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 
Abstract—A novel substrate integrated waveguide (SIW) fed 

horizontally polarized end-fire magneto-electric (ME) dipole 
antenna composed of an open-ended SIW with broad walls 
vertical to substrates and a pair of electric dipoles realized by four 
metallic patches is proposed. Simple configuration and excellent 
performance including an impedance bandwidth of 46.5%, stable 
gain of around 6 dBi and symmetrical cardioid radiation patterns 
with low backward radiation and low cross polarizations are 
achieved. An SIW 90° twist integrated in three-layered substrate 
is implemented in order to connect the ME-dipole antenna 
conveniently to the SIW beam-forming network with broad walls 
parallel to substrates. A 4 × 4 SIW Butler matrix with a 
three-layered zigzag topology is then designed, which enables a 
size reduction of 45% for the matrix compared with conventional 
single-layered configuration but not affecting its operating 
characteristics. By employing a 2 × 4 ME-dipole array with 90° 
twists, two folded Butler matrices and four SIW 3-dB E-plane 
couplers, a multi-beam end-fire array that can radiate eight 
beams scanning in two dimensions is designed at the 60-GHz band. 
The fabricated prototype verifies a wide impedance bandwidth of 
22.1%, gain varying from 10 to 13 dBi and stable radiation beams 
can be obtained. Due to good performance and the compact 
structure with low fabrication costs, the proposed design would be 
attractive for future millimeter-wave wireless applications 
including 5G communications and the WiGig system. 

 
Index Terms—Substrate integrated waveguide (SIW), 

magneto-electric (ME) dipole antenna, multi-beam antenna array, 
end-fire, millimeter waves, 5G communications. 
 

I. INTRODUCTION 

 ulti-beam antenna arrays fed by passive beam-forming 
networks that have simple structure, low fabrication costs, 
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low insertion loss and the ability to cover a wide area with a 
number of high directivity radiation beams have attracted 
increasing attention for applications at the millimeter-wave 
spectrum recently. Different types of transmission lines have 
been employed to build several millimeter-wave planar passive 
beam-forming networks. Butler matrixes consisting of 
microstrip lines and coplanar waveguides (CPWs) were 
reported in [1]-[5]. Single-layered configurations can be 
obtained but the insertion loss properties of these designs are 
degraded by the relatively large transmission loss of the 
microstrip line and CPW. Better transmission characteristics 
can be achieved by the waveguide structures at 
millimeter-wave frequencies. The substrate integrated 
waveguides (SIW) or the post-wall waveguides have been 
utilized for realizing the single-layered beam-forming networks 
of the multi-beam arrays with promising performance [6]-[9]. 
However, due to the relatively large width of the SIW, these 
beam-forming networks usually suffer from a bulky 
configuration. Moreover, a single-layered structure is difficult 
to provide enough degree of freedom in the design of the feed 
network for a two dimensional (2-D) multi-beam array. 

As one of the possible applications in future millimeter-wave 
wireless communications, the multi-beam antenna arrays for 
portable devices, including the cellular phone and the tablet 
have been investigated in [10], [11]. It has been found that the 
arrays with multi-beam end-fire radiation, i.e. the radiation 
beams directing to the lateral edges of the devices, would be 
more promising because of its ability to save spacing occupied 
by antenna elements and also mitigate the undesirable influence 
of user’s hand on the antenna radiation characteristics. 
Obviously, the radiating elements play a vital role in the 
achievable performance of the end-fire antenna array. End-fire 
antennas with high directivity, including the Yagi-Uda antenna 
[12], the horn antenna [13] and the dielectric rod antenna [14], 
are not suitable for the multi-beam array design due to their 
narrow beamwidth. A microstrip line fed angled-dipole antenna 
with a simple configuration was investigated in [15]. Wide 
impedance bandwidth can be obtained but the cross 
polarization of radiation is relatively high. Dual-polarized 
radiation can be realized by the patch antenna reported in [10]. 
However, the complex multi-layered geometry of the antenna 
makes it not easy to fabricate. In order to connect with the SIW 
beam-forming networks, end-fire antenna elements with SIW 
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feed have also been studied. The end-fire post-wall 
waveguide-aperture antenna with an impedance bandwidth of 
11% and unsymmetrical radiation pattern was reported in [16]. 
More recently, by applying the concept of the magneto-electric 
(ME) dipole that was originally introduced in [17], a wideband 
antenna element with end-fire radiation has also been realized 
in [11]. However, all these designs are vertically polarized due 
to the constraint of the electric field direction of TE10 mode 
propagating along the feeding SIW. 

