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Abstract The job-shop scheduling problems with fuzzy
processing time and fuzzy due date are investigated in this
paper. The ranking concept among fuzzy numbers based on
possibility and necessity measures which are developed in
fuzzy sets theory is introduced. And on the basis of two
consistent measures in this concept, several novel objective
functions are proposed. The purpose of our research is to
obtain the optimal schedules based on these objective
functions. A modified DE algorithm will be designed to
solve these objective functions. Several jop-shop schedul-
ing problems with fuzzy processing time and fuzzy due
date are experimented to show the efficiency and compa-
rability of our approach. Through the experimental results,
the potential application of the possibility and necessity
theory in the real world is shown.

Keywords Fuzzy job-shop scheduling - Fuzzy processing
time - Fuzzy due date - Differential evaluation algorithm -
Ranking concept

1 Introduction

The job-shop scheduling problem, abbreviated as JSSP, is
well-known as one of the popular problem in scheduling,
which plays an important role not only in manufacturing
systems, but also in industrial process for improving
resource utilization. Since JSSP was firstly formulated,
many approximation methods have been proposed, such as
priority dispatch rules [1, 2], constraint satisfaction
approaches [3, 4], and local search methods, since it
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belongs to the class of decision problems which are NP-
hard. Among those methods, local search methods have
been of concern all the time; many researches have been
proposed, such as [5-8]. The genetic algorithm (GA) was
applied as the search algorithm in all of these papers. Stated
in a simple way, in all these JSSP problems, various factors,
such as processing time and due date and so on, have
precisely been fixed at some crisp values.

However, in the real world, when it comes to scheduling
problems, most factors involved in are often only imprecisely
or ambiguously known. For instance, the processing time of a
job often can't be measured precisely and sometimes it's
tolerable that the completion of a job timeouts in a certain
degree. In such situations, it is more reasonable to consider
the fuzziness. For example, “the processing time is around
5 h” may be a more reasonable statement. It is more often
that the phrase “around 5 h” is modeled as a fuzzy number 5.
And those scheduling problems with fuzzy factors are
recognized as the so-called fuzzy scheduling problems [9].

The scheduling problems with fuzzy factors have been
investigated by many researchers since it was firstly
proposed by Ishii et al. [10]. However, there are not many
results obtained for fuzzy job-shop scheduling problems.
Sakawa and Mori [11] presented an efficient GA by
incorporating the concept of similarity among individu-
als to search the best schedule with fuzzy processing
time and fuzzy due date, and also compared it with the
simulated annealing algorithm. Next, Sakawa and
Kubota [12] applied the same GA to solve multi-
objective fuzzy job scheduling problem (FJSSP). Li et al.
[13] proposed a GA to solve FISSP with alternative
machines by adopting two-chromosome presentation and
the extended Giffer—Thompson Procedure. Lei [14] pro-
posed an efficient Pareto archive particles swarm optimi-
zation. It has two phases. Firstly, FISSP is converted into
a continuous optimization problem, and then the proposed
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algorithm is used to search a set of Pareto-optimal
solutions of the continuous problems based on three
objectives. Those papers all use the concept of agreement
index to formulate the objective functions. Moreover, Lei
also considered other measures, including maximize fuzzy
completion time and the mean fuzzy completion time.

Under these circumstances, in this paper, we propose a
different approach by using the concept of possibility and
necessity to formulate the objective functions. In Itoh and Ishii
[15], possibility measure was firstly introduced to the fuzzy
job-shop scheduling problems. They use the possibility to
measure the tardiness of each job, and then to search a
schedule which minimizes the number of A—tardy jobs. The
approach in this paper is totally different from that of [15]. In
order to explore more suitable model, here we adopt the
ranking concept of fuzzy numbers and uses the possibility
and necessity measures that were proposed by Dubios and
Prade [16]. For making the results consistent, we are going
to formulate the objective functions based on two indices,
which are consistent with each other, that are certainly
different from that in other papers [11, 15, 17, 18]. At the
same time, we define a kind of special fuzzy number as the
supposed type of fuzzy processing time and fuzzy due date,
and then we also derive the analytic formulas for these
objective functions for simplifying the computation. Fur-
thermore, we design a differential evolution (DE) algorithm
to solve these objective functions.

In Section 2, we introduce the concept of fuzzy numbers,
and some arithmetics among fuzzy numbers, which are
based on the “Extension Principle” in fuzzy sets theory. In
Section 3, we introduce the fuzzy job-shop scheduling
problem, and present several types of objective functions,
which are consistent, based on the possibility and necessity
measures. Also, a special type of fuzzy number is defined,
and the analytic formulas based on it for these objective
functions are derived in order to simplify the computation.
In Section 4, a modified DE algorithm is designed to solve
this fuzzy job-shop scheduling problem. In Section 5, some
numerical examples are provided and solved to evaluate our
discussion and to show that there is a potential future to
apply the possibility and necessity measures to the fuzzy
job-shop scheduling problem. In the final section, the
conclusions are given.

