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Abstract The job-shop scheduling problems with fuzzy
processing time and fuzzy due date are investigated in this
paper. The ranking concept among fuzzy numbers based on
possibility and necessity measures which are developed in
fuzzy sets theory is introduced. And on the basis of two
consistent measures in this concept, several novel objective
functions are proposed. The purpose of our research is to
obtain the optimal schedules based on these objective
functions. A modified DE algorithm will be designed to
solve these objective functions. Several jop-shop schedul-
ing problems with fuzzy processing time and fuzzy due
date are experimented to show the efficiency and compa-
rability of our approach. Through the experimental results,
the potential application of the possibility and necessity
theory in the real world is shown.

Keywords Fuzzy job-shop scheduling . Fuzzy processing
time . Fuzzy due date . Differential evaluation algorithm .

Ranking concept

1 Introduction

The job-shop scheduling problem, abbreviated as JSSP, is
well-known as one of the popular problem in scheduling,
which plays an important role not only in manufacturing
systems, but also in industrial process for improving
resource utilization. Since JSSP was firstly formulated,
many approximation methods have been proposed, such as
priority dispatch rules [1, 2], constraint satisfaction
approaches [3, 4], and local search methods, since it

belongs to the class of decision problems which are NP-
hard. Among those methods, local search methods have
been of concern all the time; many researches have been
proposed, such as [5–8]. The genetic algorithm (GA) was
applied as the search algorithm in all of these papers. Stated
in a simple way, in all these JSSP problems, various factors,
such as processing time and due date and so on, have
precisely been fixed at some crisp values.

However, in the real world, when it comes to scheduling
problems, most factors involved in are often only imprecisely
or ambiguously known. For instance, the processing time of a
job often can"t be measured precisely and sometimes it"s
tolerable that the completion of a job timeouts in a certain
degree. In such situations, it is more reasonable to consider
the fuzziness. For example, “the processing time is around
5 h” may be a more reasonable statement. It is more often
that the phrase “around 5 h” is modeled as a fuzzy number e5.
And those scheduling problems with fuzzy factors are
recognized as the so-called fuzzy scheduling problems [9].

The scheduling problems with fuzzy factors have been
investigated by many researchers since it was firstly
proposed by Ishii et al. [10]. However, there are not many
results obtained for fuzzy job-shop scheduling problems.
Sakawa and Mori [11] presented an efficient GA by
incorporating the concept of similarity among individu-
als to search the best schedule with fuzzy processing
time and fuzzy due date, and also compared it with the
simulated annealing algorithm. Next, Sakawa and
Kubota [12] applied the same GA to solve multi-
objective fuzzy job scheduling problem (FJSSP). Li et al.
[13] proposed a GA to solve FJSSP with alternative
machines by adopting two-chromosome presentation and
the extended Giffer–Thompson Procedure. Lei [14] pro-
posed an efficient Pareto archive particles swarm optimi-
zation. It has two phases. Firstly, FJSSP is converted into
a continuous optimization problem, and then the proposed
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algorithm is used to search a set of Pareto-optimal
solutions of the continuous problems based on three
objectives. Those papers all use the concept of agreement
index to formulate the objective functions. Moreover, Lei
also considered other measures, including maximize fuzzy
completion time and the mean fuzzy completion time.

Under these circumstances, in this paper, we propose a
different approach by using the concept of possibility and
necessity to formulate the objective functions. In Itoh and Ishii
[15], possibility measure was firstly introduced to the fuzzy
job-shop scheduling problems. They use the possibility to
measure the tardiness of each job, and then to search a
schedule which minimizes the number of λ–tardy jobs. The
approach in this paper is totally different from that of [15]. In
order to explore more suitable model, here we adopt the
ranking concept of fuzzy numbers and uses the possibility
and necessity measures that were proposed by Dubios and
Prade [16]. For making the results consistent, we are going
to formulate the objective functions based on two indices,
which are consistent with each other, that are certainly
different from that in other papers [11, 15, 17, 18]. At the
same time, we define a kind of special fuzzy number as the
supposed type of fuzzy processing time and fuzzy due date,
and then we also derive the analytic formulas for these
objective functions for simplifying the computation. Fur-
thermore, we design a differential evolution (DE) algorithm
to solve these objective functions.

In Section 2, we introduce the concept of fuzzy numbers,
and some arithmetics among fuzzy numbers, which are
based on the “Extension Principle” in fuzzy sets theory. In
Section 3, we introduce the fuzzy job-shop scheduling
problem, and present several types of objective functions,
which are consistent, based on the possibility and necessity
measures. Also, a special type of fuzzy number is defined,
and the analytic formulas based on it for these objective
functions are derived in order to simplify the computation.
In Section 4, a modified DE algorithm is designed to solve
this fuzzy job-shop scheduling problem. In Section 5, some
numerical examples are provided and solved to evaluate our
discussion and to show that there is a potential future to
apply the possibility and necessity measures to the fuzzy
job-shop scheduling problem. In the final section, the
conclusions are given.

2 Fuzzy number

Let X be a set of points, with a generic element of X
denoted by x, thus X={x}. From [19], we can define a
fuzzy set eA in X as follows:

Define 1 If m~
A is a map from X to [0, 1], that is a function

m~
A : X ! 0; 1½ �, then eA is a fuzzy subset of X.

