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Abstract. Thermally loaded penny-shaped cracks in thermopiezoelectric materials are investigated in this paper.
The analytical solutions for the penny-shaped cracks subjected to uniform temperature and steady heat flow are
discussed. Comparisons are made between the stress-intensity factors derived by the analytical solutions and the
numerical results using different finite element techniques.
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1. Introduction

With the introduction of fracture mechanics concept into piezoelectric materials, many crack
problems in piezoelectric solids have been addressed analytically, see for example Sosa and
Pak (1990), Sosa (1991), Pak (1992), Suo et al. (1992), Wang (1992), Wang (1994), Wang and
Huang (1995), Chen and Shioya (1999). Meanwhile, various finite element techniques have
been established for electromechanical crack analyses by Kuna (1998), and their efficiency
has been demonstrated for a variety of three-dimensional (3D) crack problems by Shang et al.
(2001). These theoretical-numerical developments are indispensable to assess strength and
reliability of piezoelectric structures containing crack-like defects.

Following this, research progresses on crack problems in thermopiezoelectric materials
were reported during last decade. A two-dimensional analytical solution for a finite crack in
thermopiezoelectric solids was presented by Yu and Qin (1996) using Fourier transform and
extended Stroh formalism. Analyzed in Qin (1998) is a problem of insulated elliptical hole em-
bedded in an infinite thermopiezoelectric plate. One of the present authors proposed a general
solution based on potential functions for 3D axisymmetric problems in thermo-piezoelectric
materials, and the exact solutions for penny-shaped cracks under thermal excitation were
obtained in (Shang et al., 1996a, b, c) by means of Hankel transform. Numerical tools are
needed to analyze crack-like defects in thermopiezoelectric structures as well. More recently,
several finite element techniques were developed to analyze the behavior of thermopiezo-
electric materials (Shang et al., 2001b). Thus, it is possible to verify the analytical solutions
obtained above numerically.

In what follows, the analytical solutions and numerical results will be presented for 3D
cracks in thermopiezoelectric materials. The analytical solutions for penny-shaped cracks
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subjected to different thermal loadings will be reviewed and discussed. The numerical results
of stress intensity factor (SIF) will be compared with the analytical ones.

2. Potential function formulation

The general solution method of potential functions for 3D axisymmetric problems in trans-
versely isotropic thermopiezoelectric medium developed by the authors (Shang et al., 1996a)
will be reviewed briefly in this section.

The constitutive relations for a thermopiezoelectric continuum are given by

σij = cijklεkl − ekijEk − λijθ

Di = eijkεjk+ ∈ij Ej + piθ (1)

ρη = λijεij + piEi + ρθ Cv/�,

where cijkl, ekij, λij,∈ij, pi are the elastic constants, piezoelectric modules, temperature stress
coefficients, dielectric constants, pyroelectric constants, respectively; Cv is the heat capacity
per unit volume at constant strain; ρ is the mass density; σij, εij, Di, Ei denote the stress,
strain, electric displacement, and electric field, respectively; η is the specific entropy; � is
the absolute temperature; θ = � − �0 is the temperature change from a stress free reference
temperature �0.

The governing equations for thermopiezoelectricity include three fundamental equations:
(1) the equation of motion, (2) the equation of the quasi stationary electric field, and (3) the
heat conduction equation. For a stationary case, the system of differential equations for the
field variables ui, ϕ and θ is given by

σij,j = cijkluk,lj + ekijϕ,kj − λijθ,j = 0

Di,i = eikluk,li− ∈ik ϕ,ki + piθ,i = 0 (2)

κijθ,ij = 0,

where κij are the heat conduction coefficients.
The steady-state temperature field considered can be expressed conveniently in terms of

the cylindrical coordinates (ρ, α, z)shown in Figure 1 as

θ(ρ, z) =
∫ ∞

0
A(ζ )J0(ζρ)e

−ζz/κdζ, (3)

where Jn(x) is the Bessel function of the first kind and n-th order, κ2 = κ33/κ11 is the ratio
of heat conduction constants in the axial z-direction and in the radial ρ-direction, and A(ζ ) is
the unknown to be determined through thermal boundary conditions.