2 Fuzzy number
Let X be a set of points, with a generic element of X
denoted by x, thus X={x}. From [19], we can define a

fuzzy set A in X as follows:

Define I If pz is a map from X to [0, 1], that is a function
X — [0,1], then 4 is a fuzzy subset of X.
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Fig. 1 dg<c with PSD (Z), 6) —0

From definition 1, it's easy to know that A is charac-
terized by a membership function u;(x) which associates
with each point in X a real number in [0, 1], with the value
of y:(x) at x representing the “grade of membership”
of x in 4. Here, we can conclude that the fuzzy
subset 4 of R is defined by a membership function
gi: R — [0,1]. Let A, denote the a-level set of A, then
A, = {x €R: pz(x) > a}. The O-level set A=
{x € R: uz(x) > 0} is the closure of the union of all level
sets, 1.e. 20 =cl (U a>02a). A fuzzy set A of R is said to be

a fuzzy number if it satisfy the conditions below:

1. 4 is normal, i.e., there exits an x € R such that
pi(x) =1

2. There exits an x € R satisfies:
@) Vxy <xo <o, pp(x) < pgle) < pp(x);
(b) Vx> x3 > x,15(x) < pz(x2) < pg(x1);

3. Vo <xp <xp €R, uz(x) > min{u;(xl),yg(xz)};

4. Ya e (0,1), 44 = {x € R: yz(x) > a} is a closed and
bounded subset of R.

Since condition d, we see that if Aisa fuzzy number of
R, then 4, is a closed and bounded interval of R. Therefore,
we can denote it with [4%, 4Y].

()  He(®)

v
®

Fig. 2 d<cg and dg<c with PSD (5, 6) =
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Fig. 3 d>cg with PSD (15, 6) —1

Using the Extension Principle in Zadeh [19], we obtain
that if 4 and B are two fuzzy numbers, then the membership
function of 4 @ B is defined by
p min{ ez (x), uz(0) }

Hi5() = su
x+y=z

the membership function of the maximum mEx{Z , E’} of 4
and B is defined by

sup  min{5(x), uz(y)}

z=max(x,y)

#mﬁx{z,ﬁ} =
Then we also have the following well-known results.

Proposition 1 Let~Z~and B be two fuzzy numbers, then
A®B and max A,B} are also fuzzy numbers [17].
Furthermore, we have

(12B) = |4t +BL 40 +BY],

(mﬁx{A,B})a = [mﬁx(Aé,Bé),max(Ag,Bgﬂ.
In the next section, we will introduce a specified fuzzy

number to simplify our research. Obviously, it satisfies all
the above properties.

»

Fig. 4 ¢,>d with ND (5, 6) —0

>
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Fig. § ¢,<d with c>d; with ND(D, C) = yo

3 JSSP with fuzzy processing time and fuzzy due date
3.1 JSSP problem

In general, an nxm job-shop scheduling problem is
formulated as follows. Let n jobs Ji(j € (1,2,...,n)) be
processed on m machines M,(r = 1,2,...,m), and let the
operation of job J; on machine M, be O;;,, where i€
(1,2,...,m) shows the position of the operation in the
technological sequence of the job. In other words, Oj,i,r
expresses the iy, operation of job J; processed on machine 7.
It is assumed here that only one operation can be processed
on each machine at a time, and that each operation cannot
be started if the previous operation is still being processed.

However, different from the classical nxm job-shop
scheduling problem, in this paper, we formulate a job-shop
scheduling problem with fuzzy processing time and fuzzy
due date, called fuzzy job scheduling problem. Here, in the
FJSSP, the processing time and due date of operation O,
are represented by fuzzy numbers, denoted as IBJ,,- and D s
respectively. For notational convenience, in the following,
we denote the FISSP of n jobs and m machines as nxm
FJSSP.

>

ok

Fig. 6 c<d, with ND (5, 6) —1
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Table 1 Numerical example 1 of 6x6 FISSP

Processing machine (fuzzy processing time)

Job 1
Job 2
Job 3
Job 4
Job 5
Job 6

Fuzzy due date

1(5613)
1(345)
3(123)
6(234)
6(345)
5(678)
Job 1

30 40

5(345)
2(245)
6(567)
5(123)
5234
6(456)
Job 2

35 40

2(123)
3(135)
5(@56)
4234
4(123)
1234
Job 3

20 28

6(345)
6(456)
4(345)
2(235)
31234
2(345)
Job 4

32 40

4(234
40567
2(123)
1346)
2(456)
31234
Job 5

30 35

3234
5(678)
1(123)
3(345)
1234
4(123)
Job 6

40 45

3.2 Objective functions based on PSD and ND

In the FJSSP, the processing time and the due date are
assumed to be fuzzy numbers. It's easy to know that the
completion time of each job J; is also fuzzy number.
Therefore, we proposed our objective functions based on
the completion time and due date using the ranking concept
of fuzzy numbers. Here, we refer to Dubois and Prade's
[16] fuzzy number ranking concept in possibility and
necessity theory. Let A4 and B be two fuzzy numbers,
Dubois and Prade define the following four measures

PD(4,B) = supmin{ysi(u). 15(v)} (1)

PSD (A B) = Sl;p {V1£1>fu min{uz(u), 1 — pz(v) }, (2)

ND(A,B) inf sup max{l —,uA( ), ug(v)}, (3)
U Lywv<u}

NSD (Z,E’) =1 —supmin{p;(u), uz(v) }, 4)

u<vy

where PD(A4,B) and ND E,E) represent the grade of
possibility and necessity of A dominanting B, respectively,
that is the grade of possibility and necessity of A>B.
PD A B) and NDS A B respectively represent the grade
of possibility and necessity of A strictly dominating B, that
is the grade of possibility and necessity of A > B. Given the

Table 2 Numerical example 2 of 6x6 FJSSP

four measures above, we thus obtain four linear orderings
when it comes to rank N fuzzy numbers. However, it's not
all of the four measures that are consistent with each other,
so with different measures, we may gain inconsistent
results. Fortunately, the PSD and the ND measures are
pairwise consistent due to their tournament relation
between two fuzzy numbers, which are required to have
continuous membership functions [16]. Therefore, in this
paper, we use the ranking measures given in (2) and (3)
together, that's PSD and ND, to investigate the relation
between fuzzy completion time of job J; and its fuzzy due
date.