From definition 1, it"s easy to know that eA is charac-
terized by a membership function m~

AðxÞ which associates
with each point in X a real number in [0, 1], with the value
of meAðxÞ at x representing the “grade of membership”
of x in eA. Here, we can conclude that the fuzzy
subset eA of R is defined by a membership function
m~
A : R ! 0; 1½ �. Let eAa denote the α-level set of eA, theneAa ¼ x 2 R : m~

AðxÞ � a
� �

. T h e 0 - l e v e l s e t eA0 ¼
x 2 R : m~

AðxÞ � 0
� �

is the closure of the union of all level

sets, i.e. eA0 ¼ cl
S

a>0
eAa

� �
. A fuzzy set eA of R is said to be

a fuzzy number if it satisfy the conditions below:

1. eA is normal, i.e., there exits an x ∈ R such that
m~
AðxÞ ¼ 1;

2. There exits an x ∈ R satisfies:

(a) 8x1 � x2 � x;m~
A x1ð Þ � m~

A x2ð Þ � m~
AðxÞ;

(b) 8x1 � x2 � x;m~
A xð Þ � m~

A x2ð Þ � m~
A x1ð Þ;

3. 8x1 � x0 � x2 2 R, m~
A x0ð Þ � min m~

A x1ð Þ;m~
A x2ð Þ� �

;

4. ∀α ∈ (0,1), eAa ¼ x 2 R : m~
AðxÞ � a

� �
is a closed and

bounded subset of R.

Since condition d, we see that if eA is a fuzzy number of
R, then eAa is a closed and bounded interval of R. Therefore,
we can denote it with eAL

a;
eAU
a

h i
.

Fig. 1 dR≤c with PSD eD; eC� �
¼ 0

Fig. 2 d<cR and dR<c with PSD eD; eC� �
¼ y0
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Using the Extension Principle in Zadeh [19], we obtain
that if eA and eB are two fuzzy numbers, then the membership
function of eA� eB is defined by

mA�BðzÞ ¼ sup
xþy¼z

min mAðxÞ;mBðyÞ
� �

the membership function of the maximum meax eA; eBn o
of eA

and eB is defined by

mmax A;Bf g ¼ sup
z¼max x;yð Þ

min mAðxÞ;mBðyÞ
� �

Then we also have the following well-known results.

Proposition 1 Let eA and eB be two fuzzy numbers, theneA� eB and meax eA; eBn o
are also fuzzy numbers [17].

Furthermore, we have

eA� eB� �
a
¼ eAL

a þ eBL
a;
eAU
a þ eBU

a

h i
;

meax eA; eBn o� �
a
¼ meax eAL

a;
eBL
a

� �
;max eAU

a ;
eBU
a

� �h i
:

In the next section, we will introduce a specified fuzzy
number to simplify our research. Obviously, it satisfies all
the above properties.

3 JSSP with fuzzy processing time and fuzzy due date

3.1 JSSP problem

In general, an n×m job-shop scheduling problem is
formulated as follows. Let n jobs Jj j 2 1; 2; . . . ; nð Þð Þ be
processed on m machines Mrðr ¼ 1; 2; . . . ;mÞ, and let the
operation of job Jj on machine Mr be Oj,i,r, where i 2
1; 2; . . . ;mð Þ shows the position of the operation in the
technological sequence of the job. In other words, Oj,i,r
expresses the ith operation of job Jj processed on machine r.
It is assumed here that only one operation can be processed
on each machine at a time, and that each operation cannot
be started if the previous operation is still being processed.

However, different from the classical n×m job-shop
scheduling problem, in this paper, we formulate a job-shop
scheduling problem with fuzzy processing time and fuzzy
due date, called fuzzy job scheduling problem. Here, in the
FJSSP, the processing time and due date of operation Oj,i,r

are represented by fuzzy numbers, denoted as ePJji and eDJj ,
respectively. For notational convenience, in the following,
we denote the FJSSP of n jobs and m machines as n×m
FJSSP.

Fig. 4 cL≥d with ND eD; eC� �
¼ 0

Fig. 5 cL<d with c>dL with ND eD; eC� �
¼ y0

Fig. 6 c≤dL with ND eD; eC� �
¼ 1

Fig. 3 d≥cR with PSD eD; eC� �
¼ 1
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3.2 Objective functions based on PSD and ND

In the FJSSP, the processing time and the due date are
assumed to be fuzzy numbers. It"s easy to know that the
completion time of each job Jj is also fuzzy number.
Therefore, we proposed our objective functions based on
the completion time and due date using the ranking concept
of fuzzy numbers. Here, we refer to Dubois and Prade"s
[16] fuzzy number ranking concept in possibility and
necessity theory. Let eA and eB be two fuzzy numbers,
Dubois and Prade define the following four measures

PD eA; eB� �
¼ sup

u�v
min m~

A mð Þ;m~
BðvÞ

� �
; ð1Þ

PSD eA; eB� �
¼ sup

u
inf

fv:v�ug
min m~

AðuÞ; 1� m~
BðvÞ

� �
; ð2Þ

ND eA; eB� �
¼ inf

u
sup

fv:v�ug
max 1� m~

AðuÞ;m~
BðvÞ

� �
; ð3Þ

NSD eA; eB� �
¼ 1� sup

u�v
min m~

AðuÞ;m~
BðvÞ

� �
; ð4Þ

where PD eA; eB� �
and ND eA; eB� �

represent the grade of
possibility and necessity of eA dominanting eB, respectively,
that is the grade of possibility and necessity of eA � eB.
PD eA; eB� �

and NDS eA; eB� �
respectively represent the grade

of possibility and necessity of eA strictly dominating eB, that
is the grade of possibility and necessity of eA � eB. Given the

four measures above, we thus obtain four linear orderings
when it comes to rank N fuzzy numbers. However, it"s not
all of the four measures that are consistent with each other,
so with different measures, we may gain inconsistent
results. Fortunately, the PSD and the ND measures are
pairwise consistent due to their tournament relation
between two fuzzy numbers, which are required to have
continuous membership functions [16]. Therefore, in this
paper, we use the ranking measures given in (2) and (3)
together, that"s PSD and ND, to investigate the relation
between fuzzy completion time of job Jj and its fuzzy due
date.

