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a b s t r a c t

Local and global features are considerably important features in computer vision and play
an important role in scene categorization task. In this paper, an integrated feature descrip-
tion for scene categorization is constructed. First, we extract a type of extended contextual
features for scene images that contain the local gradient information and more comprehen-
sive local structural information. Mapping the local features by using improved LLC (Local-
constrained Linear Coding) scheme to form the original image representation; Secondly, a
set of global features named ‘gist’ are extracted that provide a statistical summary of the
spatial layout properties of the scene; Then, the contextual features and ‘gist’ features
are weighted combined based on their contribution for the integrated feature description,
and each image is represented by using LLC scheme. Finally, we perform the scene catego-
rization by libSVM with the HIK (Histogram Intersection Kernel) function. The proposed
method achieves a satisfactory average accuracy rate 87.60% on a set of 15-scene
categories.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Scene categorization is a fundamental problem in image understanding. It is a challenging task in computer vision and
widely applied in many domains, e.g. image retrieval, video surveillance, medical browser, travel navigation. Designing auto-
matic techniques for improving the scene categorization performance has attracted considerable attentions in recent years.

Scene categorization generally contains four stages: image feature extraction, image representation, classifier training
and image categorization. Especially, the first three stages can greatly influence the final categorization performance. Tradi-
tional strategies mainly paid more attentions to the global information of the images, e.g. color [1], texture [2], edge response
[3], gradient [4] etc. For scene categorization, Olive and Torralba [5–7] proposed a formal approach to build the ‘gist’ of the
scene from global features and provided a statistical summary of the spatial layout properties (naturalness, openness, expan-
sion, depth, roughness, complexity, ruggedness, symmetry) of the scene. The low dimensional global features are based on
configurations of spatial scales and estimated without invoking segmentation or grouping operations. These global features
may be sufficient for separating scenes with significant differences in the global properties (e.g. living room vs. forest, bed-
room vs. highway). However, for the scenes with similar global characteristics (e.g. living room vs. bedroom, tall building vs.
street), the global features may be poorly discriminative. Therefore, many methods of local image features extraction have
been proposed and show fine classification performance [8–11]. Qin et al. [12] constructed the contextual features based on
the local SIFT (Scale-Invariant Feature Transform) features to obtain the new descriptors of the features. The contextual
. All rights reserved.
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features provide local structural information and the method is called CVW (Contextual Visual Words) in this paper. Though
the contextual feature contains local spatial information, it has shortcomings in some degree; on one hand, it lacks global
information; the other, the contextual information may be incomplete due to that it only considers the 4-neighbor structural
information. Moreover, it is impossible to meet the computation cost and storage requirement with the scale level
increasing.

The representation of scene images is the second important step for scene categorization. As one of state-of-the-art tech-
niques, the BoFs (bag-of-features) [13–15] model has been extremely popular in scene categorization and receives extensive
considerations in characterizing the images. However, this scheme discards the spatial structural information, which se-
verely limits the descriptive power of the image representation. In order to overcome the shortcoming, Lazebnik et al.
[16] proposed an extension of the BoFs model named SPM (spatial pyramid matching). The strategy alleviates the loss of spa-
tial structural information and becomes one of the most successful approaches. Recently, researches focus on the scene cat-
egorization using statistical models and probability models [17–19]. These approaches have improved the scene
categorization accuracy effectively. However, it is difficult to meet the requirement of computational complexity and storage
space.

For the third step, the crucial core of classifier designing is the selection of kernel function. It is better to select suitable
kernel functions for different data sets. In scene categorization task, histograms are used in almost every aspect from feature
descriptors to image representation. HIK (Histogram Intersection Kernel) [20–23] has been shown to be suitable for compar-
ing the similarity of two histograms in machine learning tasks. It has been further shown to be a conditionally positive def-
inite kernel when the histograms only contain non-negative values, which makes HIK suitable for SVM (Support Vector
Machine) classification. Experiments have shown that HIK achieves higher accuracies in SVM classification than linear
and RBF (radius-based function) kernel in different fields [23].