For the purpose of enriching the polarization manners of the 
SIW fed end-fire antennas, which is important for further 
enhancing the channel capacity of millimeter-wave wireless 
communications by the use of polarization diversity, a novel 
horizontally polarized end-fire ME-dipole antenna is proposed 
in the 60-GHz band in this paper. The combination of a 
three-layered open-ended SIW with the electric field lying 
along horizontal direction and four metal patches enables the 
radiating element with wide impedance bandwidth, 
symmetrical radiation pattern with low cross polarization, low 
backward radiation and stable gain. Additionally, with the help 
of a new SIW 90° twist integrated into three substrates, the 
proposed ME-dipole antenna with horizontal polarization can 
still be excited by the conventional SIW conveniently. After 
that, in order to decrease the dimension of the passive 
beam-forming network, a folded 4 × 4 SIW Butler matrix with a 
zigzag topology is implemented in three-layered substrates. 
The compact configuration can be achieved but not affecting 
the operating performance of the design. By employing the 
horizontally polarized ME-dipole antennas and the folded 
beam-forming networks, a 2 × 4 antenna array that can generate 
eight end-fire radiation beams scanning in two dimensions is 
designed, fabricated and measured. Good characteristics are 
demonstrated by the fabricated prototype. 

The paper is organized as follows. The detailed geometry 
and working mechanism of the proposed horizontally polarized 
end-fire ME-dipole antenna as well as the SIW 90° twist are 
described in Section II. Section III presents the geometry and 
simulated results of the three-layered folded Butler matrix. 
Design considerations of the multi-beam antenna array are 
depicted in Section IV and the measured results are discussed in 
Section V. A brief conclusion is finally given in Section VI. 

II. MAGNETO-ELECTRIC DIPOLE ANTENNA 

A. Horizontally Polarized Magneto-Electric Dipole 

As aforementioned, the SIWs with broad walls parallel to 
horizontal substrates are usually applied to feed the end-fire 
antennas, which leads to the vertical polarization of these 
designs. Another kind of laminated waveguide structure with 
broad walls vertical to the integrating substrates was also 
reported in [18], but it was seldom used for antenna design. In 
this paper, this concept is realized in three stacked PCB 
substrates. By employing this structure as the feeding scheme, a 
novel SIW-fed ME-dipole antenna with horizontally polarized 
end-fire radiation can be implemented successfully. 

The geometry of the proposed ME-dipole antenna is 
presented in Fig. 1, where the whole structure is integrated into  

 
 

 (a)                                                  (b) 

 
(c) 

Fig. 1. Geometry of the proposed horizontally polarized end-fire ME-dipole 
antenna. (a) Perspective view, (b) Top view. (c) Front view.  

 
three printed circuit board (PCB) laminates. The two columns 
of metallic vias indicated in orange in Fig. 1 and the metallic 
layers are combined together to compose two metallic lattice 
arrays in vertical direction, i.e. y-axis, which work as the broad 
walls of the SIW. On the other hand, the top and the bottom 
metallic layers in Fig. 1 (a) are used as the side walls of the SIW. 
Therefore, the antenna can be excited by the TE10 mode within 
the SIW with the electric field lying along horizontal direction. 