In a FJSSP problem, we always want to finish every
job before its due date; so in this paper, we are going to
seek for a schedule that more jobs finished before their
given due dates. Since the processing time of every
operation of a job is fuzzy number, the completion time
of each job must be fuzzy number too. For a given job
Jj, we can consider the four measures mentioned above
between its completion time eCJj and due date eDJj . Here
considering the consistency, we just discuss two of
them, PSD eDJj ; eCJj

� �
and ND eDJj ; eCJj

� �
, that is the strictly

possibility measure, between eDJj and :~CJj , and the
necessity measure. Moreover, in order to propose the
suitable objective functions to obtain the “optimal”
schedule, we are going to interpret the meaning
of PSD eDJj ; eCJj

� �
and ND eDJj ; eCJj

� �
. From ranking con-

Table 1 Numerical example 1 of 6×6 FJSSP

Processing machine (fuzzy processing time)

Job 1 1 (5 6 13) 5( 3 4 5) 2 (1 2 3) 6 (3 4 5) 4( 2 3 4) 3 (2 3 4)

Job 2 1 (3 4 5) 2 (2 4 5) 3 (1 3 5) 6 (4 5 6) 4 (5 6 7) 5 (6 7 8)

Job 3 3 (1 2 3) 6 (5 6 7) 5 (4 5 6) 4 (3 4 5) 2 (1 2 3) 1 (1 2 3)

Job 4 6 (2 3 4) 5 (1 2 3) 4 (2 3 4) 2 (2 3 5) 1 (3 4 6) 3 (3 4 5)

Job 5 6 (3 4 5) 5 (2 3 4) 4 (1 2 3) 3 (2 3 4) 2 (4 5 6) 1 (2 3 4)

Job 6 5( 6 7 8) 6 (4 5 6) 1 (2 3 4) 2 (3 4 5) 3 (2 3 4) 4 (1 2 3)

Job 1 Job 2 Job 3 Job 4 Job 5 Job 6

Fuzzy due date 30 40 35 40 20 28 32 40 30 35 40 45

Table 2 Numerical example 2 of 6×6 FJSSP

Processing machine (fuzzy processing time)

Job 1 4 (9 13 17) 3 (6 9 12) 1 (10 11 13) 5 (5 8 11) 2 (10 14 17) 6 (9 11 15)

Job 2 4 (5 8 9) 2 (7 8 10) 5 (3 4 5) 3 (3 5 6) 1 (10 14 17) 6 (4 7 10)

Job 3 5 (3 5 6) 4 (3 4 5) 3 (2 4 6) 1 (5 8 11) 2 (3 5 6) 6 (1 3 4)

Job 4 6 (8 11 14) 3 (5 8 10) 1 (9 13 17) 4 (8 12 13) 2 (10 12 13) 5 (3 5 7)

Job 5 3 (8 12 13) 5 (6 9 11) 6 (10 13 17) 2 (4 6 8) 1 (3 5 7) 4 (4 7 9)

Job 6 2 (8 10 13) 4 (8 9 10) 6 (6 9 12) 3 (1 3 4) 5 (3 4 5) 1 (2 4 6)

Job 1 Job 2 Job 3 Job 4 Job 5 Job 6

Fuzzy due date 112 121 82 91 49 60 97 102 83 89 54 59
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cept, we can easy know that, the value of PSD eDJj ; eCJj

� �
is

larger, the extent of possibility for eDJj being bigger thaneCJj is larger. Similarly, the value of ND eDJj ; eCJj

� �
is larger,

the extent of necessity for eDJj being bigger than eCJj is
larger. And in our FJSSP problem, we hope the values of
both PSD eDJj ; eCJj

� �
and ND eDJj ; eCJj

� �
are as larger as

possible. Therefore, here we are going to maximize the
following objective functions

max
x29

f ðpÞ ¼
Xn
j¼1

wjPSD eDJi ; eCJi

� �
; ð5Þ

max
x29

f ðpÞ ¼
Xn
j¼1

wjND eDJi ; eCJi

� �
; ð6Þ

where ωj are the penalty coefficients, Π is the set of all
schedules, and π is one of the schedules. Now, in order to
consider both two measures simultaneously and since they
are consistent, we combine these two measures together and
get a new measure defined below

PND eDJi ;
eCJi

� �
¼ PSD eDJi ;

eCJi

� �
þ ND eDJi ;

eCJi

� �
ð7Þ

Similarly, PND eDJj ; eCJj

� �
can be totally interpreted

as the degree of eDJj being bigger than eCJj . Then we can

search for a better schedule by maximize the following
objective function

max
x29

f ðpÞ ¼
Xn
j¼1

wjPND eDJi ; eCJi

� �
ð8Þ

Here, we can also add penalty coefficients for both
PSD and ND, to get a more general measure defined
below

GPND eDJj ; eCJj

� �
¼ w1 � PSD eDJj ; eCJj

� �
þ w2 � ND eDJj ; eCJj

� �
ð9Þ

where ω1 and ω2 are the penalty coefficients respectively
imposing upon the possibility measure and necessity
measure. And at the same time, we can also maximize a
more general objective function as follows

max
p29

f ðpÞ ¼
Xn
j¼1

wj � GPND eDJj ; eCJj

� �
ð10Þ

Now, there are several objective functions. However, in
this paper, in order to get consistent results, we combine
PSD and ND, and just consider the objective function given
in formula 10.

