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Acute toxicity (15-min EC50) determination of 16 substituted
naphthalene compounds to Photobacterium phosphoreum was
undertaken according to the standard procedures, while the ef-
fects of molecular structures of selected compounds on their
toxicity to test microorganisms were logistically conducted using
the quantitative structure+activity relationship (QSAR) tech-
nique. The relationship was developed as � logEC50� 5.5916
(�0.1189)� 7.4893(�0.4900)qH�� 0.7771(�0.0619Elumo�
0.0088(�0.0009)� (N � 16, R 2

adj� 0.9698, SE� 0.0892,
P � 0.0000). The cluster analyses of individual structure descrip-
tors as well as the quality control chart and Monte Carlo simula-
tion test indicated that the prediction model was reasonable and
robust even if tested with several di4erent methods. Furthermore,
the quantum chemical parameters entering into the QSAR
model were used to discuss the possible toxicity pathways, and
the results revealed that the selected compounds were reactive
and their toxicity behaviors were complex processes containing
physical partition stages as well as biochemical reaction
stages. � 2002 Elsevier Science (USA)

Key Words: acute toxicity; QSARs; Photobacterium pho-
sphoreum; Monte Carlo simulation; substituted naphthalene
compounds.

INTRODUCTION

It has been widely recognized that knowledge on the
acute and chronic toxicity of pollutants is a basic require-
ment in ecological risk assessment. However, there are an
overwhelming number of chemicals being introduced into
the environment, and toxicity determination is costly and
time-consuming. Fortunately, quantitative structure}
activity relationships (QSARs) can reveal the relationship
between the toxicity of a compound and its structural de-
scriptors (Blum and Speece, 1990). Moreover, they are of
bene"t in the development of property/toxicity data because
they allow estimation of the toxicity to an organism based
on easily measured or calculated characteristics. As a result,
there are large numbers of relevant examples in QSAR
studies (Baj and David, 1994; Lewis, 1989; Nevalainen and
Kolehaminen, 1994; Mekenyan et al., 1994; Xu et al., 1994)
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depending on quantum chemical descriptors with obvious
advantages (Dai et al., 1998). However, the collinearities
among some quantum chemical descriptors limit the predict
ability of QSAR models; that is, if some of the information
was obtained from a weak correlation equation, it would be
unreliable and would not re#ect the real toxicity pathway.
Therefore, to a certain extent, the robustness of a model is
much more important than a high R� and a low SE.

One objective of this study is to determine acute toxicities
of 16 substituted naphthalene compounds to Photobac-
terium phosphoreum and to develop a prediction model
based on the structural descriptors with clear &&physico
chemical sense'' through the logistic QSAR modeling
method. The other objective is to test the robustness of the
model using several methods and attempt to clarify the
possible toxicity pathways depending on the information
extracted from the prediction model.

MATERIALS AND METHODS

The 16 selected naphthalene compounds, listed in
Table 1, are of analytical reagent grade (some purchased
from Aldrich Chemical Co.). The test species, P. phospho-
reum (T

�
mutation), was supplied in freeze-dried powder

form by the Institute of Soil Science, Academia Sinica,
Nanjing, P. R. China. Stock cultures were maintained on
agar slants at 43C. The culture broth was yeast}tryp-
tone}salts}glycerol, pH 7.0$0.5, and the medium was
sterilized with high pressure (Experimental ¹echnology of
Environmental Biology, 1989).

The concentration for 50% inhibition of bioluminescence
of P. phosphoreum after 15 min exposure, expressed as EC

��
(mol/L), was measured. The Microtox test instrument
(toxicity analyzer Model DXY-2), made by the Institute of
Soil Science, Academia Sinica, Nanjing, P. R. China, was
used. The experiment was performed at 203C, near neutral
pH, according to the procedures described by the instru-
ment manual (Experimental ¹echnology of Environmental
Biology, 1989). The working solutions were colorless, and
the toxicity data (log 1/EC

��
) are listed in Table 1.
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TABLE 1
Compounds, Quantum Chemical Parameters, and Toxicity Data

log(1/EC
��

)

No. Name � E
����

qH� log K
��

Exp. Est. Res.