Four potential functions ψ, ψ1, ψ2, ψ3 were introduced to solve the governing equations
(Shang et al. 1996c). These functions can be written in the form as

uρ = ∂

∂ρ
(ψ1 + ψ2 + ψ3 + ψ)

uz = ∂

∂z
(l11ψ1 + l12ψ2 + l13ψ3 + l14ψ) (4a)

ϕ = ∂

∂z
(l21ψ1 + l22ψ2 + l23ψ3 + l24ψ)
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Figure 1. Penny-shaped crack with uniform temperature on its surface.

ψj(ρ, z) =
∫ ∞

0
Fj (ζ )J0(ζρ)e

−ζz
/
γj dζ j = 1, 2, 3

ψ(ρ, z) =
∫ ∞

0
A(ζ )C(ζ )J0(ζρ)e

−ζz/κdζ, (4b)

where Fj(ζ ) and C(ζ ) are the functions to be determined through boundary conditions. The
three eigenvalues γj can be determined by solving a cubic algebraic equation. The three
roots of the derived cubic equation are either three real numbers or one real number and
two conjugate complex numbers. Corresponding to these three roots, the potential functions
ψj satisfy quasi-harmonic equations as

∂2ψj

∂ρ2
+ 1

ρ

∂ψj

∂ρ
+ γ 2

j

∂2ψj

∂z2
= 0 (5)

The eigenvalues γj are related to elastic, piezoelectric and dielectric material constants as

aj + c13l1j + e31l2j

c11
= c33l1j + e33l2j

c13 + aj
= e33l1j− ∈33 l2j

dj + e31
= γ 2

j , j = 1, 2, 3, (6)

where ai = c44(1 + l1i) + e15l2i , di = e15(1 + l1i)− ∈11 l2i , i = 1, 2, 3, 4 and l1j , l2j are
unknown constants. Through analyzing the above relations, we found that the six constants
l1j , l2j can be uniquely given out from the six relations (6) corresponding to three eigenvalues
γj . The lengthy expressions, which are not presented here, were given out with the aid of a
symbolic manipulation software, Mathematica (see Shang et al., 2001a).

Further, C(ζ ), l14, l24 can be explicitly given out from the fourth eigenvalue κ as

ζ 2C(ζ ) = λ11κ
2
/
(c44 + c0l14 + e0l24 − c11κ

2) = m = const.

l14 = (B2C1 − B1C2)
/
(B2A1 − B1A2) l24 = (C1 − l14A1)

/
B1

A1 = c33 − κ2c44 − c0λ33
/
λ11 A2 = e33 − κ2e15 + p3c0

/
λ11

B1 = e33 − κ2e15 − e0λ33
/
λ11 B2 = − ∈33 +κ2 ∈11 +p3e0

/
λ11

C1 = κ2c0 + (c44 − c11κ
2)λ33

/
λ11 C2 = κ2e0 − (c44 − c11κ

2)p3
/
λ11

c0 = c13 + c44 e0 = e31 + e15

(7)
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3. Analytical solutions of thermally loaded penny-shaped cracks

The analytical solutions of thermally loaded penny-shaped cracks, which were initially ob-
tained in Shang et al. (1996a, b), are re-examined and further investigated in this section. Thus,
some improved mathematical forms of the solutions are found and the asymptotic behavior is
discussed. Furthermore, a proper dimensional treatment of physical units was introduced.

3.1. PROBLEM 1: PENNY-SHAPED CRACK UNDER UNIFORM TEMPERATURE

3.1.1. Formulation of the problem
A penny-shaped crack with radius a in an infinite transversely isotropic thermopiezoelectric
body was considered. Both crack faces are uniformly exposed to constant temperature θ0 dif-
fering from that of the surrounding material, see Figure 1. The complete boundary conditions
are given by:

(1) thermal boundary conditions

θ = θ0, 0 � ρ < a, z = 0
θ = 0, ρ > a, z = 0

}
(8a)

and (2) mechanical and electric boundary conditions

σzz = σzρ = Dz = 0, 0 � ρ < a, z = 0
σzρ = uz = ϕ = 0, ρ > a, z = 0

}
. (8b)

The regularity conditions at distance far away from the crack are prescribed as well.