Table 3 Numerical example 3 of 6×6 FJSSP

Processing machine (fuzzy processing time)

Job 1 6 (5 7 10) 5 (10 14 17) 4 (1 3 5) 3 (1 3 5) 2 (4 6 8) 1 (9 10 11)

Job 2 5 (6 7 8) 1 (9 13 17) 3 (8 12 13) 6 (2 3 4) 4 (10 13 16) 2 (2 3 4)

Job 3 3 (4 5 6) 1 (10 11 12) 5 (9 12 16) 2 (8 12 13) 6 (6 9 12) 4 (4 7 9)

Job 4 4 (1 2 4) 5 (2 4 5) 6 (5 7 8) 3 (5 8 10) 1 (3 5 7) 2 (6 8 10)

Job 5 4 (9 11 15) 1 (4 6 9) 5 (1 2 3) 6 (10 11 15) 2 (4 7 8) 3 (10 11 12)

Job 6 5 (6 7 9) 3 (1 2 4) 2 (6 9 11) 6 (10 14 18) 4 (1 2 3) 1 (9 13 14)

Job 1 Job 2 Job 3 Job 4 Job 5 Job 6

Fuzzy due date 81 88 66 80 89 92 51 60 91 96 75 78

Table 4 Numerical example 4 of 6×6 FJSSP

Processing machine (fuzzy processing time)

Job 1 1 (6 7 9) 6 (1 2 4) 4 (4 7 8) 5 (1 2 3) 3 (9 10 13) 2 (2 3 5)

Job 2 1 (10 13 16) 4 (7 11 15) 5 (6 8 11) 6 (2 4 5) 2 (9 12 15) 3 (2 3 4)

Job 3 2 (5 6 9) 6 (9 10 11) 3 (6 7 10) 4 (9 11 14) 1 (8 10 14) 5 (9 11 12)

Job 4 6 (10 11 15) 4 (3 4 6) 1 (9 12 16) 2 (9 12 15) 5 (4 5 7) 3 (5 7 9)

Job 5 4 (2 3 5) 5 (8 12 14) 3 (1 3 5) 2 (3 4 5) 1 (3 4 6) 6 (4 5 6)

Job 6 5 (5 8 10) 3 (7 10 11) 1 (1 3 4) 6 (6 8 9) 4 (4 6 7) 2 (3 4 6)

Job 1 Job 2 Job 3 Job 4 Job 5 Job 6

Fuzzy due date 43 50 96 102 93 103 71 75 49 54 62 70
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3.3 Calculation for fuzzy completion time

Given a schedule of the FJSSP, the completion time of a job
is the completion time of the last operation of the job. For
computing the completion time of an operation, we need to
establish its start time, and this is related to its order and the
machine it preceeds.

Before this, in order to simplify the calculations, we are
planning to introduce a new fuzzy number, called PLR fuzzy
number, and just focus on it in the next part of this paper.
Now we firstly give the definition of the PLR fuzzy number.

Define 2 Given a fuzzy number eA, it is called PLR fuzzy
number if it has the form eA ¼ a1; a; a; L;R, distributed by
the following membership functions respectively,

mAðxÞ ¼
LðxÞ; aL � x � a

RðxÞ; a � x � aR
0; other

8><
>: ;

where aL, a, and aR are non-negative numbers and aL≤a≤
aR, L is strictly increasing function and R is strictly
decreasing function, which satisfy

LðaLÞ ¼ RðaRÞ ¼ 0 and LðaÞ ¼ RðaÞ ¼ 1;

and both of them are continuous functions.
From definition 2, we can easily know that triangle

fuzzy number is a kind of special PLR fuzzy number.
Furthermore, we have the following results.

Proposit ion 2 Let eA ¼ aL; a; aR; LR;RAð Þ and eB ¼
bL; b; bR; LB;RBð Þ be two PLR fuzzy numbers, then eA� eB
and meax eA; eBn o

are also PLR fuzzy numbers, and we have

eA� eB� �
a
¼ eAL

a þ eBL
a;
eAU
a þ eBU

a

h i
;

meax eA; eBn o� �
a
¼ max eAL

a;
eBL
a

� �
;max eAU

a ;
eBU
a

� �h i
:

Moreover,

eA� eB ¼ aL þ bL; aþ b; aR þ bR; L
þ
AB;R

þ
AB

� �
;

meax eA; eBn o
¼ max aL; bLð Þ;max a; bð Þ;max aR; bRð Þ; Lmax

AB ;Rmax
AB

� �
;

where LþAB and Lmax
AB (Rþ

AB and Rmax
AB ) depends on LA and LB

(RA and RB respectively).
Let eA ¼ aL; a; aRð Þ and eB ¼ bL; b; bRð Þ be two triangle

fuzzy numbers, it"s easy to obtain that

eA� eB ¼ aL þ bL; aþ b; aR þ bRð Þ

is also a triangle fuzzy number. However, meax eA; eBn o
is not

necessarily a triangle fuzzy number. T
ab
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Now we are going to give an example to make the
computing of the completion time clear. There is a 2×2
FJSSP below:

Job 1: machine 1 (2, 5, 6), machine 2 (5, 7, 8),
Job 2: machine 2 (3, 4, 7), machine 1 (1, 2, 3).

Here (2, 5, 6) and others are triangle fuzzy numbers and
represent the fuzzy processing times of operations.
Suppose 2 1 2 1 is a given schedule, then we can see
that the start time of job 2 is (0, 0, 0) and the start time of
job 1 is also (0, 0, 0). Next, the second operation of job 2
is processed on machine 1, and at the same time, it must
proceed after the first operation. So its start time is max
{(2,5,6),(3,4,7)}. Here, stated in a simple way, we shall
approximate max of triangle fuzzy numbers with the
following formula:

meax eA; eBn o
ffi max aL; bLð Þ;max a; bð Þ;max aR; bRð Þð Þ

So we obtain (3, 5, 7) approximately. Easily, we compute
the completion time of job 2, the addition of (3, 5, 7) and
(1, 2, 3), that is (4, 7, 10).