1 Naphthalene 95.66 !1.268 0.1565 3.316 4.244 4.280 !0.036
2 2-Bromo-naphthalene 101.32 !0.551 0.1467 4.179 4.968 4.980 !0.012
3 1,2-Dibromo-naphthalene 111.11 !0.831 0.1518 4.842 4.844 4.803 0.041
4 1-Nitro-naphthalene 106.17 !1.311 0.1686 3.059 4.262 4.248 0.014
5 1-Naphthalamine 99.37 !0.175 0.1858 2.089 4.953 4.973 !0.020
6 2-Naphthalamine 101.13 !0.175 0.1844 2.089 5.034 4.999 0.035
7 4-Chloro-1-naphthalamine 103.89 !0.642 0.1581 2.901 4.786 4.828 !0.042
8 1-Naphthalenesulfonic acid 112.01 !1.269 0.2703 1.459 3.552 3.572 !0.020
9 2-Naphthalenesulfonic acid 114.10 !1.218 0.2769 1.459 3.607 3.583 0.024

10 2-Amino-1-naphthalenesulfonic acid 121.80 !0.912 0.2739 0.232 3.935 3.919 0.016
11 5-Amino-2-naphthalenesulfonic acid 124.65 !1.076 0.2783 0.232 3.971 3.780 0.191
12 7-Amino-4-hydroxyl-2-naphthalene-

sulfonic acid 132.67 !1.091 0.2769 !0.435 3.648 3.849 !0.201
13 1-Naphthalenol 94.67 !0.368 0.2191 2.649 4.492 4.527 !0.035
14 2-Naphthalenol 95.82 !0.343 0.2174 2.690 4.470 4.544 !0.074
15 5-Amino-1-naphthalenol 104.88 !0.279 0.2198 1.770 4.634 4.656 !0.022
16 2,2�-Binaphthalenol 224.10 !1.453 0.2209 4.504 4.788 4.784 0.004
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All molecules were built and optimized by the
Broyden}Fletcher}Goldfarb}Shanno (BFGS) method
(Broyden 1970; Fletcher, 1970, 1980; Goldfarb 1970;
Shanno, 1970), and quantum descriptors were calculated
using the AM1 Hamiltonian of MOPAC program (Cam-
bridgesoft Corp., 1997). The obtained quantum descriptors
included average molecular polarizability (�), dipole mo-
ment (�), energy of the lowest unoccupied molecular orbital
(E

����
), energy of the highest occupied molecular orbital

(E
����

), the largest negative atomic charge on atoms (qN ), and
the most positive atomic charges on hydrogen atoms (qH�).
The bulkiness-related (nonspeci"c) parameters included
"nal heat of formation (HOF), total energy (TE), electronic
energy (EE), and core}core repulsion (CCR). Units of the
heat of formation, energy, charge, dipole, and polarizability
were kilo-calories, electron volts (eV), atomic charge unit
(acu), and atomic unit (au), respectively.

All stepwise multiple regressions reported were per-
formed using the STATGRAPHICS program (STSC, Inc.,
1985), and the multicollinearities were measured with vari-
ance in#ation factors. (VIF

�
, de"ned as 1/(1!R�

�
), where R�

�
represents the correlation coe$cient of ith subject variable
regressed on all the other explanatory variables.) The cor-
relation of relevant pairs of explanatory variables needed to
be tested since three or more variables were involved in
regression analyses. If the ith variable is involved in multi-
collinearity, then R�

�
will be close to unity. The &&ideal''

situation in regression is for all R�
�

values to be zero and all
VIF values to be in unity. Generally, a VIF

�
value under

5 indicates acceptable multicollearity, while the regression
will be considered unstable when the value is near 10.0.
RESULTS

The logistic modeling method is very useful in QSAR
studies. The current model includes several steps. First,
suitable parameters that well-describe the property/activity
are selected and their sensitivity to selected compounds is
tested through various methods. Second, a prediction equa-
tion is developed on the basis of selected parameters with
clear physiochemical sense, such as quantum chemical para-
meters. Third, the robustness of the established model is tested.
Last, the possible toxicity pathways are discussed according to
the information extracted from the established models.

