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A method is proposed for finding the normal mode eigenvalues in shallow water waveguide. We
transform the problem determining eigenvalues in complex wave number plane into solving a “true”
one dimensional Hamilton system. Simulations are performed, the result agrees very well with that
calculated by the normal mode program KrakanC.
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1. Introduction

Normal mode methods are well developed for the solution of propagation of underwater
acoustics. A number of well tested computer programs are available for applications to a
wide variety of practical situations.1,2 A crucial step in a normal mode solution is to find
numerically modal eigenvalues, that is, numerically solve dispersion/eigenvalue equation. A
main difficulty in finding modal eigenvalues for most general case where eigen-horizontal
wavenumber is complex and may not close to the real axis. As has been argued by Tindle
and Chapman,3 in these cases, finding modal eigenvalues becomes a two-dimensional (2D)
search in the complex horizontal wavenumber plane. They also proposed an elegant method
to find quickly the eigenvalues. We refer interested readers to as their paper, where merits
and demerits of several current methods have been discussed clearly.

In this short paper, motivated by the paper of Tindle and Chapman, we develop a
method for finding modal eigenvalues. This method is more effective in the sense of that
if we consider the method proposed by Tindle and Chapman to be a 1.5D search in the
complex plane, then our method is 1.1D search problem. We will explain the terms 1.5D
or 1.1D in the following section. Our idea is to transform the problem finding eigenvalues
in the complex plane to solve a 1D Hamilton equation. We would like to emphasize that
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the method can also be used in other fields of classical waveguide problems like ultrasonic’s,
optics.

For self-contained, in Sec. 2, we recall briefly the normal mode solution, relevant con-
cepts: phase function and Wronskian. In Sec. 3, we illustrate our idea; how to transform
finding eigenvalue problem to a problem of Hamilton mechanics. Two simple numerical
examples are shown in Sec. 4.

2. Normal Mode Theory

The normal mode theory is well-developed in underwater acoustics, the details will not be
repeated here, referring readers to standard text books. We here base the works of Bucker.4

For a range independent waveguide, sound pressure of frequency f at the range r, depth
z, which generated by a harmonic point source at the coordinate origin with depth zs can
be expressed as

p(f, r, z) = −
∫ +∞

−∞
U(z<)V (z>)

W
H

(1)
0 (kr)kdk (1)

where k is the horizontal wavenumber. The parameters z< and z> are the lesser and greater
respectively of z and zs. The functions U and V are two independent solutions which satisfies
the lower and upper boundary condition of the considering waveguide and the following
equation

d2U

dz2
+

(
ω2

c(z)2
− k2

)
U = 0 (2)

The W called Wronskian of the ordinary differential equation for U and V is defined by

W ≡ UV ′ − U ′V (3)

where the prime denotes the derivative with respect to z. It can be shown in very general
situation that U and V are function of the horizontal wavenumber with some isolated
branch points, acrossing these points we need clearly point out the branch line e.g. Pekeris
branch cut. There exist other singular points in Eq. (1) where the Wronskian are zero and
corresponding wave numbers k are eigen-wavenumbers. By performing a contour integral
with a suitable branch cut, Eq. (1) can be rewritten to

p(f, r, z) = 2πi
∑

n

U(z<, kn)V (z>, kn)
∂W |kn

H
(1)
0 (knr)kn + c.p (4)

where c.p denotes the contribution coming from continuous spectrum, which cannot be
omitted for near field or the problem of coupled modes,5,6 while or far field discrete normal
modes dominate.
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Alternatively, we can use WKB solution for U and V , and then eigenvalues satisfies the
following modal equation3,4

ϕw,m − i

2
ln(R1) − i

2
ln(R1) + π = mπ (5)

where ϕm denotes the one-way phase shift in water column, R1 and R2 the reflection
coefficients of upper and lower boundaries, respectively. Equation (5) is similar to the semi-
classical quantization condition in quantum mechanics, and the horizontal wavenumber is
quantized. In Ref. 3, the authors coined the left hand side of Eq. (5) as phase function Φ.
The phase function is in general a complex function of the complex k. In principle, there
are two equivalent methods; one is to find zeros of Wronskian in the complex k plane and
the other is proposed by Tindle and Chapman by first finding the curve Im Φ = 0 then
identifying the positions ReΦ = mπ. Their method is powerful in the sense that the search
is constrained to essentially one dimension after one found the curve Im Φ = 0. In this sense,
we say it 1.5 dimension; 0.5 coming from finding the curve.