In this paper, we extend the scheme in [12] to form contextual features in more comprehensive range at fewer scales
(s = 1, 2, 3). Also, a practical scheme called LLC (Locality-constrained Linear Coding) [15] is improved for feature mapping
to form the original image representation. To obtain the global information for the final image representation, a set of global
features called ‘gist’ are combined according to the contribution. One, contextual features contain local gradient and struc-
tural information, and ‘gist’ provides global information; the other, SPM scheme also provides global structural information.
The final image representation shows more discriminative for scene categorization. At last, we apply SVM classifier with HIK
to recognize the scene images. All of the experiments are performed on a complex set of the 15-category scenes.

The rest of the paper is as follows. In Section 2, we describe our approach in details. Experimental results are presented in
Section 3. We then discuss the problems of scene categorization in Section 4, and provide the conclusions in Section 5.
2. Our approach

2.1. Local contextual features

The SIFT descriptors [24] are 128-dimensional feature vectors and highly distinctive because of their invariance to image
scaling and rotation, and partial invariance to change in illumination and 3D camera viewpoint. According to the compara-
tive evaluation by Fei-Fei and Perona [25], the dense regular grid works better than the other detectors for scene categori-
zation. In our method, we use a regular grid instead of interesting point detection at multi-scales s ¼ 1;2; . . . ; S. Multi-scales
means that the SIFT descriptors are sampled with different configurations. More exactly, s ¼ 1 denotes the SIFT descriptors of
16 � 16 pixel patches computed over a grid with spacing of eight pixels; s = 2 denotes the SIFT descriptors of 32 � 32 pixel
patches computed over a grid with spacing of 16 pixels, and so on. Fig. 1 depicts the overall framework of the multi-scales
features sampling process.
: sampling points
: patch

Scale s Scale s+1 Scale s+2

Fig. 1. The overall framework of the multi-scales features sampling process.
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The extension of the contextual feature description is illustrated in Fig. 2. Fig. 2(a) shows the range of the former method.
Aiming to achieve more comprehensive contextual information in our scheme, here we extend the 4-neigbor of the ROI (re-
gion of interest) to 8-neighbor when constructing the contextual features. It is clear in Fig. 2(b) that there are eight raw SIFT
features within corresponding spacing pixels away from ROI at each scale. The extended neighbors provide more compre-
hensive local spatial structural information.

Set f1; f2; . . . ; fS as the 128-dimensional SIFT features at each scale and term them as raw features; f1c ; f2c ; . . . ; fðS�1Þc denote
the contextual features at each scale except the last scale S. In details, the contextual features at scale s are constructed in the
form as fsc ¼ ½fs; wc � fsþ1; wn � fsn �. fs denotes any raw feature of ROI at scale s, fsþ1 denotes the raw feature at the next scale or
the coarser level but has the same centre with fs, and fsn are the 8-neighbor of ROI. wC and wN are the weight parameters that
control the significance of the features from the coarser level and the neighbor regions, respectively, in order to balance the
discriminative power and generalization ability of the contextual information. The concept of constructing contextual fea-
tures is illustrated in Fig. 3. Aiming to improve the processing efficiency and save the storage space, we apply PCA (principle
component analysis) to map the high-dimensional contextual features at each scale to low-dimensional space. Each image
has multiple BoFs corresponding to the multi-scales. To form multiple vocabularies, the clustering processing is carried out
at multi-scales. The details are described in [26].

The extended contextual features contain both local gradient information and more comprehensive local spatial struc-
tural information. This type of features are more distinctive for some scenes (e.g. bedroom vs. living room, tall building
vs. street) with similar global characteristics but different local spatial structural information.

2.2. Global features extraction

Global feature is one type of the most important features for images. Compared with the local features, the global features
can distinguish the scenes with significant difference in the global properties (e.g. coast vs. kitchen). The two types of fea-
tures can have complementary advantages. The ‘gist’ features are proposed specifically for scene categorization [5]. In our
work, we extract low dimensional global features ‘gist’ as fg . The ‘gist’ descriptor computes the outputs energy of 24 filter
banks. These filters are Gabor-like filters turned to eight orientations at four different scales. The square output of each filter
is then averaged on a 4� 4 grid.