3.1.2. Thermopiezoelectric field
The temperature field satisfying the above boundary value problem is

θ(ρ, z) = aθ0

∫ ∞

0
J1(ζa)J0(ζρ)e

−ζz/κdζ. (9)

Thus, the potential function ψ(ρ, z) can be written as

ψ(ρ, z) = aθ0

∫ ∞

0
C(ζ )J1(ζa)J0(ζρ)e

−ζz/κdζ. (10)

The potential functions ψ1, ψ2, ψ3 satisfying Eqs. (8b) are

ψ1(ρ, z) = γ1

a1

∫ ∞

0
D1(ζ )J0(ζρ)e

−ζz/γ1dζ

ψ2(ρ, z) = γ2

a2

∫ ∞

0
D2(ζ )J0(ζρ)e

−ζz/γ2dζ

ψ3(ρ, z) = −γ3

a3

∫ ∞

0

[
D1(ζ ) + D2(ζ ) + aa4θ0

κ
C(ζ )J1(ζa)

]
J0(ζρ)e

−ζz/γ3dζ,

(11)

where D1(ζ ) and D2(ζ ) are obtained by solving a pair of dual-integral equations as∫ ∞

0
ζ [ζDi(ζ ) + aαiθ0J1(ζa)

/
ζ ]J0(ζρ)dζ = (αi − βi)θ0, ρ < a∫ ∞

0
[ζDi(ζ ) + aαiθ0J1(ζa)

/
ζ ]J0(ζρ)dζ = 0, ρ > a


 i = 1, 2 (12)
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i.e.,

ζDi(ζ ) = aNiθ0
[
ζ−2 sin (ζa) − aζ−1 cos (ζa)

]− a αiθ0ζ
−1J1(ζa) (13a)

with

Ni = 2(αi − βi)
/
π i = 1, 2 (13b)

α1 = ma4

κ
·

(
l22

a2
− l23

a3

)(
l14

a4
− l13

a3

)
−
(
l12

a2
− l13

a3

)(
l24

a4
− l23

a3

)
(
l22

a2
− l23

a3

)(
l11

a1
− l13

a3

)
−
(
l12

a2
− l13

a3

)(
l21

a1
− l23

a3

) (13c)

α2 = ma4

κ
·

(
l21

a1
− l23

a3

)(
l14

a4
− l13

a3

)
−
(
l11

a1
− l13

a3

)(
l24

a4
− l23

a3

)
(
l21

a1
− l23

a3

)(
l12

a2
− l13

a3

)
−
(
l11

a1
− l13

a3

)(
l22

a2
− l23

a3

) (13d)

β1 = ma4

κ
·
(κ − γ3)

(
d2

a2
γ2 − d3

a3
γ3

)
− (γ2 − γ3)

(
d4

a4
κ − d3

a3
γ3

)

(γ1 − γ3)
(
d2
a2
γ2 − d3

a3
γ3

)
− (γ2 − γ3)

(
d1
a1
γ1 − d3

a3
γ3

) (13e)

β2 = ma4

κ
·
(κ − γ3)

(
d1

a1
γ2 − d3

a3
γ3

)
− (γ1 − γ3)

(
d4

a4
κ − d3

a3
γ3

)

(γ2 − γ3)

(
d1

a1
γ1 − d3

a3
γ3

)
− (γ1 − γ3)

(
d2

a2
γ2 − d3

a3
γ3

) . (13f)

The mechanical displacements, stresses, electric potential and electric displacements can thus
be derived. To represent the final expressions concisely, the following notations of integrals
are introduced, which were extended from the symbols defined by Sneddon (1951, 1969) and
that adopted by Fan (1978) and Shang et al. (1996a, b, c), as dimensionless functions of (ρ, z)

Si(m, n) = an+1
∫ ∞

0
ζ n sin (ζa) Jm(ζρ)e

−ζz/γi dζ

Ii(m, n) = an
∫ ∞

0
ζ n−1 cos (ζa) Jm(ζρ)e

−ζz/γi dζ (14)

Ti(m, n) = an+1
∫ ∞

0
ζ nJ1(ζa)Jm(ζρ)e

−ζz/γi dζ.

The subscript i corresponds to the eigenvalue γi . One can readily see that Ti(0, 0) and Ti(1, 0)
are Ti and Ri in Shang et al. (1996a, b, c), respectively. Adopting these symbols, we have

uz = aN1θ0

{
l13

a3
[S3(0,−2) − I3(0, 0)] − l11

a1
[S1(0,−2) − I1(0, 0)]

}
+
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N2θ0

{
l13

a3
[S3(0,−2) − I3(0, 0)] − l12

a2
[S2(0,−2) − I2(0, 0)]

}
+

aθ0

{
l11

a1
α1T1(0,−1) + l12

a2
α2T2(0,−1) − l13

a3

(
α1 + α2 − ma4

κ

)
T3(0,−1) +

ml14

κ
T4(0,−1)

