but
an exhaustive search for the weight parameter has to be
executed in some range, which is a heavier burden. In contrast,
MSCC achieves the highest classification accuracy of 99.0%,
indicating that its classification mechanism works better than
the other algorithms. Such good performance can be attributed
to its correct clustering centers and real relation matrix.

From this initial empirical evaluation, it can be concluded that
MSCC can achieve the effective clustering and classification
performance at one time. The underlying reason is that it opti-
mizes the clustering and classification criterion simultaneously,
and thus does not need to sacrifice the clustering performance
for the classification performance, or vice versa.

To make the iterative process of MSCC clearer, we give
the intermediate results of the clustering centers in Fig. 8, and
their corresponding relation matrix and classification accuracy
in Table IX. From Fig. 8, it can be seen that as the iteration
step increases from 2 to 50, the obtained clustering centers
tend to gradually exhibit the real structure hidden in the data.
Moreover, from Table IX, it can be observed that during the
iterative process, the resulted relation matrix tends to grad-
ually discover the correct relationship between the structures
and the classes, and the corresponding classification accuracy
increases from 86.7% to 99.0%.

C. Real-Life Data Set

We evaluate the classification capability of MSCC on
real-life data sets. We select 20 data sets from the University of
California at Irvine (UCI) Machine Learning Repository [4],
which is a repository of databases for the empirical analysis of

machine learning algorithms. The classification performance
comparison is made among RFRC, VQ LVQ3, RBFNN,
SVM, clustering-based SVM (named CBSVM),2 SCC, and
MSCC. In these algorithms except SVM, the cluster number
is sought in the range from the number of classes up to .
Here the parameter is set to in terms of Bezdek’s
suggestion [2] where is the number of the training samples.
In RFRC, RBFNN, SVM, SCC, and MSCC, the RBF kernel
is adopted and its scale factor is determined by searching in

. In a support vector
machine (SVM), the regularization parameter is determined
from . In SCC, the weight parameter

is selected from . In MSCC, since the multiple
Pareto-optimal solutions can be obtained, the final solution is
determined by the trial-and-error approach [1] associated with
the classification accuracy. Due to the multiple parameters
existing in these algorithms, the discrete grid search [15] based
on an exhaustive search in a limited range is adopted to acquire
the optimal values for these parameters. In what follows, we
list the number of the cluster centers and the scale factor
used in the experiments in Table X.

In all of our experiments, each data set is randomly parti-
tioned into two halves: one half is used for training and the other
for testing. This process runs repeatedly and independently ten
times, and only their averaged accuracies and the corresponding
standard deviations are reported in Table XI.

First, we compare the classification results yielded, respec-
tively, by SCC and MSCC. It can be seen from the table that
on all of the data sets, the accuracies of MSCC are, respec-
tively, better than those of SCC. Especially, on the data sets
Lung_cancer, Lenses, Sonar, and Glass, MSCC achieves sig-
nificant promotion of 9.8%, 9.2%, 4.8%, and 4%, respectively.
Such a promotion of MSCC can attribute to effectiveness of
the multiobjective form and diversity of the multiple Pareto-op-
timal solutions. In comparison with SCC, MSCC has two ad-
vantages: 1) by utilizing the multiobjective functions to de-
scribe the clustering and classification problems, respectively,

2CBSVM is our purposely designed classifier for more extensive compar-
ison. CBSVM adopts the same architecture as RBFNN, but chooses a different
loss function. Specifically, like RBFNN, CBSVM first also uses an unsuper-
vised �-means to obtain the cluster centers as parameters of a set of Gaussian
functions to establish a mapping from the input to the space formed by a set
of the functions, but unlike RBFNN, CBSVM adopts the SVM (loss) criterion
rather than the least square error criterion in training the above mapped space.
CBSVM also falls into the two-step framework which optimizes a clustering
criterion first, and then the classification criterion associated with the clustering
result, but it fails to realize the simultaneous optimization for such two learn-
ings.
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TABLE X
NUMBER OF THE CLUSTERING CENTERS AND THE SCALE FACTOR OF RBF KERNEL USED IN ALGORITHMS