In general, if more than 90% of the members of selected
compounds are classi"ed into one cluster through a para-
meter, the parameter would be considered invalid in a pre-
diction model. However, the results of cluster analyses in the
current study indicated that there were no ine!ective data
among the log(1/EC

��
) (Fig. 1) and molecular structure

descriptors. In addition, it has been suggested that the
biological response is related to both the transport of chem-
icals from water phase to biophase and the interaction
between the chemical and the biotarget molecule. Regard-
less of the biodegradation of chemicals in the organism, the
biological response could be expressed as a linear function
of three main properties: hydrophobicity, and electrostatic
and steric e!ects (Hansch and Leo, 1995). Consequently,
quantum chemical parameters with celar &&sense'' were the
preferential selection for toxicity simulation to be of bene"t
in gaining insight into the intrinsic toxicity pathway. How-
ever, the results of partial correlation analyses indicated
that there were remarkable multicollinearities among the



FIG. 1. Dendrogram of hierarchical cluster analysis for log(1/EC
��

) data set.
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nonspeci"c quantum chemical parameters; therefore, de-
scriptors with weak collinearities �, E

����
, E

����
, qN , qH�, and

HOF, along with logK
��

(n-octanol/water partition coe$c-
ient, which were estimated using CLOGP software (Manual
S., 1985)) were selected as candidate parameters for
log(1/EC

��
) simulation and prediction. The stepwise regres-

sion equation is

!log EC
��

"5.5916 ($0.1189)!7.4893 ($0.4900)qH�

#0.7771 ($0.0619)E
����

#0.0088 ($0.0009)�, (1)

where N"16, R�"0.9758, R�
��	

"0.9698, SE"0.0892,
F"161.358, P"0.0000, and N represents the number of
samples, R� is the multiple correlation coe$cient, SE is the
standard error, F denotes the F test value, P is the signi"-
cance level of the whole equation, and the values in paren-
theses are 95% con"dence intervals associated with each
coe$cient.

Considering the R� and SE, Eq. (1) is adequate to simu-
late log(1/EC

��
) of the 16 selected compounds, and basically

describes the electrostatic and steric e!ects on the toxicities
when the chemicals interact with biotarget molecules. How-
ever, the e!ects of hydrophobicity on the toxicity of selected
compounds cannot be extracted directly from Eq. (1); there-
fore, a simple regression between log(1/EC

��
) and logK

��
was developed,

!log EC
��

"3.8565 ($0.1798)#0.2300 ($0.0655) logK
��

,

(2)
where N"16, R�"0.4685, R�
��	

"0.4305, SE"0.3869,
F"12.3390, and P"0.0034. Equation (2) indicates that
the toxicity process includes the partition stage, and the
relationship between log EC

��
and logK

��
is still uncertain,

which probably results from the great di!erences in the
molecular structures of the selected compounds. Most of the
selected compounds have polar functional groups such as
}NH

�
, }SO

�
H, and }OH, and they tend to form a hydrogen

bond with water molecules, thus reducing the sensitivity of
K

��
for distinguishing the di!erences in toxicity. Further-

more, the test microorganism, P. phosphoreum, is a monad
with low fat content, and therefore the toxicities of the
compounds are not dependent on lipophilicity but on the
interaction between the chemical and the enzymes of the
microorganism.