In a FJSSP problem, we always want to finish every
job before its due date; so in this paper, we are going to
seek for a schedule that more jobs finished before their
given due dates. Since the processing time of every
operation of a job is fuzzy number, the completion time
of each job must be fuzzy number too. For a given job
Jj, we can consider the four measures mentioned above
between its completion time CJ and due date DJ Here
considering the consistency, we just discuss two of
them, PSD DJ,C s, ) and ND DJ/ C J) that is the strictly
possibility measure, between D, and .C,, and the
necessity measure. Moreover, in order to propose the
suitable objective functions to obtain the “optimal”
schedule, we are going to interpret the meaning

of PSD (DJ, CJ) and ND (DJJ, E)/) From ranking con-

Processing machine (fuzzy processing time)

Job 1 4091317) 3(6912) 1(10 11 13) 5(5811) 2 (10 14 17) 6 (9 1115)
Job 2 4589 2 (7 8 10) 534595 3(356) 1(10 14 17) 6(4710)
Job 3 5356) 4(345) 3(246) 1 (5811) 2(356) 6(134)
Job 4 6 (811 14) 3(5810) 1(91317) 4 (812 13) 2 (10 12 13) 5357
Job 5 3(81213) 59 11) 6 (10 13 17) 2(468) 1357 41479
Job 6 2 (810 13) 4 (89 10) 6(6912) 3(134) 50345 1246
Job 1 Job 2 Job 3 Job 4 Job 5 Job 6
Fuzzy due date 112 121 82 91 49 60 97 102 83 89 54 59
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Table 3 Numerical example 3 of 6x6 FISSP

Processing machine (fuzzy processing time)

Job 1 6(5710) 5(10 14 17) 4(135) 3(135) 2(4638) 1(91011)

Job 2 5(078) 1(91317) 3(81213) 6234 4 (10 13 16) 21234

Job 3 3(45606) 1 (10 11 12) 5912 16) 2 (81213) 6(6912) 4479

Job 4 4(124) 5245 6(578) 3(5810) 1357 2(6810)

Job 5 49 1115) 1469 5(123) 6 (10 11 15) 2(478) 3 (10 11 12)

Job 6 5079 3(124) 26911 6 (10 14 18) 4(123) 1 (91314
Job 1 Job 2 Job 3 Job 4 Job 5 Job 6

Fuzzy due date 81 88 66 80 89 92 51 60 91 96 75 78

cept, we can easy know that, the value of PSD (l~) s C j/) is
larger, the extent of possibility for Bjj being bigger than
Cj, is larger. Similarly, the value of ND{ D, C;, ) is larger,
the extent of necessity for 5]/. being bigger than E’Jj is
larger. And in our FJSSP problem, we hope the values of
both PSD(E‘/].,E"O) and ND(ZNDJ].,E’JJ.) are as larger as
possible. Therefore, here we are going to maximize the
following objective functions

n
max f (z) = jzljaz,-PSD(DJ,-,cJ,-), (5)
I?g}_)[(f(ﬂ') = ;ijD(DJi, CJ[.), (6)

where w; are the penalty coefficients, II is the set of all
schedules, and 7 is one of the schedules. Now, in order to
consider both two measures simultaneously and since they
are consistent, we combine these two measures together and
get a new measure defined below

PND(EJ,,@.) :PSD(BJ,,E‘J,) +ND(15J,.,E‘J,) (7)

Similarly, PN]E(ZNDJ/,E’ _]/) can be totally interpreted
as the degree of D, being bigger than C;. Then we can

Table 4 Numerical example 4 of 6x6 FJSSP

search for a better schedule by maximize the following
objective function

max /(x) = > oPND(D,.C, )
=

x€ell

Here, we can also add penalty coefficients for both
PSD and ND, to get a more general measure defined
below

GPND (D, Cy ) = @1 x PSD(Dy, Cy ) + @2 x ND(Dy, Oy )

©)

where w; and w, are the penalty coefficients respectively
imposing upon the possibility measure and necessity
measure. And at the same time, we can also maximize a
more general objective function as follows

max f(x) = Z @; x GPND (13,/., @/.) (10)
=1

nmell

Now, there are several objective functions. However, in
this paper, in order to get consistent results, we combine
PSD and ND, and just consider the objective function given
in formula 10.

Processing machine (fuzzy processing time)

Job 1 1(679) 6(124) 4(478) 5(123) 3(91013) 2(235)
Job 2 1(10 13 16) 4 (7 1115) 5(6811) 6245 2091215 3234
Job 3 23569 6 (910 11) 3(6710) 4911 14) 1 (810 14) 50 1112)
Job 4 6 (10 11 15) 4(3406) 1912 16) 2912 15) 5457 3579
Job 5 4(235) 5812 14) 3(13595) 2(345) 1(346) 6(456)
Job 6 5(5810) 3(71011) 1(134) 6(689) 4467 2346
Job 1 Job 2 Job 3 Job 4 Job 5 Job 6
Fuzzy due date 43 50 96 102 93 103 7175 49 54 62 70