}
(15)

σzz = N1θ0 {γ1[S1(0,−1) − I1(0, 1)] − γ3[S3(0,−1) − I3(0, 1)]} +
N2θ0 {γ2[S2(0,−1) − I2(0, 1)] − γ3[S3(0,−1) − I3(0, 1)]} −
θ0

{
γ1α1T1(0, 0) + γ2α2T2(0, 0) − γ3

(
α1 + α2 − ma4

κ

)
T3(0, 0) +

a4mT4(0, 0)
}

(16)

ϕ = aN1θ0

{
l23

a3
[S3(0,−2) − I3(0, 0)] − l21

a1
[S1(0,−2) − I1(0, 0)]

}
+

aN2θ0

{
l23

a3
[S3(0,−2) − I3(0, 0)] − l22

a2
[S2(0,−2) − I2(0, 0)]

}
+

aθ0

{
l21

a1
α1T1(0,−1) + l22

a2
α2T2(0,−1) − l23

a3

(
α1 + α2 − ma4

κ

)
T3(0,−1) +

ml24

κ
T4(0,−1)

}
(17)

Dz = N1θ0

{
d1γ1

a1
[S1(0,−1) − I1(0, 1)] − d3γ3

a3
[S3(0,−1) − I3(0, 1)]

}
+

N2θ0

{
d2γ2

a2
[S2(0,−1) − I2(0, 1)] − d3γ3

a3
[S3(0,−1) − I3(0, 1)]

}
−

θ0

{
d1γ1

a1
α1T1(0, 0) + d2γ2

a2
α2T2(0, 0) − d3γ3

a3

(
α1 + α2 − ma4

κ

)
T3(0, 0) −

d4mT4(0, 0)
}
. (18)

3.1.3. Asymptotic behavior at the crack tip
Due to the importance of crack tip behavior, a local polar coordinate system (r, ω) along the
crack front in the meridional plane is introduced, Figure 2. This local coordinate system is
needed to find the asymptotic solution of a crack in thermopiezoelectric materials as limiting
case r → 0. This technique was adopted from Sneddon (1951) for the cases of elastic crack
analysis. When applying to crack problems in thermopiezoelectric materials, care should be
taken on interpreting the correlation between those geometric definitions and the material
eigenvalues, which will be illustrated below.



Analytical solutions for two penny-shaped crack problems 119

Figure 2. Local polar coordinates (r, ω) at the crack tip.

To consider asymptotic behavior at the crack tip, the geometric quantities ri, ωi, zi, i =1,
2, 3 are introduced corresponding to the eigenvalues γi of the thermopiezoelectric material as

zi = z
/
γi = ri sinωi

ri cosωi = r cosω

}
i = 1, 2, 3. (19)

Noting that ρ = 1 + r cosω, z = r sinω from Figure 2, we have

ωi = tan−1

(
tanω

γi

)
ri = r

cosω

cosωi


 i = 1, 2, 3. (20)

The quantities ri, ωi are useful for deriving the integrals appeared in Eqs. (15-18), but they
should not be understood as another local coordinates despite of the above relations. When
only the principal terms of Eqs. (15–18) near the crack tip are considered, we have

Si(0,−2) − Ii(0, 0) =
√

2ri
a

sin
ωi

2
, Si(0,−1) − Ii(0, 1) = −

√
a

2ri
cos

ωi

2
. (21)

In general, the integrals Ti(m, n) cannot be expressed with elementary functions, therefore,
only the special cases of crack plane is considered. These cases are useful for assessing the
asymptotic behavior at the crack tip. When z = 0 and ρ > a, we have

Ti(0, 0) = 0, Ti(0,−1) =
(

a

2ri

)
· 2F 1

(
1

2
,

1

2
; 2; a

2

r2
i

)
, Ti(1,−1) = a

2ri
, (22)

where 2F1(a, b; c; z) is hypergeometric function (see Abramowitz and Stegun, 1972; Grad-
stejn and Ryzik, 1980). It’s found that the terms involving Ti(0, 0) have no contribution on
stress-intensity factors. By expanding the integral Ti(0,−1) into series, we also found that no
terms involving