3.4 Analytic formulas for the objective functions

Here, we assume that the completion time eCJj of every job
Jj is a PLR fuzzy number, so is the due date eDJj . In this
case, we can derive the analytic formulas for the objective
functions proposed above, which also make the computa-
tion neater. Now, we consider the strictly dominate
possibility measure PSD eDJj ;

eCJj

� �

Table 10 The time and objective function value of each problem

Problem Time (s) B_ GPNS W_GPNS A_GPNS

6×6 1 1.313 3.32092 3.28299 3.29664

6×6 2 1.328 5.89644 5.73691 5.83721

6×6 3 1.328 5.26347 5.2111 5.22847

6×6 4 1.343 5.17221 5.05369 5.10072

10×10 1 4.093 6.43048 6.34413 6.39046

10×10 2 4.063 8.07412 7.82981 7.93663

10×10 3 4.062 8.61662 8.40187 8.50359

10×10 4 4.031 5.9632 5.79505 5.85307

Table 9 Parameters of DE

Problem Population size Generations ω1 ω2

6×6 100 100 0.5 0.5

10×10 100 100 0.5 0.5
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Proposit ion 3 Let eC ¼ cL; c; cR; LC;RCð Þ and eD ¼
dL; d; dR; LD;RDð Þ be two PLR fuzzy numbers, and R

0
c

denotes the function of 1−RC. Then we have the following
results:

(1) If dR≤c then PSD eD; eC� �
¼ 0.

(2) If d<cR and dR>c, and suppose the point of
intersection of the two lines RD and R

0
C is (x0, y0),

then PSD eD; eC� �
¼ y0.

(3) If d≥cR then PSD eD; eC� �
¼ y1.

Proof Firstly, let us see what"s the meaning of the PSD
from mathematics. From formula 2, we know that
PSD eD; eC� �

¼ sup
u

inf
fv:v�ug

min m~
DðuÞ; 1� m~

CðvÞ
� �

. The r e -

fore, we can explain it as follows: assume that the domain
of u is {u1,u2,…,un}, yj is the value of min m~

D u1ð Þ;�
1�

m~
C vj
� �Þ for 8vj � u1, and x1 ¼ min yj

n o
, j=1,2,….. Sim-

ilarly, we can compute x2; x3; . . . ; xn. Finally, we obtain a
list of x1; x2; :::; xnf g. The value of PSD eD; eC� �

is the max
value of the list, that is PSD eD; eC� �

¼ max x1; x2; :::; xnf g.
In order to make our proof neat, we shall apply figures.

From Fig. 1, we can see that when 8ui < dR, the minimum
of all yj is 0, due to dR≤c. For 8ui � dR, it"s obvious that xi
is 0 since m~

DðuiÞ ¼ 0. Then we have (1).
Now we pay attention to (2). See Fig. 2, RD and

R
0
C intersect at point (x,y). Let ui=0, it"s not difficult to

know that min m~
D uið Þ; 1� m~

C nj
� �� � ¼ y0 for 8vj � ui. And

when c < ui < x0; 1� m~
C vj
� � � 1� m~

C uið Þ for 8vj � ui, so
min m~

D uið Þ; 1� m~
C vj
� �� � ¼ 1� m~

D uið Þ < y0. N e x t , w e
consider ui≤c, in this case, the minimum of 1� m~

C vj
� � ¼

0 for 8vj � ui since there exists a value v
0
j ¼ c to

satisfy 1� m~
C v

0
j

� �
¼ 0. Lastly, when ui>x0, we can

Fig. 10 GPND convergence trends for 6×6 JSSP 4

Fig. 9 GPND convergence trends for 6×6 JSSP 3

Fig. 8 GPND convergence trends for 6×6 JSSP 2

Fig. 7 GPND convergence trends for 6×6 JSSP 1
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easily obtain that min m~
D uið Þ; 1� m~

C vj
� �� � ¼ m~

D uið Þ < y0
for 8vj � ui. In summary, we conclude (2).

From Fig. 3, it is easy to see that PSD eD; eC� �
¼ 1, since

m~
DðdÞ ¼ 1� m~

CðdÞ ¼ 1.
We complete the proof.

Proposit ion 4 Let eC ¼ cL; c; cR; LC;RCð Þ and eD ¼
dL; d; dR; LD;RDð Þ be two PLR fuzzy numbers, and L

0
D

denotes the function of 1−LD. Then we have the following
results:

(1) If cL≥d, then ND eD; eC� �
¼ 0.

(2) If cL<d and c>dL, and suppose the point of inter-
section of the two lines L

0
D and LC is (x0, y0), then

ND eD; eC� �
¼ y0.

(3) If c≤dL, then ND eD; eC� �
¼ 1.

Proof Similarly, let us start with the mathematic meaning
of ND by formula (3). We can easily get that
ND eD; eC� �

¼ inf
u

sup
v:v�uf g

max 1� m~
DðuÞ;m~

CðvÞ
� �

, so it can

be explained as below: suppose that the domain of u is
{u1, u2,…, un}, for 8v0 � u1, we compute a value by
max 1� m~

D u1ð Þ;m~
C v0ð Þ� �

, then we can get a list of values

like this. Let y1 as the maximum of all the values. Next we
can obtain y2; . . . ; yn for u2, …, un, respectively. Then the

value of ND eD; eC� �
as the mininimum value of the list

of y1; y2; . . . ; ynf g, that is ND eD; eC� �
¼ min y1; y2; . . . ; ynf g.

Here, we also apply some figures to accomplish our
proof. See Fig. 4, there exists ui=d that makes yi ¼ 0 since
for 8v0 � ui m~

C v0ð Þ ¼ 0 comes into existence. So we
have (1).