2.3. Features mapping

Image representation based on BoFs usually contains four steps: features extraction, vocabulary formation, features map-
ping and image representation. The schemes of vocabulary formation include supervised learning, semi-supervised learning
and unsupervised learning. Furthermore, the unsupervised learning methods become the major trends, e.g. K-means cluster-
ing and GMM (Gaussian Mixture Model) [17]. Features mapping is to quantize the image features into a set of visual words.
Then an image is represented by the distribution of the visual words in the vocabulary. In our experiments, we obtain the
initial vocabulary using K-means clustering and further apply KSVD (K-means Singular Value Decomposition) [25] to update
vocabulary at each scale.

Lazebnik et al. [16] encoded the features descriptors using VQ (vector quantization) on the condition of the least square
fitting:
Fig. 2.
approac
arg min
C

PN
i¼1
kxi � Bcik2

s:t:kcik‘0 ¼ 1; kcik‘1 ¼ 1; ci P 0;8i
ð1Þ
where X ¼ ½x1; x2; . . . ; xN� 2 RD�N denotes the BoFs of an image. B ¼ ½b1; b2; . . . ; bM � 2 RD�M is vocabulary with M words,
C ¼ ½c1; c2; . . . ; cN� represents the set of codes for X. The constraint condition kcik‘0 ¼ 1; kcik‘1 ¼ 1; ci P 0 restricts that there
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The extension of our approach against the former method. (a) the 4-neighbor of the ROI in the former method. (b) the 8-neighbor of the ROI in our
h.



Fig. 3. The schema of the extended contextual features at scale s.
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is only one non-zero element in each code ci and the single non-zero element is 1 by searching the nearest neighbors. So this
mapping scheme easily losses quantization information. In order to improve the performance of codes, Yang et al. [14] pro-
posed to map the descriptors by using a sparse regularization term via relaxing the restrictive cardinality constraint in VQ:
Table 1
The acc

Feat

Com
Igno
Igno
arg min
C

PN
i¼1
kxi � Bcik2 þ kkcik

s:t:kbmk 6 1; 8m ¼ 1;2; . . . ;M
ð2Þ
Each descriptor is expressed by the linear combination of all the words in B ¼ ½b1; b2; . . . ; bM �, C ¼ ½c1; c2; . . . ; cN� denotes
the corresponding coefficients of linear combination. Compared with VQ, this method greatly reduces the quantization error
but unfortunately it also losses the correlation between codes. Wang et al. [15] further improve the mapping distinction by
LLC. They use local-constraint instead of sparse-constraint to insure the codes more distinctive than SC (sparse coding) and
guarantee the codes sparseness with less quantization error simultaneously.
min
C

PN
i¼1
kxi � Bcik2 þ kkdi � cik2

s:t:1T ci ¼ 1; 8i

ð3Þ

di ¼ exp
distðxi;BÞ

r

� �
ð4Þ
uracy rates before and after updating the weights.

ures Before adapting the weights (%) Weights After adapting the weights (%)

bination 86.83 – 87.60
re ’gist’ 85.07 wc = 0.55 –
re c_SIFT 71.60 wg = 0.45 –
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The constrained condition 1T ci ¼ 1 follows the shift-invariant requirements of the LLC. distðxi; bjÞ in
distðxi;BÞ ¼ ½distðxi; b1Þ;distðxi; b2Þ; . . . ;distðxi; bMÞ� denotes the Euclidean distance of descriptor xi and word bj. r is used
for adjusting the weight decay speed for the locality adaptor. The technology of searching K nearest neighbors of xi as the
local bases Bi in practice not only satisfies the requirements of mapping, but also greatly reduces the computation
complexity.