@ Springer



1130 Int J Adv Manuf Technol (2011) 56:1125-1138

. . . N N N N N
3.3 Calculation for fuzzy completion time n 0N T o ¥ o
T O a an s a =g
= N o~ = = = = N N — O
. — . SEFsaFTIsT a2 R
Given a schedule of the FJSSP, the completion time of a job
is the completion time of the last operation of the job. For
computing the completion time of an operation, we need to o
establish its start time, and this is related to its order and the B O I A
machine it preceeds. codgdcocc e g -
Before this, in order to simplify the calculations, we are -
planning to introduce a new fuzzy number, called PLR fuzzy
number, and just focus on it in the next part of this paper. o
: L N e N
Now we firstly give the definition of the PLR fuzzy number. D A A -
]
cccococoosoce sl
Define 2 Given a fuzzy number 4, it is called PLR fuzzy
number if it has the form 4 = ay,a,a,L, R, distributed by
the following membership functions respectively, — ~
~ N  ~ ~ N ~ ~ ~ ~ 1
v o<t N n < v oen on <+ <
Lix),a <x<a e onCacoodsS
vvvvovvvvog v
p(x) = ¢ R(x),a <x < ag, N N N
0, other
. cosTTTaagaad
where a;, a, and ap are non-negative numbers and a;<a< s
ag, L is strictly increasing function and R is strictly cdccocdcocodde g -
. . . . en N~ O N 0 AN O <t
decreasing function, which satisfy -
L(ar) = R(ag) = 0 and L(a) = R(a) = 1, _ —
feelasslea
. . N e N A g
and both of them are continuous functions. e ccoeToec e S
o . . °
From definition 2, we can easily know that triangle e T T e e e
fuzzy number is a kind of special PLR fuzzy number.
Furthermore, we have the following results. P
O N T O N n n n T <+
VAN N Y T Y N o
s ~ > — — — o
Proposition 2 Let A4 = (a;,a,ag,Lg,Rs) and B= Tooccococadad s o
~ o~ AN O 0 NN N —~ O AN = N
(b, b,br,Lp,Rg) be two PLR fuzzy numbers, then 4 © B
and mﬁx{A,B} are also PLR fuzzy numbers, and we have
I SR celeseasala
—LBLAU+BU < < NN N e T
A@Ba—Aa+ o' ta a | @@/\@::::@ve'ﬂ\o
o o o o
~ o~ ~ o~ ~r o~ i <t — 0 n N < &N — AN = n
(max{A7B}) = [max(Aé,B§>7max<Ag,Bg)].
o
T TR aAaT A
MOI’COVCI‘, 5“) VN A N0 AN Ao
~ - Bl legceoccoco ol
A@B:(GL+bL7a+b7aR+bR7LjB7RIB)7 g glecowves an - <0 2 2
mEx{A,B} = (max(ar, b ), max(a, b), max(ag, bg), L'j5*, R5), S| e
S =
G 2] ~
° 5]
where L7, and L™ (R, and R%*) depends on L, and L ~lg|lsiarsssa _@
AB AB AB AB p A B | Bl QT a0 oo r@ s o
(R4 and Rp respectively). gl g g g % =) S, S, S, &:, ¥ S, 2 ;
. = - RG]
Let A = (a,a,ag) and B = (by,b,bg) be two triangle 2 &
fuzzy numbers, it's easy to obtain that S| 8
| =
Q Q Q
P E| £ £
A®B = (ar+br,a+b,ag + bg) 2| E S
[}
=)
- Ak s
is also a triangle fuzzy number. However, max{ 4, B ¢ is not 2| 8-t wor 0o = 9
. . Ll 2|22 22290920 9090900 N
necessarily a triangle fuzzy number. Fleal2 e es 888288 =
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Table 8 Numerical example 4 of 10x10 FJSSP
Processing machine (fuzzy processing time)

@ Springer

1(679) 50234 7(478) 4245)

7(5 8 10)
489 13)

3(7912)
4Q245)

6(8913)

8 (711 15)

10 (458)
5(124)

9(579)

2(7 11 12)
6(356)

Job 1
Job 2
Job 3
Job 4
Job 5

9(468)

3(245)
1(123)
6(578)

10 (8 9 11)
8(345)

2(812 14)
2(10 13 17)
3(578)
4(135)

8 (10 11 14)

6(357)

1(123)
7(89 13)

10 (45 7)
5(469)

8(469)

5(246)
9 (6 8 10)

3(79 10)
8(478)

9911 12)
2 (8 11 13)

3(467)

7(812 14)
1(579)

1023 4)
5(10 11 12)

8(9 11 15)

4(467)

1(235)
9(479)

2(810 13)
5(6912)

6(9 10 12)
10357)
3(458)

10 2 4 5)
3(468)

769 12)
1(457)

9467

6(579)

2(710 12)
5346)

7(679)
4(913 14)

4(458)

9(789)

Job 6
Job 7
Job 8

7(5 8 10)
2 (6 7 10)

1(91215)
7(10 14 16)

2(589)

10 (7 10 12)
9(711 13)

8 (89 10)

2(569)
4356)

6(568)

5(10 12 16)

9(356)

1(5810)
5(134)
2(123)

Job 6

8 (710 13)
8(346)

10 (79 11)

3(10 13 14)

7(458)

6 (711 14)
10235)
4(6809)
Job 1

4 (811 14)
6(245)
Job 10

1(123)
3(810 13)

Job 7

3 (10 14 16)
9357
Job 4

6(134)
7(579)

Job 2

Job 9

10 (4 5 8)
Job 9

8 (9 13 16)
Job 8

1235)
Job 5

5(568)
Job 3

Job 10

124 128 8195 92 99 91 103 109 115 102 107 118 128 170 178 75 86 94 107

Fuzzy due date

Table 9 Parameters of DE

Problem Population size Generations w; Wy
6%x6 100 100 0.5 0.5
10x10 100 100 0.5 0.5

Now we are going to give an example to make the
computing of the completion time clear. There is a 2x2
FJSSP below:

Job 1: machine 1 (2, 5, 6), machine 2 (5, 7, 8),
Job 2: machine 2 (3, 4, 7), machine 1 (1, 2, 3).