In order to shed more light on the toxicity process and
verify the reliability of Eq. (1), equations based on molecular
connectivity indices (MCIs) and the linear solvation energy
relationship (LSER) were developed; 42 MCIs, including
path, cluster, path/cluster, chain indices, and nondispersive
force factors, were calculated (Kier and Hall, 1976, Bahnick
and Doucette, 1988). Only ��, ��, ��
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were selected as candidate parameters. Four
LSER parameters, �

�
, �

�
, �*, and <

�����
, were estimated

according to the &&Rules of thumbs'' method (Hickey and
Passino-Reader, 1991). Among them, �

�
and �

�
measure the

exoergic e!ects of complexation between hydrogen bond
donor solvents and hydrogen bond acceptor solutes or vice



TABLE 2
Correlation Coe7cient Matrix of Independent Variables

and Corresponding VIF

Correlation matrix
<IF

� E
����

qH� Eq. (1)

� 1.0000 1.2015
E
����

0.4863 1.0000 1.1434
qH� !0.1489 0.1392 1.0000 1.0000

FIG. 2. Predicted and observed values with 95% intervals for predic-
tions.
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verse, �* re#ects the e!ects of solute}solvent, dipole}dipole,
and dipole-induced dipole interactions, and<

�����
measures

the free energy or enthalpy input necessary to separate the
solvent molecules and provide a suitably sized cavity for the
solute:
MCI

!log EC
��

"5.8454 ($0.3577)!0.4250

($0.0606)��


#1.4211 ($0.4531)��




N"16, R�"0.8049, R�
��	

"0.7724, SE"0.2477,

F"24.7521, and P"0.0001 (3)

!log EC
��

"4.8002 ($0.1084)#0.7209 ($0.1285)����



where N"16, R�"0.7077, R�
��	

"0.6853,

SE"0.2912, F"31.4805, and P"0.0001 (4)

¸SER

!log EC
��

"4.9462 ($0.1746)!0.8189 ($0.2167)�
�

N"16, R�"0.5048, R�
��	

"0.4695, SE"0.3734,

F"14.2736, and P"0.0020. (5)

In Eq. (3), the descriptor ��



is positively interrelated to
the molecular volume, ��



is relevant to numbers of substi-

tuting groups, and both descriptors imply the volume char-
acteristics of molecules. It is easy to understand that the
larger the molecular volume is, the more di$cult it is for
the compound to transport through the cell membrane, and
the lower the toxicity is. However, the characteristics of the
substituting groups are often more important than their
numbers in contributing to toxicity. Equation (4) is based on
a special kind of molecule connectivity index, nondispersive
force factor ���, which re#ects the polar characteristics. The
higher the ����



is, the higher toxicity is; therefore the non-

dispersive force (electrostatic force, hydrogen bond interac-
tion, etc.) plays an important role in the toxicity process.
Unfortunately, MCIs have no clear meaning, and are not of
bene"t in investigating toxicity pathways. In Eq. (5), the
higher descriptor �

�
is, the stronger the basicity of com-

pound is, the easier it is for the compound to form a hydro-
gen bond with water, the less compound partition into the
organism there is, and the lower the toxicity is.

DISCUSSION

Equations (2)}(5) agree with Eq. (1), and all of them imply
that the toxicities of these selected compounds are deter-
mined by their molecular structures, and mainly rely on
electrostatic and steric e!ect, while the hydrophobicity is
not signi"cant enough. Therefore, Eqs. (2)}(5) are forceful
evidences to prove that Eq. (1) is satisfactory for toxicity
prediction. Additionally, the correlativity of Eq. (1) was
found to be signi"cant through the correlation coe$cient
test and the variables entered into the model are reasonable
according to the results of multicollinearity test listed in
Table 2. Moreover, the equation is successful in evaluating
log(1/EC

��
) for the 16 compounds; the results are plotted in

Fig. 2. In order to test the robustness of Eq. (1), a modi"ed
&&jackknife test'' method was applied to the data set where
a random umber of observations were deleted at a time, and
the regression was rerun for the remaining observations.
A randomly selected number of regressions were run with
di!erent members deleted each time, and all of the regres-
sion statistics were averaged. To maintain stability, the
number of deletions was kept below 20% of the total num-
ber of observations. Figure 3 vividly depicts the e!ects of
each compound on the robustness of Eq. (1) by comparing
the correlation coe$cients (R�

��	
) in leave-one-out test. It is

obvious that there are comparatively great increases in R�
��	

when the log(1/EC
��

) values of compounds 11 and 12 are
deleted separately, which indicates that some of the selected
compounds with great di!erences in substituents have sig-
ni"cant e!ects on the correlativity of the model. For
example, the order of toxicity of the di!erent substituents is
}NH

�
'}OH'}Br'!NO

�
'}SO

�
H, and therefore it



FIG. 3. Plot of R�
��	

for Eq. (1) by leave-one-out method.