MSCC can remove the weighting parameter in SCC, and thus
the computational burden for choosing this parameter can be
exempted; and 2) by extending the single solution to mul-
tiple solutions, MSCC can improve the effectiveness of SCC.
Moreover, it is worth pointing out that in SCC, its maximum
iteration number and its particle number are, respectively,
set to 500 and 1000, while in MSCC, they are just 100 and 500
and much less than those in SCC, which is naturally favorable
for reduction of the learning.

Second, we make the comparison among MSCC, RFRC,
VQ LVQ3, and RBFNN. Compared to RFRC and VQ LVQ3,
MSCC achieves better performance on all data sets. Compared
to RBFNN, it yields better performance on 17 data sets, com-
parable performance on two data sets, and worse performance
on one data set. The excellent classification performance of
MSCC comes from its effective learning mechanism.

Finally, to give a baseline reference, we make comparison
against the state-of-the-art classifier SVM and our purposely

designed algorithm CBSVM. It is worth pointing out that
CBSVM is superior to SVM in a classification ability mainly
due to the incorporation of the clustering information into
CBSVM, which states that combing clustering and SVM (like
the algorithms introduced in Section II) should also be effec-
tive to some degree and thus deserves a further exploration.
More importantly, we can observe that compared to SVM,
MSCC gains higher performances on 12 data sets, and further
compared to CBSVM, MSCC possesses higher accuracy on
12 data sets and comparable accuracy on the other four data
sets, all of which indicate that MSCC is highly competitive
with the state-of-the-art classifiers in classification accuracy.
In addition, MSCC still possesses the following advantages:
1) both the effective classification result and the clustering re-
sult can be simultaneously obtained; and 2) the class posterior
probabilities computed in this framework can reflect confidence
of the classification decision, which is important for reliable
and interpretable classification.
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TABLE XI
CLASSIFICATION ACCURACY COMPARISON ON REAL-LIFE DATA SETS

V. CONCLUSION

To fuse the strengths of classification learning and clustering
learning, many existing algorithms such as RBFNN, RFRC,
VQ LVQ3, CCAS, and ECCAS sequentially and separately
optimize the clustering criterion and the classification criterion.
Such a two-step optimization process limits the effectiveness
of both clustering and classification learnings to a great extent.
Differently from these algorithms, in this paper, an MSCC is
presented for simultaneous clustering and classification learn-
ings. MSCC adopts the simultaneous optimization process for
the clustering and classification learnings, and thus does not
need to sacrifice the clustering (classification) performance for
the classification (clustering) performance. From the experi-
mental results, it can be observed that 1) MSCC can acquire
both the promising clustering results and classification results
at one time; and 2) the Pareto-optimal solutions obtained in
MSCC again demonstrate the complementarity between clus-
tering and classification learnings.

In our MSCC, its clustering mechanism is designed by
adopting the fuzzy -means clustering as a reference. How-
ever, many other clustering algorithms can also be adopted.
For example, when Gaussian finite mixture (GMM) [13] is
adopted, the multiobjective functions dependent on both clus-
tering centers and covariance can be designed. By optimizing
both clustering centers and covariance in these multiobjective
functions, the clustering and classification results can also be
yielded. Furthermore, since the multioptimal solutions yielded
by MSCC have diversity, our additional work is to employ
the diversity to develop an ensemble method [34] to further
improve the performance of MSCC.

It is worth mentioning that MSCC is a supervised learning
algorithm but extending it to the semisupervised case is not so
straightforward because when the training data set has unlabeled
data, the relation matrix cannot be directly established di-
rectly by (5). Undoubtedly, one of the future works is to develop
a semisupervised MSCC via a different path.
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