√
2ri existed. Based upon these findings, Eqs. (15–18) can be rewritten as

uz = √
aN1θ0

(
l13

a3

√
2r3 sin

ω3

2
− l11

a1

√
2r1 sin

ω1

2

)
+

√
aN2θ0

(
l13

a3

√
2r3 sin

ω3

2
− l12

a2

√
2r2 sin

ω2

2

)
(23)
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σzz = √
aN1θ0

(
γ3√
2r3

cos
ω3

2
− γ1√

2r1
cos

ω1

2

)
+

√
aN2θ0

(
γ3√
2r3

cos
ω3

2
− γ2√

2r2
cos

ω2

2

)
(24)

ϕ = √
aN1θ0

(
l23

a3

√
2r3 sin

ω3

2
− l21

a1

√
2r1 sin

ω1

2

)
+

√
aN2θ0

(
l23

a3

√
2r3 sin

ω3

2
− l22

a2

√
2r2 sin

ω2

2

)
(25)

Dz = √
aN1θ0

(
d3γ3

a3

1√
2r3

cos
ω3

2
− d1γ1

a1

1√
2r1

cos
ω1

2

)
+

√
aN2θ0

(
d3γ3

a3

1√
2r3

cos
ω3

2
− d2γ2

a2

1√
2r2

cos
ω2

2

)
(26)

3.1.4. Stress-intensity factors
Using the definitions of stress- and electric displacement-intensity factors,

KI = lim
r→0

√
2π rσzz(r, ω = 0)

KIV = lim
r→0

√
2π rDz(r, ω = 0)

(27)

and noting that when z = 0, i.e., ω = 0 or π , according to Eq. (20) follows ωi = 0 or π and
ri = r, i = 1, 2, 3, we have

KI = N1
√
πaθ0(γ3 − γ1) + N2

√
πaθ0(γ3 − γ2)

KIV = N1
√
πaθ0

(
d3

a3
γ3 − d1

a1
γ1

)
+ N2

√
πaθ0

(
d3

a3
γ3 − d2

a2
γ2

) (28)

The other stress-intensity factors vanish in this case.
From Eqs. (23–26) and relation (20), the asymptotic singular behavior at the crack tip

could be discussed. It’s found that the angular distributions of stress and electric displacement
possess some complicated forms, which depends largely upon material constants. The typical
simple forms of linear elastic crack solutions are no longer valid for thermopiezoelectric cases.
On the contrary, their actual distributions could only be determined numerically for specific
materials.

Considering the special case at the crack plane, i.e. when z = 0, we have

σzz(r, ω = 0) =
√

a

2r
{N1θ0(γ3 − γ1) + N2θ0(γ3 − γ2)}

Dz(r, ω = 0) =
√

a

2r

{
N1θ0(

d3

a3
γ3 − d1

a1
γ1) + N2θ0(

d3

a3
γ3 − d2

a2
γ2)

}
(29)
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Figure 3. Penny-shaped crack under perpendicular heat flow.

and

;uz = uz(r, ω = π) − uz(r, ω = −π)

= √
8ra

{
N1θ0

(
l13

a3
− l11

a1

)
+ N2θ0

(
l13

a3
− l12

a2

)}
;ϕ = ϕ(r, ω = π) − ϕ(r, ω = −π)

= √
8ra

{
N1θ0

(
l23

a3
− l21

a1

)
+ N2θ0

(
l23

a3
− l22

a2

)}
(30)

According to Pak (1992) and Kuna (1998), there exist relations between stress-intensity fac-
tors and the opening displacement and electric potential, i.e. Eq. (30) at the crack face, as


;uz
;ux
;uy
;ϕ


 =

√
8r

π
[Y(c, e,∈)]




KI

KII

KIII

KIV


 (31)

where [Y] is the generalized Irwin matrix. This relation is valuable for determining stress-
intensity factors as well as electromechanical energy release rate G. However, from Eqs. (28–
30), the Irwin matrix for this case could not be found explicitly. This might be due to the
potential function method, although other solution methods did not succeed as well.