As discussed in [17], a combination of an electric dipole and 
a magnetic dipole orthogonal to each other is required in order 
to realize the ME-dipole antenna. In this design, the radiating 
aperture of the open-ended SIW can be seen as an equivalent 
magnetic dipole Jm radiating in vertical direction according to 
the equivalence principle. Two pairs of metallic patches 
operating as two electric dipoles J in horizontal direction are 
introduced into the middle two metallic layers as shown in Fig. 
1. Since the four patches are connected to the broad walls of the 
open-ended SIW, a portion of the radiation power is coupled to 
the patches and thus the electric dipoles can be excited 
effectively. In order to tune the input impedance of the antenna, 
the substrates in front of the radiating aperture are extended 
toward the direction of z-axis. Furthermore, two columns of 
metallic pins characterized in white are added into the design as 
depicted in Fig. 1. The pins are combined with the metallic 
layers to realize two lattice arrays behind the antenna. Since the 
size of the metallic lattices is small in comparison with the 
operating wavelength, they can be approximately seen as two 
metallic walls in this design. For the antenna array that will be 
discussed in Section IV, the vertical walls can effectively 
isolate the radiating elements with other devices located behind 
the array. In this design, all substrates are Rogers 5880 PCB 
laminates with a thickness of 0.787 mm and a dielectric 
constant of 2.2. The antenna is designed with the help of a 
full-wave electromagnetic solver Ansys HFSS [19]. 

The design guideline of this antenna is similar to those given 
in [16]. By properly adjusting the dimensions of the metallic  
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Table II 
DIMENSIONS OF THE E-PLANE 180° BEND (UNITS: mm) 

 

Parameters Zslot1 Zslot2 lslot wslot 

Values 0.4 2.1 1.6 0.15 

 
 

 
Fig. 10. Simulated S-parameters of the E-plane 180° bend. 

 
 

 
Fig. 11. Simulated S-parameters of the proposed 3-layered 4 × 4 Butler matrix. 

 

 
Fig. 12. Simulated phase response of the proposed 3-layered 4 × 4 Butler 
matrix. 

 
etched in the common broad wall of the two SIW sections for 
power coupling between the two layers. Final values of the 
dimensions of the 180° bend are concluded in Table II and Fig. 
10 gives the simulated performance. It can be seen that the 
operating bandwidth is 29.3% for |S11| < -10 dB (from 50.2 to 
67.4 GHz). 

The simulated S-parameters and phase responses of the 
proposed 3-layered Butler matrix are shown in Fig. 11 and Fig. 
12, respectively. Reflection coefficients of less than -10 dB and 
the phase error of less than ±15° can be achieved over a wide 
bandwidth of 23.6% (from 54.2 to 68.7 GHz), which verifies 
that a notable size reduction can be realized successfully by the 
proposed SIW Butler-matrix but not degrading its performance. 

 
Fig. 13. Side view of the proposed 2 × 4 multi-beam end-fire array.  
 

      
                                 (a)                                                  (b) 
Fig. 14. Geometry of the E-plane 3-dB coupler. (a) Perspective view, (b) Top 
view with dimensions. 

  
Table III 

DIMENSIONS OF THE E-PLANE 3-dB COUPLER (UNITS: mm) 
 

Parameters wslot2 lslot2 d 

Values 0.22 3.6 0.27 

 

 
Fig. 15. Simulated S-parameters and phase response of the 3-dB E-plane SIW 
coupler. 

 
It should be noted that the detailed dimensions not given are 
same with those of the design in [11]. 

IV. TWO-DIMENSIONAL EIGHT-BEAM END-FIRE ARRAY  

By employing the horizontally polarized ME-dipole 
antennas and the folded SIW Butler matrixes discussed above, 
a 2 × 4 antenna array that can generate eight end-fire radiation 
beams scanning in two dimensions is implemented in this 
section. The side view of the array configuration is illustrated in 
Fig. 13. Two three-layered 4 × 4 Butler matrixes are integrated 
into substrate Layers 1 to 3 and Layers 4 to 6, respectively. The 
output ports of the two matrices are linked to the 2 × 4 antenna 
array with 90° SIW twists. The eight input ports of the two 
matrixes that are located in neighboring Layers 3 and 4 are  
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Fig. 16. Top view of the geometry of the 1 × 4 antenna array with tapered 
structures.  
                                  