FIG. 4. Frequency distribution of residuals for Eq. (1).
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can be concluded that the introduction of }SO
�

H would
decrease toxicity, while the others groups further up the list
would increase toxicity. This indicates that chemical inter-
actions play an important role in the toxicity process. The
results of leave-one/several-out tests are listed in Table 3,
which indicates that Eq. (1) is robust enough. Moreover, the
K}S (Kolmogorov-Smirnov) method (Andersen and Bor-
gan, 1998) was used to test the frequency distribution of
residuals from Eq. (1) (which was a small sample because
there were fewer than 50 compounds tested). The results are
presented graphically in Fig. 4 and listed in Table 4. These
results indicate that the frequency distribution of the resid-
uals is in accord with the normal function X&N
(2.7756�10	�
, 0.0892�). The coe$cient of skewness was
0.0273 and the coe$cient of kurtosis was 3.7874.

The Monte Carlo technique is a useful tool for testing the
prediction performance of a regression equation of small
sample (Lund, 1970), it permits the use of all data available
in deriving the regression equation, and it does not require
estimating degrees of freedom. Due to the fact that only 16
observations were available in the present work, the Monte
Carlo simulation was conducted to determine the reliability
of regression equation.

The null hypothesis is that the observations (!log EC
��

)
of the model are independent of structural descriptors when
using Monte Carlo simulation to test Eq. (1). Sixteen bogus
values of the predited !log EC

��
were generated randomly
TABLE 3
Results of Leave-One/Several-Out Test Eq. (1)

!log EC
��

No. of cases deleted No. of regression
((20% of N ) runs av. R� av. R�

��	
av. SE

1 16 0.9766 0.9695 0.0891
2 30 0.9753 0.9679 0.0913
3 50 0.9750 0.9666 0.0925
Average 0.9756 0.9680 0.0910
using a stochastic sampling from a normal distribution
(4.3868, 0.5132�) of the experimental observations. A regres-
sion equation was developed between these 16 bogus values
of !log EC

��
and the candidate parameters, and the cor-

relation coe$cient of this spurious equation was recorded
as R�*. The candidate parameters were not changed in any
manner when the spurious equations were derived; only the
predicted values were varied. Repeating the simulation 250
times resulted in 250 sets of 16 random numbers of
!log EC

��
, as well as 250 spurious equations and their

corresponding R�* in the range 0.0082 to 0.6310.
On the basis of results of a chi-square goodness-of-"t test

applied to the "tted empirical distribution of R�*, obtained
from the Monte Carlo simulation, the chi-square value is
3.2489, and the signi"cance level 0.9985 greater than 0.05
suggests signi"cant su$ciency of "t and no distinct di!er-
ence from the beta function (aH

�
"1.6389, aH

�
"5.4007)

(Fig. 5). From the beta probability distribution of R�*, it is
known that for a probability of 0.975 (two-sided) it is neces-
sary to exceed a critical value of 0.5799 to determine the
signi"cant di!erence between the values of R� and R�*.
Since R� (0.9698) in Eq. (1) is greater than R�* in this study,
it can be concluded that the prediction by Eq. (1) di!ers
considerably from the random prediction by spurious equa-
tions, and, therefore, Eq. (1) is reliable. Based on Eq. (1), the
!log EC

��
value could be predicted, to some extent, from

quantum chemical parameters.
TABLE 4
Results of K+S Test

log (1/EC
��

)

Estimated KOLMOGOROV statistic DPLUS 0.1801
Estimated KOLMOGOROV statistic DMINUS 0.1742
Estimated overall statistic DN 0.1801
Approximate signi"cance level 0.6770