Here (2, 5, 6) and others are triangle fuzzy numbers and
represent the fuzzy processing times of operations.
Suppose 2 1 2 1 is a given schedule, then we can see
that the start time of job 2 is (0, 0, 0) and the start time of
job 1 is also (0, 0, 0). Next, the second operation of job 2
is processed on machine 1, and at the same time, it must
proceed after the first operation. So its start time is max
{(2,5,6),(3,4,7)}. Here, stated in a simple way, we shall
approximate max of triangle fuzzy numbers with the
following formula:

mEx{Z,E} =~ (max(ar, br), max(a, b), max(ag, b))

So we obtain (3, 5, 7) approximately. Easily, we compute
the completion time of job 2, the addition of (3, 5, 7) and
(1, 2, 3), that is (4, 7, 10).

3.4 Analytic formulas for the objective functions

Here, we assume that the completion time E'J/. of every job
J; is a PLR fuzzy number, so is the due date D;. In this
case, we can derive the analytic formulas for the objective
functions proposed above, which also make the computa-
tion neater. Now, we consider the strictly dominate
possibility measure PSD (5 s C J;

Table 10 The time and objective function value of each problem

Problem Time (s) B_GPNS W_GPNS A GPNS
6x6 1 1.313 3.32092 3.28299 3.29664
6x62 1.328 5.89644 5.73691 5.83721
6x63 1.328 5.26347 5.2111 5.22847
6x6 4 1.343 5.17221 5.05369 5.10072
10x10 1 4.093 6.43048 6.34413 6.39046
10x10 2 4.063 8.07412 7.82981 7.93663
10x10 3 4.062 8.61662 8.40187 8.50359
10x10 4 4.031 5.9632 5.79505 5.85307
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Fig. 7 GPND convergence trends for 6x6 JSSP 1

Proposition 3 Let az(cL,c,cR,Lc,Rc) and D=
(dp,d,dg,Lp,Rp) be two PLR fuzzy numbers, and R;
denotes the function of 1—Rc. Then we have the following
results:

(1) 1If dg<c then PSD(D,C) = 0.

(2) If d<cgp and dzr>c, and suppose the point of
intersection of the two lines Rp and R/c is (X0, Vo),
then PSD 5,6 = .

(3) If d>cp then PS (15, 6) — .

Proof Firstly, let us see what's the meaning of the PSD

from lnajhematics. From formula 2, we know that

PSD(D, C) =sup, inf}min(,uf,(u)7 1 —pz(v)). There-
u viv>u

fore, we can explain it as follows: assume that the domain

of u is {uy,ua,....u}, ¥; is the value of min(,uﬁ(ul), 1—

I L 1 L L

0 10 20 30 40 5 60 70 80 9 100
iteration

Fig. 8 GPND convergence trends for 6x6 JSSP 2
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Fig. 9 GPND convergence trends for 6x6 JSSP 3

te(vy)) for WYv; > uy, and ¥ = min{yj}, j=12,... Sim-
ilarly, we can compute X,,X3,...,X,. Finally, we obtain a
list of {X, X2, ...,X%,}. The value of PSD D,C) is the max
value of the list, that is PSD gf), C) = max{x{,%2, ..., %, }.

In order to make our proof neat, we shall apply figures.
From Fig. 1, we can see that when Vu; < dg, the minimum
of all Y is 0, due to dg<c. For Yu; > dp, it's obvious that X;
is 0 since t5(u;) = 0. Then we have (1).

Now we pay attention to (2). See Fig. 2, Rp and
R’C intersect at point (x,y). Let u,=0, it's not difficult to
know that min (5(u;), 1 — p=(v;)) = yo for ¥v; > u;. And
when ¢ < u; < xo, 1 —lug(vj) > 1 — pg(u;) for Yv; > uy, so
min (u5(;), 1 — pz(vy)) = 1 — pz(us) <yo. Next, we
consider u,;<c, in this case, the minimum of 1 — ug(vj) =
0 for Vv; >u; since there exists a value V.=c to

) J
satisfy 1 —uz(v;) =0. Lastly, when u;>xo, we can
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| j"_'

48 | ) :

° 4
=z
a
o

38 L : . . - - : - .
0 0 20 30 40 S0 0 70 8 9 100
iteration

Fig. 10 GPND convergence trends for 6x6 JSSP 4

@ Springer



1134

Int J Adv Manuf Technol (2011) 56:1125-1138

6.5

64 |

I Il I I L

50 60 70 80 9 100
iteration

59 .
0

10 20 30 40
Fig. 11 GPND convergence trends for 10x10 JSSP 1

casily obtain that min(u5(u), 1 — pz(v;)) = w(ui) < 3o
for Vv; > u;. In summary, we conclude (2{.~ B

From Fig. 3, it is easy to see that PSD( D, C) = 1, since
up(d) = 1 — peld) = 1.

We complete the proof.

Proposition 4 Let 6‘:(cL,c,cR,Lc,Rc) and D=
(dp,d,dg,Lp,Rp) be two PLR fuzzy numbers, and L'D
denotes the function of 1—Lp. Then we have the following
results:

(1) 1If ¢;>d, then ND(D, C) = 0.