Fig. 14 GPND convergence trends for 10×10 JSSP 4

Fig. 13 GPND convergence trends for 10×10 JSSP 3

Fig. 12 GPND convergence trends for 10×10 JSSP 2

Fig. 11 GPND convergence trends for 10×10 JSSP 1
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For (2), let us shift to Fig. 5. Let the point of intersection
of L

0
D and LC is (x0, y0). When u=x0, we can see

t h a t f o r 8v0 � x0 t h e m a x imum o f m~
C v0ð Þ i s

m~
C x0ð Þ ¼ 1� m~

D x0ð Þ ¼ y0. Next we consider the situations

of u<x0 and u>x0. When u<x0, we can easily get that 1�
m~
DðuÞ > 1� m~

D x0ð Þ ¼ y0 and m~
C v0ð Þ < y0 for 8v0 � u,

so it"s easy to obtain that y ¼ max 1� m~
DðuÞ;m~

C v0ð Þ� �
� y0, respect to u< x0. Similarly, we have y0 ¼
max 1� m~

DðuÞ;m~
C v0ð Þ� � � y0, respect to u>x0. Therefore,

we have ND eD; eC1� �
¼ min y; y0; y0f g ¼ y0, that is (2).

Now look at Fig. 6. When u>c, we can see
that max max 1� m~

DðuÞ;m~
C v0ð Þ� �� �

always be 1 for
8v0 � u, due to that there must exist a v0=c≤u satisfy
m~
C v0ð Þ ¼ 1. When u≤c, we know that 1�~

DðuÞ ¼ 1 since
we have c � dL. So in this case we always have
max max 1� m~

DðuÞ;m~
C v0ð Þ� �� � ¼ 1. Therefore we obtain

that ND eD; eC� �
¼ 1.

We complete the proof.
Since triangle fuzzy number is a special type of PLR

fuzzy number, all the propositions above can also be
applied to it.

4 The DE algorithm

For a given n×m FJSSP problem, here we invoke the DE
algorithm proposed by Storn and Price [20] to obtain the
best schedule. However, as we know, the DE algorithm is a
continuous optimization algorithm, so its original encoding
scheme can"t be straightly used to solve the scheduling
problem. For our purpose, the key issue is to construct a
direct relationship between the schedule of the jobs and the
individuals in DE. Here, we use the concept of random

keys proposed by Bean [21] to generate the job sequence of
a specified individual. Suppose we consider a 3×2 FJSSP
problem, then the length of individuals is 3×2, and we
generate six random numbers in (0, 1) as a vector for each
individual. And the job sequence is generated like below:
for example, if an individual is (0.21, 0.34, 0.12, 0.17, 0.56,
0.43), we let 1←0.21, 2←0.34, 3←0.12, 4←0.17, 5←
0.56 and 6←0.43, then sort the random numbers in
ascending order and get a sequence (3,4,1,2,6,5). Since
the sequence is not a legal job schedule, we modify each
element by the number of jobs, that is 3 here, and also
add 1 for avoiding 0. After this, we obtain the final result
(1,2,2,3,1,3). It means the following process order: the
first operation of job 1, the first operation of job 2, the
second operation of job 2, the first operation of job 3,
the second operation of job 1, the second operation of
job 3. Certainly, some of operation can be operated in
parallel, if they don"t need the same machine and don"t
belong to the same job.

Similar to Genetic Algrithm(GA), DE has three evolu-
tionary operator: select, crossover, and mutation. The
significant difference from GA is that DE uses distance
and direction information from the current population to
guide the search process. The crucial idea behind DE is a
scheme for producing trial vectors according to the
manipulation of target vector and difference vector. In this
paper, it works as follows.

For each individual"s vector xi(G), i=1,…N, where N is
the number of individuals and G is the Gth iteration, we can
get a differential vector vi(G) by mutation:

vi;G ¼ xr1;G þ F xr2;G � xr3;G
� �

;

where r1,r2,r3∊[1,…,N] are random integers, and r1≠r2≠
r3≠ i, F is the scaling factor controlling the amplification of
the differential evolution.

Job 1 8 10 18 12 16 23 13 18 26 16 22 31 18 25 35 20 28 39

Job 2 3 4 5 5 8 10 6 11 15 10 16 21 15 22 28 21 29 36

Job 3 12 17 26 21 28 36 25 33 42 28 37 47 29 39 50 30 41 53

Job 4 5 7 9 6 9 12 8 12 16 10 15 21 15 20 32 18 24 37

Job 5 3 4 5 5 7 9 6 9 12 8 12 16 12 17 22 14 20 26

Job 6 9 12 15 13 17 21 15 20 25 18 24 30 20 27 34 21 29 37

Table 11 The fuzzy completion
time of 6×6 FJSSP 1

Job 1 25 34 41 31 43 53 41 55 71 46 63 82 56 77 99 65 88 114

Job 2 5 8 9 15 18 23 18 22 28 21 29 35 31 43 52 35 50 62

Job 3 3 5 6 8 12 14 15 24 29 20 32 40 23 37 46 25 40 50

Job 4 8 11 14 13 20 24 22 33 41 33 46 54 43 58 67 46 63 74

Job 5 8 12 13 14 21 24 24 34 43 28 40 51 31 45 58 37 53 67

Job 6 8 10 13 16 21 24 22 30 36 23 33 40 26 37 45 28 41 51

Table 12 The fuzzy completion
time of 6×6 FJSSP 2
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Then the trial individual can be produced by the
crossover. Let D be the dimension of the vectors, it"s
operated as:

ui;j;G ¼ vi;j;G; randj � CR
� �

or j ¼ jrandð Þ
xi;j;G; otherwise

�
;

where j=1,2,…,D, randj∊[0,1] is a random number, jrand∊
[1,2,…,D] is a random index, CR is the crossover rate, ui,G
denotes the trial vector of the ith individual at the Gth

iteration, and ui,j,G is the value of the jth dimension in the
trial vector.

Next, select operator is used to produce the offspring by
choosing between the trial population and the parent
population:

xi;Gþ1 ¼ ui;G; f ui;G
� �

> f xi;G
� �

xi;G; otherwise

�
;

where f is evaluated function, which responses to the
objective function here. Suppose that we plan to consider
the objective function in formula (10), and then the
computational procedure is described as below:

Step 1. Initialize population randomly, initialize the
parameters CR, F. And set the current generation
G=0;

Step 2. Convert every individual to job sequence,
and evaluate it by the objective function in
formula (10), mark the best individual;

Step 3. Do the mutation, crossover, and select oper-
ator for each individual;

Step 4. G ¼ Gþ 1, repeat Step2 to Step5 until the
stopping criteria is reached.