FIG. 5. Empirical distribution of R�*.
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Additionally, the selected naphthalene compounds were
divided into four groups to roughly study the distribution of
the robustness of the obtained model to each group with
special structure characteristics. Similarly, the modi"ed
jackknife test was applied again to test the data set when
one group of observations was deleted at a time, and the
regression was rerun for the remaining three groups.
Figure 6 graphically depicts the distribution of correlation
coe$cients for each group when the corresponding observa-
tions were deleted. It indicates that the robustness of Eq. (1)
for predicting toxicity greatly depends on the NP subgroup
(NP is a symbol denoting compounds 1, 2, 3, 4, and 7) with
large di!erences in molecular structure. However, it needs
to be mentioned that the result is only a rough one since the
number of compounds within each subgroup is beyond the
valid limit of the jackknife test (420%). In order to gain
further insight into the toxicity mechanism, the luminance
process of P. phosphoreum is described as follows:

FMNH
�
#RCHO#O

�
&&&&&&&&�

bacterial fluroenzyme

FMN#RCOOH#H
�

O#light.

In the above process, FMN is #avin mononucleotide and
FMNH

�
is its reductive form. FMNH

�
is an important

coenzyme that transfers hydrogen. In the FMNH
�

molecu-
FIG. 6. Distribution plot of R�
��	

for each deleted group.
le, the }NH-group reacts readily with other molecules by
hydrogen action. Some functional groups involving high
electronegativity atoms, such as O and N, form a hydrogen
bond with FMNH

�
and the hydrogen transfer in the

luminance process mentioned above is hindered; therefore
the light emission of P. phosphoreum is inhibited.

Furthermore, the Student t test method was used to
investigate the correlation of each independent variable and
dependent variable in Eq. (1), and the t values were
!15.2851, 12.5589, and 9.9851 for qH�, E

����
, and �, re-

spectively. The most positive formal charge on hydrogen
atom (qH�) was the most statistically signi"cant term in-
#uencing toxicity, and the toxicity decreased as the increas-
ing of qH�, which implies that the oxygen atoms in water
molecules and hydrogen atoms in chemical molecules inter-
act and form a hydrogen bond. Thus, the compounds with
high qH� tend to be partitioned in water rather than in cells
and result in low toxicity. For example, the selected com-
pounds with a }SO

�
H group have comparatively low

K
��

values while their qH� descriptors are higher than the
others, as indicated in Table 1. It can therefore be concluded
that there exists a strong solvation e!ect between the com-
pound molecules and solvent water molecules. The energy
of lowest unoccupied molecular orbital (E

����
) could be used

as a measure of molecular ability to accept an electron pair.
An increase in E

����
would lead to an increase in toxicity,

which implies that the hydrogen bond exists between the
chemical and the &&target molecules'' in the microorganism:
the target molecules accept electron pairs and the chemicals
donote them. This point can be explained by the fact that
some atoms with high electronegativity, such as O and N,
contained in the selected compounds donate lone-pair elec-
trons and accept proton H of FMNH

�
and therefore inhibit

the luminance ration. The compounds containing }SO
�
H

with low toxicity are exceptions due to their high solubility
in water. In addition, the greater is the polarizability (�) the
greater is the toxicity. Descriptor � is involved in Eq. (1)
as expected since it is in direct proportion to intrinsic
molecular volume, and molecular volume is a measure of
the energy needed to form a cavity in solvent. The higher
� was, the larger the molecular volume was, and the larger
the molecular deformation was. The result was that the
solute molecule transferred much more easily and par-
titioned into the cell with less polarity through the cell
membrane.

CONCLUSION

In summary, it can be concluded from the information
presented in this logistic study that a model based on
quantum chemical descriptors can be used to predict toxic-
ity to a certain extent, and that it can provide a useful
starting point for predicting potential environmental
contaminants. However, for an established model, it is
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essential to test robustness in order to guarantee a wide
application range and accurate predictive ability. It was
proved that the Monte Carlo simulation test was a reliable
method for uncertainty analysis. Also, useful information
extracted from a reasonable and robust model would shed
light on the action mechanism, especially on pathway of
toxicity. Toxicity behavior is not a simple partition process,
and it is restricted by many factors, such as biochemical
processes.
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