As we all known, for image representation, different pooling functions construct different image statistics. Experimental
results show that the ‘max-pooling’ is better than ‘sum-pooling’ and other alternative pooling methods when forming the
sub-region representation. The pooled feature is more robust by ‘max-pooling’ and empirically justified by many algorithms
applied to image categorization. However, the single maximum pooling method may be so absolute that the pooled features
can lose amounts of significant information. In this paper, we extend the ‘max-pooling’ to ‘T max-pooling’, that is, we take
the weighted linear combination of the first T maximums instead of the maximum. Denote the pooled features of the region
as a matrix C ¼ ½c1; c2; . . . ; cK �, and K is the number of the local descriptors in the region. Each column of C corresponds to the
responses of all the local descriptors to the item in vocabulary. Then elements of each row are arranged in descending order.
We select the first T columns as the input of our method. The i-th element of the region representation Z ¼ ½z1; z2; . . . ; zM � is
formed as:
zi ¼
PT
j¼1
jCijj � 2T�jþ1; i ¼ 1;2; . . . ;M ð5Þ
Normalization:
�zi ¼
ziPT

j¼12T�jþ1 ; i ¼ 1;2; . . . ;M ð6Þ
Based on the extended contextual features and improved LLC technology, each image representation is generated as
Rc ¼ ½�Z1; �Z2; . . . ; �ZJ�, where J denotes the number of all sub-regions in all pyramid levels. Then we combine the contextual fea-
tures and global features to form the final image representation R ¼ ½wcRc; wgfg �, where fg denotes the ‘gist’ features. wc and
wg are the weighting parameters that control the significance of the contextual features and global features. The weighting
parameters are defined as follows:
wc ¼
rc

rc þ rg
ð7Þ

wg ¼
rg

rc þ rg
ð8Þ
We initially carry out two sets of experiments to determine the weighting parameters wc and wg . One set only takes the
contextual SIFT features ignoring ‘gist’ to get the categorization accuracy rate rc; the other takes ‘gist’ features ignoring con-
textual features, categorization accuracy rate is rg . The detailed results of the parameters evaluation are exhibited in Table 1.

2.4. Classifier Training

For scene categorization, SVM is the preferred classifier as a powerful technology in machine learning. In this procedure,
kernel selection determines the categorization performance. HIK and SVM are shown to be very effective in dealing with his-
tograms, which have achieved higher category accuracy [23].

The HIK is defined as
kHIðx; yÞ ¼
PD
j¼1

minðxj; yjÞ ð9Þ
HIK has been designed to be a positive definite kernel on non-negative real-valued vectors not limited for non-negative
integers. Image representation with histograms formed in this paper just meets the requirement, so we choose SVM with HIK
to complete the training and testing.

3. Experimental results

3.1. Datasets and setup

Our test dataset provided by Lazebnik et al. [16] contains 15 natural scene categories with 4485 images: highway (260
images), inside city (308 images), tall building (356 images), street (292 images), suburb (241 images), forest (328 images),
coast (360 images), mountain (374 images), open country (410 images), bedroom (216 images), kitchen (210 images), living
room (289 images), office (215 images), industrial (311 images) and store (315 images). The first 13 categories were from Li
and Perona [27] and the first eight were original collected by Oliva and Torrala [5]. There are 210 � 410 images in each cat-
egory with size about 300� 250. Gray version of the images is used in our experiments.
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In our experiments, 100 images are chosen randomly from each category and divided to two separate image sets, i.e. 50
for training and 50 for testing, respectively. We extract SIFT descriptors at three scales i.e. S ¼ 3, and construct contextual
features at scales 1, 2, 3. Ninety five percent information capacity is reserved when using PCA to reduce the dimension.
K-means algorithm and KSVD are applied to generate category vocabulary at each scale. We implement the features map-
ping based on our improved LLC but set pyramid level = [1,2]. The 512-dimensional global features ‘gist’ are extracted using
the code provided by Oliva and Torralba [5].