(2) If ¢;<d and c>d;, and suppose the point of inter-
section of the two lines L/D and L¢ is (xg, yo), then
ND (15, 6) — Jp.

(3) If c<d;, then ND(Z), 6) —1.

85

GPND

20 30 40 5 60 70 80 9 100
iteration

0 10
Fig. 12 GPND convergence trends for 10x10 JSSP 2
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Proof Similarly, let us start with the mathematic meaning

of ND by formula (3). We can easily get that

ND(D, C) =inf sup max(1 — p5(u), uz(v)), so it can
U fviv<u}

be explained as below: suppose that the domain of u is

{uy, up,..., u,}, for ¥v/.<uj, we compute a value by

max (1 — (1), ('), then we can get a list of values

like this. Let ; as the maximum of all the values. Next we
can obtain ¥,,...,», for u,, ..., u,, respectively. Then the

value of ND (5, E‘) as the mininimum value of the list
of {71,72,...,7,}, that is ND(B, 6) = min{7,,7,,...,7,}.

Here, we also apply some figures to accomplish our
proof. See Fig. 4, there exists u;,=d that makes 3, = 0 since

for YW <uw; pz(v')=0 comes into existence. So we
have (1).

GPND

4.5 L 1 L 1 1 1 | L
0 0 20 30 40 S0 60 70 80 9 100

iteration

Fig. 14 GPND convergence trends for 10x10 JSSP 4
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Table 11 The fuzzy completion

time of 6x6 FJSSP 1 Job 1 810 18 12 16 23 13 18 26 16 22 31 18 25 35 20 28 39
Job 2 345 5810 61115 10 16 21 1522 28 2129 36
Job 3 12 17 26 21 28 36 2533 42 28 37 47 29 39 50 30 41 53
Job 4 579 6912 81216 10 15 21 1520 32 18 24 37
Job 5 345 579 6912 81216 12 17 22 14 20 26
Job 6 91215 1317 21 1520 25 18 24 30 20 27 34 2129 37

For (2), let us shift to Fig. 5. Let the point of intersection
of L/D and Lo is (xg, yo). When u=x,, we can see
that for VW <xy the maximum of (V) is
Uz (x0) = 1 — pi(x0) = yo. Next we consider the situations
of u<xy and u>xy. When u<x,, we can easily get that 1 —
(u) > 1 — p5(x0) =yo and px(v) <y for W <u,
so it's easy to obtain that y = max (1 — s5(u), uz(v/))
>y, respect to u<xg. Similarly, we have ¥ =
max (1 — p5(u), tz(v')) > yo, respect to u>xo. Therefore,

we have ND (b, 61) — min{7, 0,7} = yo, that is (2).
Now look at Fig. 6. When u>c, we can see
that max{max(1 — u5(u), uz(v'))} always be 1 for
Vv < u, due to that there must exist a vp=c<u satisfy
Uz(vo) = 1. When u<c, we know that 1—5(u) =1 since
we have ¢>d;. So in this case we always have
max{max (1 — z5(u), tiz(v')) } = 1. Therefore we obtain

that ND(D,C) = 1.

We complete the proof.

Since triangle fuzzy number is a special type of PLR
fuzzy number, all the propositions above can also be
applied to it.

4 The DE algorithm

For a given nxm FJSSP problem, here we invoke the DE
algorithm proposed by Storn and Price [20] to obtain the
best schedule. However, as we know, the DE algorithm is a
continuous optimization algorithm, so its original encoding
scheme can't be straightly used to solve the scheduling
problem. For our purpose, the key issue is to construct a
direct relationship between the schedule of the jobs and the
individuals in DE. Here, we use the concept of random

keys proposed by Bean [21] to generate the job sequence of
a specified individual. Suppose we consider a 3x2 FJSSP
problem, then the length of individuals is 3%2, and we
generate six random numbers in (0, 1) as a vector for each
individual. And the job sequence is generated like below:
for example, if an individual is (0.21, 0.34, 0.12, 0.17, 0.56,
0.43), we let 1-0.21, 2+-0.34, 3+—0.12, 40.17, 5«
0.56 and 6«0.43, then sort the random numbers in
ascending order and get a sequence (3,4,1,2,6,5). Since
the sequence is not a legal job schedule, we modify each
element by the number of jobs, that is 3 here, and also
add 1 for avoiding 0. After this, we obtain the final result
(1,2,2,3,1,3). It means the following process order: the
first operation of job 1, the first operation of job 2, the
second operation of job 2, the first operation of job 3,
the second operation of job 1, the second operation of
job 3. Certainly, some of operation can be operated in
parallel, if they don't need the same machine and don't
belong to the same job.

Similar to Genetic Algrithm(GA), DE has three evolu-
tionary operator: select, crossover, and mutation. The
significant difference from GA is that DE uses distance
and direction information from the current population to
guide the search process. The crucial idea behind DE is a
scheme for producing trial vectors according to the
manipulation of target vector and difference vector. In this
paper, it works as follows.

For each individual's vector x,(G), i=1,...N, where N is
the number of individuals and G is the Gy, iteration, we can
get a differential vector v,(G) by mutation:

Vic = Xn,G6 T F(xrzﬁ - xrg,G)7

where ry,r,r3¢[1,...,N] are random integers, and r #r,#
ry#i, F is the scaling factor controlling the amplification of
the differential evolution.