In order to get better result, we also incorporate an
improvement to the DE. The purpose of this is to exploit a

better solution from the neighborhood of a solution.
There are several neighborhoods. In this paper, we just
use one neighborhood, that"s swap [22], to improve the
diversity of population and enhance the quality of the
solution.

5 Numerical examples

For illustrating the approach we proposed, in this section,
we consider some simple examples. Here, we list four 6×6
FJSSPs and 10×10 FJSSPs respectively, they are shown in
Tables 1, 2, 3, 4, 5, 6, 7, and 8(the examples we use come
from [11, 12]). The term m(pL,p,pR) represents the machine
and the processing time of operation, and term (d,dR)
represents the due date of job.

Now, we are ready to solve the eight FJSSPs by using
the modified DE algorithm for illustrating the proposed
objective functions. To be general, we just experiment our
method on the bias of formula 10.The parameters of our
algorithm are shown in Table 9, and each of them is set by a
number of experiments. By the way, all the trials are
performed ten times for each problem and all the codes is
written with C++, and are run on a PC with an Intel
2.00 GHz CPU.

Figs. 7, 8, 9, 10, 11, 12, 13, and 14.

Job 1 5 7 10 16 21 27 17 24 32 18 27 37 28 39 47 37 49 58

Job 2 34 46 58 44 59 75 52 71 88 54 74 92 64 87 108 66 90 112

Job 3 4 5 6 14 17 21 26 35 45 34 47 58 40 56 70 44 63 79

Job 4 11 16 24 28 39 50 33 46 58 38 54 68 41 59 75 47 67 85

Job 5 9 11 15 13 17 24 17 23 29 27 34 44 31 41 52 41 52 64

Job 6 6 7 9 7 9 13 13 18 24 23 32 42 24 34 45 33 47 59

Table 13 The fuzzy completion
time of 6×6 FJSSP 3

Job 1 37 49 65 38 51 69 42 58 77 43 60 80 52 70 93 54 73 98

Job 2 10 13 16 17 24 31 23 32 42 31 38 47 40 50 62 42 53 66

Job 3 5 6 9 19 21 26 25 28 36 34 39 50 42 49 64 51 60 76

Job 4 10 11 15 13 15 21 22 28 37 31 40 52 35 45 59 40 52 68

Job 5 2 3 5 13 20 24 14 23 29 17 27 34 23 32 42 29 37 48

Job 6 5 8 10 12 18 21 13 21 25 25 29 35 29 35 42 32 39 48

Table 14 The fuzzy completion
time of 6×6 FJSSP 4
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Table 10 shows some results of our methods. The
column of time lists the average executing time of each
example. The B_GPND column represents the maximum of
GPND (that's formula 10) in ten times of each JSSP, the
W_GPND is the worst GPND and the A_GPND is the
average GPND. It's obvious that our method is largely
efficient. Moreover, in order to show the state of con-
vergence, we also give out the changed values of GPND in
each generation for each example. And they are shown in



Table 15 The fuzzy completion time of 10×10 FJSSP 1

Job 1 3 6 9 6 11 15 8 15 20 14 21 28 15 23 31 18 28 37 20 31 42 21 33 45 24 37 50 26 40 54

Job 2 2 3 4 4 6 9 6 10 14 7 12 17 11 17 23 13 21 29 16 24 33 17 27 37 19 30 41 22 34 46

Job 3 2 4 5 4 6 8 6 9 14 7 11 18 10 16 24 11 19 28 12 22 33 17 26 37 19 30 42 20 33 47

Job 4 1 2 3 4 6 8 5 9 13 7 13 19 9 17 24 10 19 28 13 23 33 14 26 38 15 29 44 16 32 48

Job 5 2 3 4 5 10 14 8 14 18 9 16 21 10 19 26 13 22 30 16 26 35 17 29 39 20 33 44 21 36 48

Job 6 3 6 8 6 9 12 9 16 21 11 20 26 12 24 32 14 27 37 18 31 42 19 33 45 23 37 50 24 40 54

Job 7 2 3 4 4 8 10 6 13 18 9 17 23 11 20 27 15 25 33 18 28 39 21 33 45 24 38 51 25 40 54

Job 8 9 17 23 10 19 26 13 23 31 15 27 36 16 30 40 20 33 44 21 35 47 23 39 52 26 43 57 28 46 62

Job 9 3 4 5 4 7 9 5 10 14 7 13 18 10 18 24 12 22 29 13 25 33 16 29 38 17 31 41 21 35 46

Job 10 4 7 10 5 10 13 9 14 18 11 19 27 12 21 30 15 25 35 18 29 40 21 33 45 22 37 50 23 39 54

Table 16 The fuzzy completion time of 10×10 FJSSP 2

Job 1 10 13 16 14 20 25 24 32 38 29 38 45 37 49 62 44 57 74 70 93 111 75 99 118 77 102 123 88 118 142

Job 2 13 17 21 25 32 43 30 40 52 43 59 72 48 65 81 55 76 93 64 89 107 72 101 123 74 105 129 78 112 139

Job 3 14 20 23 24 33 37 29 40 45 32 44 51 36 51 59 39 56 66 42 60 72 43 62 76 48 69 85 57 80 98

Job 4 27 36 44 28 38 48 34 46 58 35 49 63 42 57 74 47 65 84 56 75 98 60 82 106 64 89 116 68 92 121

Job 5 17 24 28 25 35 42 35 49 59 40 56 68 42 60 73 43 63 78 52 71 88 55 75 94 64 86 107 66 89 110