3.2. Results

To determine the weighted parameters when combining the contextual features c_SIFT and global features ‘gist’, two
individual experiments are carried out. Table 1 shows the average accuracy rates over 10 trails before and after updating
the weights. c_SIFT denotes the extended contextual SIFT features. The result rc ¼ 85:07% in second row is the categorization
rate when taking only the contextual features c_SIFT. When taking only the global features ‘gist’, the rate rg ¼ 71:60%. The
combination of them without weights shows the result 86.83% in the first row. Our approach obtains the average perfor-
mance 87.60% after combining the contextual features and global features ‘gist’ linearly according their weights, which
are obtained via Eqs. (7) and (8) shown in the third column. Experiments results in the Table 1 show that the combination
without weights outperforms the two single features. And the rate of weighted linear combination is higher than the com-
bination without weights. The detailed category accuracy confusion matrix over 10 trails with T = 3 using the weighted linear
combination for 15 scene categories is shown in Fig. 4.

Note that the vocabulary size is a key factor of the system performance for the pattern recognition based on the vocab-
ulary model. We evaluate our approach with different vocabulary sizes and different number of maximums when represent-
ing the sub-regions. Set k sc1 to denote the size of each category vocabulary at scale 1, k sc2 the size of each category
vocabulary at scale 2 and T is the number of maximums. Table 2 shows the results when the vocabulary size at scale 2 is
equal to that at scale 1, that is k sc1 ¼ k sc2 ¼ f40;60;80;100;200g and T ¼ f1;2;3;5;10g. Results on Table 3 correspond
to the situation when the vocabulary size at scale 2 is half of that at scale 1, that is k sc1 ¼ f200;100;80;60;40g,
k sc2 ¼ k sc1=2 ¼ f20;30;40;50;100g and T ¼ f1;2;3;5;10g. As shown in Table 2, the performance increases gradually
when the vocabulary size grows from 40 to 100 in each column. The best result appears when k sc1 ¼ k sc2 ¼ 100. Then
the performance decreases when the vocabulary size continues to increase. Comparing the results in each row, our approach
provides the highest rates when T ¼ 3. It is clear in Table 3 that each categorization rate is higher than that in Table 2 on the
corresponding position. The method proposed in this paper obtains the best performance 87.60% when k sc1 ¼ 100,
tall buildings

Average Categorization Rate: 87.60% 
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Fig. 4. The confusion matrix of 15 scene categories.



Table 2
The performance when the vocabulary size at scale 2 is equal to that at scale 1.

k_sc1 k_s c2 T = 1 T = 2 T = 3 T = 5 T = 10

40 40 84.25 84.50 84.76 84.33 84.20
60 60 84.53 84.68 85.00 84.32 84.15
80 80 85.28 85.36 85.45 85.25 85.10
100 100 85.54 85.60 85.73 85.50 85.20
200 200 85.07 85.20 85.47 85.45 85.38

Table 3
The performance when the vocabulary size at scale 2 is half of that at scale 1.

k_sc1 k_sc2 T = 1 T = 2 T = 3 T = 5 T = 10

40 20 83.60 84.00 84.36 84.03 83.57
60 30 84.67 85.00 85.32 85.20 84.78
80 40 85.45 85.72 86.40 86.15 85.92
100 50 85.96 86.72 87.60 86.40 86.33
200 100 85.20 85.49 86.00 85.78 85.45

Fig. 5. The relationships of the categorization performance and parameters.
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k sc2 ¼ 50 and T ¼ 3. To show the relationship between the categorization performance and parameters, the performance
curves are shown in Fig. 5.

The experimental results illustrate the higher performance of our approach on scene categorization. To validate the supe-
riority of our technology, Table 4 shows the performance comparison between our approach and other methods. From Table
4, the result in [5] is 69.35%, which is just based on the global features without local information. Following [14] their own
baseline, the linear ScSPM (SPM based on sparse coding) algorithm achieves accuracy of 80.28%. Lazebnik et al. introduced
SPM in [16] to incorporate the spatial information with histogram representation and reported the classification rate of
81.40% using SVM with nonlinear histogram intersection kernel. In [12], Qin et al. implemented scene categorization via
CVW and provided average rate 85.16%. HG (Hierarchical Gaussianization) representation in [17] achieved a higher perfor-
mance of 85.2% in accuracy by nearest centroid classifier. GG (Global Gaussian) approach was proposed in [19] based on
SURF (Speeded Up Robust Features) descriptors; it incorporated the local and global information and showed the superior
performance 86.1%. Our representation incorporates the local and global features, local structural and global spatial informa-
tion and achieves the best scene categorization 87.60%.
4. Discussions

We analyze the effectiveness for two aspects: the significance of the combination of local and global features; the signif-
icance of the weights. In Table 1, the performance of the combination without weights outperforms the other single repre-
sentation, which proves the significance of the combination. In addition, after updating the weights, the weighted linear



Table 4
The performance comparison of our approach and other alternative methods.