Table 12 The fuzzy completion

time of 6% 6 FISSP 2 Job 1 25 34 41 314353 415571 46 63 82 56 77 99 65 88 114
Job 2 589 1518 23 18 22 28 212935 314352 35 50 62
Job 3 356 812 14 1524 29 20 32 40 2337 46 25 40 50
Job 4 81114 13 20 24 2233 41 33 46 54 43 58 67 46 63 74
Job 5 81213 14 21 24 24 34 43 28 40 51 314558 37 53 67
Job 6 81013 16 21 24 22 30 36 2333 40 26 37 45 28 41 51
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Table 13 The fuzzy completion

time of 6x6 FISSP 3 Job 1 5710 16 21 27 17 24 32 18 27 37 28 39 47 37 49 58
Job 2 34 46 58 4459 75 5271 88 5474 92 64 87 108 66 90 112
Job 3 456 1417 21 26 35 45 34 47 58 40 56 70 4463 79
Job 4 1116 24 28 39 50 33 46 58 38 54 68 4159 75 47 67 85
Job 5 91115 1317 24 17 23 29 27 34 44 314152 41 52 64
Job 6 679 7913 13 18 24 233242 24 34 45 3347 59

Then the trial individual can be produced by the
crossover. Let D be the dimension of the vectors, it's
operated as:

i — { VijG (randj < CR)OT"(]' = Jrand) ,
i Xij.G, otherwise

where j=1,2,...,D, rand;€[0,1] is a random numbet, jianqe
[1,2,...,D] is a random index, CR is the crossover rate, u; g
denotes the trial vector of the iy individual at the Gy,
iteration, and u;; ¢ is the value of the j;, dimension in the
trial vector.

Next, select operator is used to produce the offspring by
choosing between the trial population and the parent
population:

XiG+1 = {ui=G’f(”i~,G) > f(xi6)

X; G, otherwise ’

where f is evaluated function, which responses to the
objective function here. Suppose that we plan to consider
the objective function in formula (10), and then the
computational procedure is described as below:

Step 1. Initialize population randomly, initialize the
parameters CR, F. And set the current generation
G=0;

Convert every individual to job sequence,
and evaluate it by the objective function in
formula (10), mark the best individual,

Do the mutation, crossover, and select oper-
ator for each individual,

G =G+ 1, repeat Step2 to StepS until the
stopping criteria is reached.

Step 2.

Step 3.

Step 4.

In order to get better result, we also incorporate an
improvement to the DE. The purpose of this is to exploit a

better solution from the neighborhood of a solution.
There are several neighborhoods. In this paper, we just
use one neighborhood, that's swap [22], to improve the
diversity of population and enhance the quality of the
solution.

5 Numerical examples

For illustrating the approach we proposed, in this section,
we consider some simple examples. Here, we list four 6x6
FJSSPs and 10x 10 FJSSPs respectively, they are shown in
Tables 1, 2, 3, 4, 5, 6, 7, and 8(the examples we use come
from [11, 12]). The term m(p"p,p") represents the machine
and the processing time of operation, and term (d,d")
represents the due date of job.

Now, we are ready to solve the eight FISSPs by using
the modified DE algorithm for illustrating the proposed
objective functions. To be general, we just experiment our
method on the bias of formula 10.The parameters of our
algorithm are shown in Table 9, and each of them is set by a
number of experiments. By the way, all the trials are
performed ten times for each problem and all the codes is
written with C++, and are run on a PC with an Intel
2.00 GHz CPU.

Table 10 shows some results of our methods. The
column of time lists the average executing time of each
example. The B_GPND column represents the maximum of
GPND (that's formula 10) in ten times of each JSSP, the
W_GPND is the worst GPND and the A GPND is the
average GPND. It's obvious that our method is largely
efficient. Moreover, in order to show the state of con-
vergence, we also give out the changed values of GPND in
each generation for each example. And they are shown in
Figs. 7, 8, 9, 10, 11, 12, 13, and 14.

Table 14 The fuzzy completion

time of 6x6 FISSP 4 Job 1 37 49 65 38 51 69 425877 43 60 80 5270 93 5473 98
Job 2 10 13 16 17 24 31 233242 3138 47 40 50 62 42 53 66
Job 3 569 19 21 26 2528 36 34 39 50 42 49 64 51 60 76
Job 4 10 1115 131521 2228 37 31 40 52 35 45 59 40 52 68
Job 5 235 13 20 24 1423 29 17 27 34 233242 29 37 48
Job 6 5810 12 18 21 13 21 25 2529 35 29 35 42 3239 48
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Table 15 The fuzzy completion time of 10x10 FJSSP 1

Job 1 369 61115 81520 14 21 28 1523 31 18 28 37 20 31 42 213345 24 37 50 26 40 54
Job 2 234 469 610 14 71217 111723 132129 16 24 33 17 27 37 19 30 41 22 34 46
Job 3 245 468 69 14 71118 10 16 24 1119 28 12 22 33 17 26 37 19 30 42 20 33 47
Job 4 123 468 5913 71319 91724 10 19 28 13 23 33 14 26 38 1529 44 16 32 48
Job 5 234 510 14 81418 91621 10 19 26 13 22 30 16 26 35 17 29 39 20 33 44 21 36 48
Job 6 368 6912 916 21 11 20 26 12 24 32 14 27 37 18 31 42 19 33 45 2337 50 24 40 54
Job 7 234 4810 61318 91723 11 20 27 152533 18 28 39 213345 24 38 51 2540 54
Job 8 91723 10 19 26 13 23 31 1527 36 16 30 40 20 33 44 2135 47 2339 52 26 43 57 28 46 62
Job 9 345 479 510 14 71318 10 18 24 122229 13 2533 16 29 38 17 31 41 2135 46
Job 10 4710 51013 91418 111927 12 21 30 152535 18 29 40 213345 223750 23 39 54
Table 16 The fuzzy completion time of 10x10 FISSP 2