3.2. PROBLEM 2: PENNY-SHAPED CRACK UNDER UNIFORM HEAT FLOW

3.2.1. Formulation of the problem
Consider a penny-shaped crack with radius of unit length located in the z = 0 plane, Figure 3.
The faces of the crack are thermally insulated. There is a uniform steady flow of heat, q0, in
an infinite thermopiezoelectric medium in the direction of the negative z-axis. The original
temperature field is θ0 = q · z, where q is a positive constant. Noticing the anti-symmetry of
this problem, the disturbing temperature field due to the crack is an odd function of z,

θ(ρ,−z) = −θ(ρ, z).
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Accordingly, the corresponding boundary conditions are

∂θ

∂z
= −q, 0 � ρ < a, z = 0

θ = 0, ρ > a, z = 0


 (32)

σzz = σzρ = Dz = 0, 0 � ρ < a, z = 0

σzz = uρ = Dz = 0, ρ > a, z = 0

}
(33)

3.2.2. Thermopiezoelectric field
The temperature field satisfying the relation (32) is, when z � 0,

θ (ρ, z) = 2κq

π

∫ ∞

0

[
ζ−2 sin (ζa) − aζ−1 cos (ζa)

]
J0 (ζρ) e

−ζz/κdζ. (34)

To fulfill the boundary conditions, the piezoelectric potential functions are chosen as

ψ (ρ, z) = 2κq

π

∫ ∞

0

[
ζ−2 sin (ζa) − aζ−1 cos (ζa)

]
C (ζ ) J0 (ζρ) e

−ζz/κdζ

ψ1(ρ, z) = γ 2
1

∫ ∞

0
G1(ζ )J0(ζρ)e

−ζz/γ1dζ

ψ2(ρ, z) = γ 2
2

∫ ∞

0
[−n1G1(ζ ) + m1A(ζ )ζ

−2]J0(ζρ)e
−ζz/γ2dζ

ψ3(ρ, z) = γ 2
3

∫ ∞

0
[−n2G1(ζ ) + m2A(ζ )ζ

−2]J0(ζρ)e
−ζz/γ3dζ, (35a)

where

n1 =
(
γ1

γ2

)2
a1d3 − a3d1

a2d3 − a3d2
n2 =

(
γ1

γ3

)2
a1d2 − a2d1

a3d2 − a2d3

m1 = m

γ 2
2

· a4d3 + a3d4

a2d3 − a3d2
m2 = m

γ 2
3

· a4d2 + a2d4

a3d2 − a2d3

A(ζ ) = 2κq

π

[
ζ−2 sin (ζa) − aζ−1 cos (ζa)

]
. (35b)

The unknown G1(ζ ) is the solution of a pair of dual-integral equations as∫ ∞

0
ζ [ζG1(ζ ) + η1A(ζ )

/
ζ ]J1(ζρ)dζ = (η1 − η2)κqρ

/
2, ρ < a∫ ∞

0
[ζG1(ζ ) + η1A(ζ )

/
ζ ]J1(ζρ)dζ = 0, ρ > a


 (36)

i.e.,

ζ 2G1(ζ ) = M1
[
ζ−2 sin (ζa) − aζ−1 cos (ζa)

]− M2 a
2 sin (ζa) , (37a)
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where

M1 = −2η2κq
/
π, M2 = 2(η1 − η2)κq

/
3π

η1 = a2m1γ2 + a3m2γ3 + a4m/κ

a1γ1 − a2n1γ2 − a3n2γ3
η2 = m1γ

2
2 + m2γ

2
3 + m

γ 2
1 − n1γ

2
2 − n2γ

2
3

.
(37b)

Hence, we have

uρ = −γ 2
1 a

2{M1[S1(1,−3) − I1(1,−1)] − M2S1(1,−1)}
+ γ 2

2 n1 a
2{M1[S2(1,−3) − I2(1,−1)] − M2S2(1,−1)}

+ γ 2
3 n2 a

2{M1[S3(1,−3) − I3(1,−1)] − M2S3(1,−1)}
− 2κq

π
a2{γ 2

2 m1[S2(1,−3) − I2(1,−1)]
+ γ 2

3 m2[S3(1,−3) − I3(1,−1)] + m[S4(1,−3) − I4(1,−1)]} (38)

σzρ = M1a{a1γ1[S1(1,−2) − I1(1, 0)] − a2γ2n1[S2(1,−2) − I2(1, 0)]
− a3γ3n2[S3(1,−2) − I3(1, 0)]} − M2a{a1γ1S1(1, 0)

− a2γ2n1S2(1, 0) − a3γ3n2S3(1, 0)} + 2κq

π
a{a2γ2m1[S2(1,−2) − I2(1, 0)]

+ a3γ3m2[S3(1,−2) − I3(1, 0)] + (a4m
/
κ)[S4(1,−2) − I4(1, 0)]} (39)