Job 6 4 7 9 14 19 24 17 23 29 27 37 47 32 43 56 42 57 72 52 69 87 60 78 99 65 86 108 69 93 118

Job 7 8 12 13 10 16 19 21 30 37 26 37 46 30 42 54 34 47 61 41 57 72 51 68 84 61 81 99 70 93 112

Job 8 23 29 36 28 35 45 29 38 49 38 51 61 42 57 76 49 68 90 56 79 103 76 102 122 84 113 135 91 122 148

Job 9 2 4 6 6 10 14 28 37 47 32 43 56 38 51 65 46 63 79 51 72 94 60 83 108 61 85 111 79 107 128

Job 10 5 8 9 11 16 18 21 28 36 27 37 48 34 48 61 51 68 82 58 78 93 61 83 100 64 87 106 72 98 121

Table 17 The fuzzy completion time of 10×10 FJSSP 3

Job 1 15 23 31 25 35 44 29 42 54 34 50 63 44 62 79 54 73 92 58 80 102 62 85 110 66 91 117 75 103 130

Job 2 10 11 14 19 23 28 26 33 42 33 44 54 35 48 60 43 58 74 50 69 86 58 80 100 64 89 110 74 103 125

Job 3 5 7 10 11 16 22 12 19 26 19 29 38 27 40 50 29 44 55 33 49 62 40 57 73 49 70 87 57 82 102

Job 4 17 25 34 27 36 48 48 64 86 51 69 93 55 74 99 63 84 111 65 87 115 67 90 120 73 98 131 79 106 142

Job 5 4 7 10 9 13 17 19 24 34 21 27 38 31 42 51 36 50 67 41 57 75 42 59 79 45 63 85 47 67 91

Job 6 12 19 26 43 56 65 46 61 71 51 74 93 59 83 106 68 95 120 72 102 128 73 104 132 75 108 137 81 117 149

Job 7 26 31 40 28 34 44 37 44 56 46 54 67 50 59 73 53 64 80 54 67 84 56 71 91 64 81 104 71 91 115

Job 8 7 11 15 16 25 31 21 31 40 29 40 53 35 49 65 41 57 75 47 66 86 48 68 90 56 80 104 62 89 116

Job 9 4 7 10 7 12 16 13 21 26 16 26 32 25 37 44 31 44 56 35 50 65 37 52 69 46 61 76 56 73 91

Job 10 1 2 3 9 14 16 16 22 25 22 31 37 31 42 52 38 53 67 48 67 85 51 70 90 52 72 94 54 75 99

Table 18 The fuzzy completion time of 10×10 FJSSP 4

Job 1 7 11 12 12 18 21 16 23 29 23 34 44 33 44 57 40 53 69 46 60 78 48 63 82 52 70 90 54 74 95

Job 2 10 16 20 11 18 23 12 20 27 22 31 41 30 43 55 32 47 60 37 55 70 45 64 81 47 68 86 51 74 94

Job 3 25 33 39 33 42 52 40 51 62 43 56 69 53 69 86 55 73 92 63 82 105 66 86 111 67 88 114 71 93 121

Job 4 20 28 34 22 31 39 26 38 47 30 44 54 37 51 62 43 59 72 45 62 76 53 74 90 58 81 98 62 87 107

Job 5 14 19 21 18 26 30 24 35 42 26 39 47 27 42 52 36 52 64 46 63 76 51 70 85 59 80 98 63 86 107

Job 6 12 15 18 16 20 26 20 25 33 24 31 41 30 38 50 33 43 57 45 59 75 52 69 87 58 78 99 63 85 108

Job 7 15 22 28 20 28 37 29 39 46 37 48 56 46 61 70 50 66 78 57 76 90 60 80 96 69 92 111 74 100 121

Job 8 7 11 14 10 16 20 20 29 34 27 38 45 36 48 60 41 56 70 49 69 84 59 81 100 69 95 116 75 102 126

Job 9 2 3 5 16 25 32 34 45 61 61 83 101 64 87 107 65 90 111 66 92 114 69 97 120 74 105 129 82 116 143

Job 10 9 13 15 14 20 24 19 26 32 32 44 53 34 47 58 39 55 68 51 69 85 60 82 101 64 87 109 66 91 114
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Furthermore, we also compute the completion time of
every FJSSP, and they are shown in Tables 11, 12, 13, 14,
15, 16, 17, and 18, respectively. The term in the ith row and
jth column represents the completion time of the jth
operation of Job Ji. We can see that the completion times
obtained by our method are generally reasonable.

6 Conclusion

In this paper, we introduce the raking concept among fuzzy
numbers based on possibility and necessity measures to job-
shop scheduling problems with fuzzy processing time and
fuzzy due date, and on the bias of this, we propose several
novel objective functions. Next, for simplifying the computa-
tion, we define the PLR fuzzy number to be the assumed type
of fuzzy numbers involved in this paper, and successfully
derived the analytic formulas of the objective functions, which
are very useful for the implementation of the computer
program. In order to obtain better results, we also design a
DE algorithm to search the “optimal” schedule that maximizes
our objective functions. To illustrate our approach, we list some
experimental results, which show that our method is compara-
ble with state-of-the-art methods. And it must be explained that
the smallest makespan time of an FJSSP obtained by our
method may be not the best, but the completion times of all the
jobs are more reasonable due to its consideration of the due date
of each job. This shows the potential application of possibility
and necessity theory in JSSP.

In the future, to make the computation simpler, we may
study some relationship between possibility and necessity
measures and other variants of objective functions based on
them. On the other hand, we can see that there exist high
improvement spaces in the algorithm part from the experi-
ments, especially the convergence; therefore we also may
try other heuristic algorithms that widely adopted in the
scheduling problems, and apply them to the fuzzy job-shop
scheduling problems.
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