Approaches Categorization rate (%)

‘gist’ [5] 69.35 ± 1.34
ScSPM [14] 80.28 ± 0.93
SPM [16] 81.40 ± 0.50
CVW [12] 85.16 ± 1.62
HG [17] 85.2
GG [19] 86.1
Our approach 87.60 ± 0.35
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combination outperforms the representation without weights further, which proves the second issue. As details shown in
Fig. 4, the classification performance of our method is satisfactory. There are nine scene categories accuracy rates above
90% (such as forest, mountain, highway, inside city, tall building, street, office, suburb and store). Even the indoor scene cat-
egories also are distinguished effectively by our approach. Especially for the kitchen category, the categorization rate
achieves 84%.

Also, we discuss the relationship between the performance of our approach and the parameters. One is about the vocab-
ulary size; the other is about the selection of maximum number. Observing the performance in each row of Table 2 and Table
3, the best result in each row is obtained when the number of maximums T ¼ 3. In other words, the performance will de-
grade when T is smaller or larger. Comparing the results of two columns when T ¼ 1 and T ¼ 3, the latter are higher than the
former. The phenomenon proves that the weighted combination of T maximums makes image representation more discrim-
inative and powerful than that only using the single maximum. Furthermore, the larger value of T will weaken the discrim-
ination of our representation.

Compared the results in the same position of Table 2 and Table 3, it is obvious that most of the results in Table 3 are better
than that in Table 2. As known, the number of features at scale 2 is much smaller than that at scale 1, so it is reasonable that
the vocabulary size at scale 2 is appropriately shorter than that at scale 1. Therefore, we obtain the perfect performance
when the vocabulary size at scale 2 is half of that at scale 1 in Table 3. The best result is obtained when k sc1 ¼ 100,
k sc2 ¼ 50, and T ¼ 3. It indicates that the size of vocabulary largely affects the performance as shown in Fig. 5.

In our experiments, the initial representations are formed based on the extended contextual features by the improved LLC
technology, then the final image representations are constructed using the weighted linear combination of initial represen-
tation and global features. Our approach achieves the best performance. The other alternative algorithms in Table 4 just in-
clude part of the information. Relatively speaking, our method incorporates the local and global features, local structural and
global spatial information, which guarantees the robustness and discrimination of the representation and show the satisfied
effectiveness.
5. Conclusions

For scene categorization, this paper has extended the contextual features and formed the initial image representation
using the improved LLC technology. The extended contextual features provide the local property of the ROI and richer con-
textual property from the coarser and neighborhood regions. Our strategy improved the robustness and distinctiveness of
the feature descriptors. The improved features coding method LLC is more accurately based on the weighted linear combi-
nation of multiple codes. The initial image representation of contextual features formed by applying the improved LLC tech-
nology reduced the ambiguities and errors greatly. Additionally, we also have explored the influence of the maximum
number and codebook size for the categorization performance. Then construct the final image representation based on
the weighted linear combination of the initial image representation and the global feature based on their contribution to
the integrated image representation. The proposed method has powerful distinctiveness because it provides more compre-
hensive information, local and global features, local structural and global spatial information. The more comprehensive im-
age representation further enhances the categorization performance and the experimental results have illustrated
effectiveness of our approach on scene categorization. The comparison of our method and other state-of-the-art technologies
further has revealed the superiority of our approach.

However, the computational complexity and storage space still be difficult issues to solve and can not achieve a desired
level. Additionally, the performances of some scene categories are still poor, e.g. industrial scenes, because it contains both
outdoor and indoor scenes. Reducing the computational complexity and storage space, and improving the performance of
the scene categorization are the two aspects in our future work.
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