To analyze the asymptotic behavior at the crack tip, the local polar coordinate system, Fig-
ure 2, is taken again for this crack problem. Referring to the integral formulae in Sneddon
(1951, 1969) and Shang et al. (1996b, c) and using

Si(1,−3) − Ii(1,−1) = ρ

3a
+ π

6
+ zi

3a
Ii(1, 0) − ρ2

3a2
Si(1,−1) − zi

a
Si(1,−2)

yield

Si(1,−3) − Ii(1,−1) = 1

3

√
2ri
a

sin
ωi

2
, Si(1,−1) = −

√
2ri
a

sin
ωi

2
,

Si(1, 0) =
√

a

2ri
cos

ωi

2

Si(1,−2) − Ii(1, 0) = −1

2

√
2ri
a

cos
ωi

2

+ 1

2
tan−1

{(
1 +

√
2ri
a

sin
ωi

2

)/(√
2ri
a

cos
ωi

2

)}

Considering only the principal values of the integrals, the displacements and stresses are

uρ = a
√
a(M1

/
3 + M2)

[
−γ 2

1

√
2r1 sin

ω1

2
+ γ 2

2 n1

√
2r2 sin

ω2

2
+ γ 2

3 n2

√
2r3 sin

ω3

2

]
− a

√
a

2κq

3π

(
γ 2

2 m1

√
2r2 sin

ω2

2
+ γ 2

3 m2

√
2r3 sin

ω3

2
+ m

√
2r4 sin

ω4

2

)
(40)
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σzρ = a
√
aM2

(
−a1γ1

1√
2r1

cos
ω1

2
+ a2γ2n1

1√
2r2

cos
ω2

2
+ a3γ3n2

1√
2r3

cos
ω3

2

)
(41)

3.2.3. Stress-intensity factors
The mode II stress-intensity factor can be extracted straightforwardly

KII = lim
r→0

√
2πrσzρ(r, ω = 0) = M2a

√
πa(−a1γ1 + a2γ2n1 + a3γ3n2). (42)

Once again, it is observed that the angular distribution of shear stress is rather complicated
and related to the specific materials. This is in agreement with the conclusion obtained in the
first crack analysis.

4. Finite element verifications

To examine above analytical solutions, numerical analyses of these thermally loaded crack
problems are required. As illustrated in Kuna (1998), Shang et al. (2001a, b), various finite
element techniques were developed for such analyses of thermopiezoelectric materials, which
have been proved to be capable to take into account the influence of thermal effects on
thermopiezoelectric behavior. These techniques, including CTE (singular crack-tip elements),
RSE (regular standard elements), MCCI (modified crack closure integral) with three options
RSI-1, -2, -3 and a procedure TPESAP (thermopiezoelectric static analysis procedure), will
be exploited to analyze the above crack problems.

4.1. PROBLEM 1

This uniform temperature covered penny-shaped crack embedded in an infinite thermopiezo-
electric body is analyzed by following the procedure TPESAP. The finite element model
was meshed with ABAQUS 20-node brick piezoelectric elements C3D20E. The discretized
domain is ten times the crack radius to simulate the infinite body, see Figure 4. More details
on FEM model was presented in Shang et al. (2001a).

In our computations, the following materials parameters are assumed

c11 = 126.0, c12 = 55.0, c13 = 53.0, c33 = 117.0, c44 = 35.3 GPa
e31 = −6.5, e33 = 23.3, e15 = 17.0 C/m2, ∈11= 1.51 × 10−8,

∈33= 1.30 × 10−8C2
/

Nm2, cT = 62.244 GPa, κ11 = 50, κ33 = 75W
/

Km,

κ2 = κ33
/
κ11 = 1.5, λ11 = 1.97382 × 106, λ33 = 1.4165 × 106N

/
Km2,

p3 = −5.4831 × 10−6C
/

Km2

Elastic, dielectric and piezoelectric constants of PZT-5H are used for verification purposes.
Thermal properties, including heat conduction coefficients, stress temperature coefficients,
and pyroelectric constants, are selected arbitrarily. Numerical results and analytical solutions
are presented for the case of uniform temperature θ0 = −100oC of the crack faces.