  
                         (a)                                                            (b) 
Fig. 17. Radiation patterns of the 1 × 4 antenna array with and without the taper. 
(a) 45°phase difference between the input ports, (b) 135° phase difference 
between the input ports. 
 
connected separately by applying four SIW E-plane 3-dB 
couplers. Therefore, the power from the input ports of the array 
can go through the beam-forming network as indicated in Fig. 
13 and finally excite the antenna array. Compared with the SIW 
beam-forming network with the single-layered topology that 
can realize the same function, at least 77.5% of spacing in 
horizontal plane can be saved by the proposed design. More 
importantly, by introducing the degree of freedom in vertical 
direction, different portions of the antenna array can be 
connected directly without the use of delay lines or crossovers, 
which can reduce the length of the paths throughout the 
beam-forming network and thus decreases the undesired 
insertion loss. As shown in Fig. 13, the six stacked PCB 
laminates consisting of the antenna array is assembled by two 
aluminum fixtures. The geometry of the SIW E-plane 3-dB 
coupler is illustrated in Fig. 14, where the two longitudinal slots 
are cut on the common broad wall of the two SIWs. Values of 
the dimensions are collected in Table III. The simulated 
operating bandwidth of the coupler is 27% for |S11| < -15 dB 
(from 50 to 65.6 GHz) as presented in Fig. 15. Besides, the 
phase error is less than 5° over this band. 

The element spacing of the 1 × 4 ME-dipole array shown in 
Fig. 16 is 2.83 mm (0.57 λ0 at 60 GHz), which is equal to the 
width of the SIW used for composing the beam-forming 
network. It is found in the design procedure that the small 
element spacing would result in the unacceptable sidelobe level 
of the radiation pattern as shown in Fig. 17. In order to 
overcome the issue, a tapered configuration in the red frame in  
Fig. 16 is adopted by the antenna elements. In this region, the 
height of the feeding SIW a is tapered from 1.1 mm to 0.7 mm. 
The dimensions of the electric dipoles should be adjusted 
slightly as well to get better impedance matching. With the help 
of this modification, the mutual coupling characteristics and the 
radiation pattern of the array can be improved effectively. The  

 
Fig. 18. Top view of the geometry of the antenna array with SIW to air-filled 
waveguide transitions.  

 
simulated radiation patterns of the 1 × 4 ME-dipole array with 
the tapered structures and the theoretical results calculated from 
the produce of the radiation pattern of a single element and the 
array factor are also given in Fig. 17, which verifies the 
effectiveness of this modification. However, it can be observed 
that the first sidelobe level of the beam directing to around 45° 
is still relatively high. This is mainly because the element 
spacing of greater than 0.5 λ0 at 60 GHz. Better sidelobe level 
can be achieved by employing smaller element spacing of the 
array. 

Based on the above considerations, the top view of the entire 
configuration of the multi-beam array is shown in Fig. 18. For 
the sake of measurement, the input ports of the array are 
extended outward and connected to eight wideband SIW to 
air-filled waveguide transitions developed previously in [21]. 

V. MEASUREMENT AND DISCUSSION 

A prototype of the designed multi-beam antenna array with 
horizontally polarized end-fire radiation beams was 
implemented by standard PCB facilities as presented in Fig. 19. 
During the measurement, the ports that were not under test were 
connected with WR-15 waveguide loads. The S-parameters of 
the array were performed by a millimeter-wave band Agilent 
Network Analyzer E8361A with two ports. The radiation 
performance was measured by adopting an NSI 2000 near-field 
measurement system. The gain of the array was obtained by 
comparison with a standard horn. 

A. Impedance Bandwidth and Isolation 

Measured and simulated S-parameters are given in Fig. 20 
with good agreement. The measured and simulated overlapped 
bandwidths of the array for S-parameters of less than -10 dB are 
22.1% (from 52.3 to 65.3 GHz) and 25.3 % (from 51.8 to 66.8 
GHz) respectively. A slight shift of around 0.8 GHz in 
frequency between the measured and simulated results would 
mainly result from the fabrication tolerance. The results of |S55| 
to |S88| should be similar to those of ports 1 to 4 due to the 
symmetry of the array configuration. The measured results 
above 67 GHz are not available because of the frequency limit 
of the used network analyzer. 
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Fig. 24. Measured and simulated gain and directivity of the proposed antenna 
array. 
 