Job 1 101316 142025 243238 293845 374962 445774 7093111 7599 118 77 102 123 88 118 142
Job 2 131721 253243 304052 435972 486581 557693 6489107 72101123 74105129 78 112 139
Job 3 142023 243337 294045 324451 365159 395666 426072 43 62 76 48 69 85 57 80 98
Job 4 273644 283848 344658 354963 425774 476584 5675098 60 82 106 64 89 116 68 92 121
Job 5 172428 253542 354959 405668 426073 436378 527188 557594 64 86 107 66 89 110
Job 6 479 141924 172329 273747 324356 425772 526987 60 78 99 65 86 108 69 93 118
Job 7 81213 101619 213037 263746 304254 344761 415772 5168 84 61 8199 70 93 112
Job 8 232936 283545 293849 385161 425776 496890 5679103 76102122 84 113 135 91122 148
Job 9 246 610 14 283747 324356 385165 466379 517294 60 83 108 61 85 111 79 107 128
Job10 589 111618 212836 273748 344861 516882 5878093 61 83 100 64 87 106 72 98 121
Table 17 The fuzzy completion time of 10x10 FISSP 3

Job 1 152331 253544 294254 345063 446279 547392 58 80 102 62 85 110 66 91 117 75 103 130
Job 2 101114 192328 263342 334454 354860 435874 50 69 86 58 80 100 64 89 110 74 103 125
Job 3 5710 111622 121926 192938 274050 29 44 55 3349 62 40 57 73 49 70 87 57 82 102
Job 4 172534 273648 486486 516993 557499 63 84 111 6587 115 67 90 120 73 98 131 79 106 142
Job 5 4710 91317 192434 212738 314251 36 50 67 41 5775 425979 45 63 85 47 67 91
Job 6 121926 435665 466171 517493 5983106 6895120 72102128 73104132 75108 137 81 117 149
Job 7 263140 283444 374456 465467 505973 53 64 80 54 67 84 56 71 91 64 81 104 7191 115
Job 8 71115 162531 213140 294053 354965 41 5775 47 66 86 48 68 90 56 80 104 62 89 116
Job 9 4710 71216 132126 162632 253744 314456 3550 65 37 52 69 46 61 76 56 73 91
Job10 123 914 16 162225 223137 314252 38 53 67 48 67 85 5170 90 52 72 94 54 75 99
Table 18 The fuzzy completion time of 10x10 FJSSP 4

Job 1 71112 121821 162329 233444 33 44 57 40 5369 46 60 78 48 63 82 5270 90 54 74 95
Job 2 101620 111823 122027 223141 30 43 55 32 47 60 375570 45 64 81 47 68 86 5174 94
Job 3 253339 334252 405162 435669 53 69 86 557392 6382105 6686111 6788 114 7193 121
Job 4 202834 223139 263847 304454 375162 435972 456276 5374 90 58 81 98 62 87 107
Job 5 141921 182630 243542 263947 27 42 52 365264 46 63 76 51 70 85 59 80 98 63 86 107
Job 6 121518 162026 202533 243141 30 38 50 334357 455975 52 69 87 58 78 99 63 85108
Job 7 152228 202837 293946 374856 46 61 70 50 66 78 57 76 90 60 80 96 69 92 111 74 100 121
Job 8 711 14 101620 202934 273845 36 48 60 415670 4969 84 59 81100 69 95 116 75102 126
Job 9 235 162532 344561 6183101 6487107 6590111 6692114 6997120 74105129 82116 143
Job10 91315 142024 192632 324453 34 47 58 39 55 68 51 69 85 60 82 101 64 87 109 66 91 114
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Furthermore, we also compute the completion time of
every FJSSP, and they are shown in Tables 11, 12, 13, 14,
15, 16, 17, and 18, respectively. The term in the iy, row and
Jin column represents the completion time of the jth
operation of Job J;. We can see that the completion times
obtained by our method are generally reasonable.

6 Conclusion

In this paper, we introduce the raking concept among fuzzy
numbers based on possibility and necessity measures to job-
shop scheduling problems with fuzzy processing time and
fuzzy due date, and on the bias of this, we propose several
novel objective functions. Next, for simplifying the computa-
tion, we define the PLR fuzzy number to be the assumed type
of fuzzy numbers involved in this paper, and successfully
derived the analytic formulas of the objective functions, which
are very useful for the implementation of the computer
program. In order to obtain better results, we also design a
DE algorithm to search the “optimal” schedule that maximizes
our objective functions. To illustrate our approach, we list some
experimental results, which show that our method is compara-
ble with state-of-the-art methods. And it must be explained that
the smallest makespan time of an FJSSP obtained by our
method may be not the best, but the completion times of all the
jobs are more reasonable due to its consideration of the due date
of each job. This shows the potential application of possibility
and necessity theory in JSSP.

In the future, to make the computation simpler, we may
study some relationship between possibility and necessity
measures and other variants of objective functions based on
them. On the other hand, we can see that there exist high
improvement spaces in the algorithm part from the experi-
ments, especially the convergence; therefore we also may
try other heuristic algorithms that widely adopted in the
scheduling problems, and apply them to the fuzzy job-shop
scheduling problems.
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