According to the procedure TPESAP, heat transfer analysis is performed firstly. The results
of calculated temperature field are sufficiently close to the analytical expression in Eq. (9) with
relative errors less than 0.5%. The normalized stress intensity factors gI = KI

/
(−λ33θ0

√
πa)

and gIV = KIV

/
(p3θ0

√
πa), and the normalized energy release rate G

/
G0 with G0 =
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Figure 4. Finite element model of the penny-shaped crack.
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Table 1. The SIFs and G results from FEM and the exact solution of problem 1.

gI gIV G
/
G0

Exact solution 0.199 10.830 2.394E-2

CTE direct extraction, error (%) +0.82 −4.83 +1.2

CTE displacement extrapolation, error (%) +2.65 −5.82 +0.1

RSE displacement extrapolation, error (%) −1.16 −7.89 −2.8

MCCI with RSI-1, error (%) +10.2

MCCI with RSI-2, error (%) −17.8

MCCI with RSI-3, error (%) −24.8

MCCI averaged, error (%) −17.8

(λ2
33θ

2
0πa)

/
cT are listed in Table 1. The SIFs were derived from exact solution as well as finite

element calculations. The finite element techniques involved are CTE direct extraction, CTE
displacement extrapolation, and RSE displacement extrapolation. Noting that the G values for
the case of exact solution are calculated by using the relation derived in Kuna (1998) with
input of the exact SIFs.

From Table 1, one can see that the analytical solutions of SIFs are rather close to numerical
predictions using different finite element techniques. Therefore, one conclusion is readily
obtained that the analytical solution derived in Shang et al. (1996b) has been verified by the
numerical results and is correct.

Comparisons of the calculated G results conclude that the CTE technique gives a bet-
ter prediction of the energy release rate than the MCCI technique. The rather big errors of
the G-estimations with MCCI technique are observed. The results with the option RSI-2 is
also unacceptable, although it has been proved to be the best option for MCCI analyses of
three-dimensional cracks. The reason might be that the finite element model follows only
approximately the temperature jump across the crack front, while this temperature jump could
make a substantial contribution to the energy release rate.

4.2. PROBLEM 2

The penny-shaped crack subjected to constant heat flow q0 = 10K
/
m is analyzed numeri-

cally. According to Fourier’s law, the heat flux s normal to the crack face is given by

s = −κ33∂θ
/
∂z = κ33q0.

Because the upper part of FEM model was considered, the calculated temperature field is
described by the following expression

θ(ρ, z) = −θ(ρ,−z) = −2κq0

π

∫ ∞

0

[
ζ−2 sin (ζa) − aζ−1 cos (ζa)

]
J0(ζρ)e

−ζz/κdζ.

This has been achieved numerically with relative errors less than 0.5%. The normalized SIFs
gII = KII

/
(2κq0λ33a

√
πa
/
π)and normalized G

/
G0 are summarized in Table 2.

From these comparisons, we can find that the analytical expressions of SIFs obtained in Shang
et al. (1996a) predict closely that of finite element analyses. Thus, the analytical solution of
problem 2 has also been verified numerically.
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Table 2. The SIFs and G results from FEM and the exact solutions of
problem 2.

gII G
/
G0

Exact solution 0.170 9.629E-5

CTE direct extraction, error (%) +4.0 +8.2

CTE displacement extrapolation, error (%) −0.2 −0.4

RSE displacement extrapolation, error (%) −3.6 −7.1

MCCI with RSI-1, error (%) +26.2

MCCI with RSI-2, error (%) −4.6

MCCI with RSI-3, error (%) −11.6

MCCI average, error (%) −7.9

The calculated results of G suggest that both the CTE and the RSI-2 techniques are able to
give a good approximation of the energy release rate.

5. Conclusions

In this work, two analytical solutions of thermally loaded penny-shaped cracks in thermo-
piezoelectric materials are re-examined and further investigated. The analytical expressions
of stress-intensity factors are verified numerically by different finite element techniques. It’s
also found that the angular distributions of stresses and electric displacements near the crack
tip are rather complicated, which are related to elastic, piezoelectric, and dielectric con-
stants of materials and could only be determined numerically for specific thermopiezoelectric
materials.

On the other hand, the finite element techniques developed in Kuna (1998), Shang et al.
(2001a, b) are tested for these crack problems. The conclusion is that the CTE technique gives
a better prediction of stress-intensity factors and electromechanical energy release rate, and
the MCCI technique with the option RSI-2 might be suitable for determining energy release
rate with fine regular finite element mesh near the crack tip.

It should also be emphasized here that these finite element techniques have the capability
to deal with more general crack configurations, e.g., elliptical crack problems, in thermo-
piezoelectric materials. These efforts are under investigation.
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