feeding from Port 2 is up to 11.7 dBi with a variation of 1.8 dB 
throughout the same band. The directivities of the antenna array 
are around 14.5 dBi and 13 dBi respectively for excitation from 
Port 1 and Port 2. Hence, the measured radiation efficiency of 
the array should be approximately 60% by comparing the 
results of gain and directivity. According to the results 
presented in Sections II to IV, the simulated insertion losses of 
the Butler matrix, 3-dB coupler, 90° twist and antenna element 
are 1.2, 0.1, 0.4 and 0.35 dB, respectively. Therefore, the loss of 
entire antenna array should be around 2.05 dB. The radiation 
efficiency calculated from the result is 62%, which is close to 
the measured one. The slight difference between the measured 
and simulated results would be due to the uncertainty of 
dielectric loss of the substrates in V-band, and the possible 
fabrication and alignment tolerances. It should be noted that the 
insertion losses from the extending SIW sections and the 
waveguide to SIW transitions have been calibrated. 

D. Comparison and Discussion 

The configuration features and operating characteristics of 
the proposed and reported millimeter-wave multi-beam antenna 
arrays with passive beam-forming networks are summarized in 
Table IV for comparison. Most reported 2-D multi-beam arrays 
can only generate the beams scanning in planes vertical to the 
antenna array. In this design, by applying the proposed 
multi-layered SIW beam-forming network with compact 
configuration, 2-D multi-beam radiation can be realized in the 
end-fire plane. Moreover, thanks to the low-loss properties of 
the SIW beam-forming network, better gain performance can 
be achieved by this work in comparison with the designs in [2] 
and [21]. Besides, the operating bandwidth of the proposed 
array is also comparable with the reported wideband designs. 
The end-fire ME-dipole antenna investigated previously in [11] 
with vertical polarization and the ME-dipole antenna proposed 
in this paper pave the way for designing wideband multi-beam 
array with dual-polarized end-fire radiations. 

VI.  CONCLUSION 

A magneto-electric dipole antenna with horizontally 
polarized end-fire radiation, a wide bandwidth of 46.5% and 
stable gain of around 6 dBi has been proposed. A substrate 
integrated waveguide 90° twist with simple three-layered 
configuration has also been accomplished to feed the antenna  
 

 

Table IV 
COMPARISON BETWEEN PROPOSED AND REPORTED MILLIMETER-WAVE 

PASSIVE MULTI-BEAM ANTENNA ARRAYS 
 

Ref.
Antenna 

array 
Radiation 

Feed 
Network 

BW 
Gain
(dBi)

[2] 
2 × 4 

(Patch) 
2-D 

(Broadside) 
MSL 12% 12.3

[9] 
2 × 2 

(Patch) 
2-D 

(Broadside) 
SIW 7.6% 12 

[21]
2 × 2 

(ME-dipole)
2-D 

(Broadside) 
SIW 22% 12.5

[5] 
1 × 8 

(Angled 
Dipole) 

1-D 
(End-fire) 

MSL 18.2% 5.8 

[11]
1 × 8 

(ME-dipole)
1-D 

(End-fire) 
SIW 16.4% 12 

This 
work

2 × 4 
(ME dipole)

2-D 
(End-fire) 

SIW 22% 13.1

 
element. A compact beam-forming network consisting of two 
three-layered Butler matrixes with zigzag topology and four 
E-plane 3-dB couplers was implemented in six stacked 
substrates. With the combination of the proposed antenna 
elements and beam-forming network, a 2 × 4 magneto-electric 
dipole array that can generate eight horizontally polarized 
end-fire radiation beams scanning in two dimensions has been 
designed, fabricated and measured. An overlapped impedance 
bandwidth of 22.1%, stable radiation beams, and gain up to 
13.1 dBi were achieved. The proposed magneto-electric dipole 
in this paper enriches the polarization properties of the 
millimeter-wave antenna with end-fire radiation fed by the 
substrate integrated waveguide. The design process of the 
substrate integrated multi-layered beam-forming network 
provides a mean to effectively decrease the dimensions of the 
millimeter-wave passive multi-beam antenna arrays. With 
compact structure, low costs and good performance, the 
proposed multi-beam array design would be a desirable 
candidate to future millimeter-wave wireless applications, such 
as 5G communications and the WiGig systems. 
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