3. A Hamilton Solver

It has been seen that the crucial step in the application of the method proposed in Ref. 3
is to find isovalue curve Im Φ = 0. In this section, we show that it is not needed to find the
whole curve, only one or two initial points are needed. A method traces automatically the
curve Im Φ = 0 is proposed.

At first we recall some basic ingredients of Hamilton mechanics, see e.g. Ref. 7. In math-
ematical terms, a Hamilton mechanics is defined over an even 2n-dimensional symplectic
space M . A symplectic space (or manifold) is equipped by a canonical structure called
symplectic structure given by a rank two exterior differential-form

Ω =
2n∑

m,n=1

ωmndxn ∧ dxm. (6)

where ωmn are antisymmetric with respect to the subscripts m and n. A standard canonical
symplectic structure is given by e.g. n = 1,

Ω = dx1 ∧ dx2. (7)

Given a symplectic structure, one can define a Poisson bracket as follows

{F,G} ≡
∑

m,n=1

ωmn ∂F

∂xm

∂G

∂xn
, (8)

where functions F and G are differentiable. The Poisson bracket has some elegant properties:

{F,G} = −{G,F},
{F,GH} = {F,G}H + H{F,G},

{F, {G,H}} + {G, {H,F}} + {H, {F,G}} = 0

(9)
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the last one is the Jacobi identity. For the symplectic structure Eq. (7), we have

{F,G} ≡ ∂F

∂x1

∂G

∂x2
− ∂F

∂x2

∂G

∂x1
, (10)

Equation (9) can be verified directly by using Eq. (10). Having a symplectic structure or
Poisson bracket, given a function called to Hamiltonian (being not explicitly dependent on
time variable t) we can define Hamilton equation

dxm(t)
dt

= {xm,H(x(t))}, (11)

e.g. given (10), we have

dx1(t)
dt

=
∂H(x1, x2)

∂x2
,

dx2(t)
dt

= −∂H(x1, x2)
∂x1

.

(12)

The following relation can be shown by using the first property in Eq. (9),

d

dt
H(x1, x2) =

dx1(t)
dt

∂H

∂x1
− dx2

dt

∂H

∂x2
≡ 0. (13)

Now we have all tools to treat the problem at hand by using Hamilton mechanics. The
complex plane in k has a natural symplectic structure

Ω = dkR ∧ dkI , (14)

where kR and kI denote the real and imaginary part of complex k, respectively. Now iden-
tifying ImΦ as a Hamiltonian, we have

dkR(t)
dt

=
∂ Im Φ(kR, kI)

∂kI
,

dkI(t)
dt

= −∂ Im Φ(kR, kI)
∂kR

(15)

where “time variable” is now just a parameter describing curve. Furthermore, Eq. (13)
implies along the curve determined by Hamilton equation,

ImΦ = const . (16)

We give a geometric interpretation. The isovalue curve ImΦ = 0 is expressed by

Im Φ(kR, kI) = 0, (17)

its normal vector is given by

∇[Im Φ] =
(

∂ ImΦ
∂kR

,
∂ ImΦ
∂kI

)
. (18)

Equations (13) and (18) mean that the trajectory or curve determined by the Hamilton
Eq. (15) is tangent automatically to the normal vector. Given an initial point on the curve
ImΦ = 0, then Eq. (13) assures the trajectory on the curve for all the time.
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We have thus shown that the problem finding the curve Im Φ = 0 is equivalent to solve
a 1D Hamilton equation, moreover Eq. (18) tells us that if one start with an initial position
with Im Φ = 0, then this relation preserves automatically in the calculation. By Hamilton
equation, the real part of the phase function, Re Φ can be calculated at the same time

dRe Φ
dt

= {Re Φ, ImΦ}, (19)

and the eigenvalues can be identified directly by Re Φ = mπ. In other words, we only need
an initial point; the remaining is a 1D problem. This is why we refer the present method to
as 1.0 + 0.1D. To our knowledge, no such similar method has been reported. The method
presented above find the curve Im Φ = 0 automatically, this improve the method proposed
by Ref. 3.

4. Numerical Simulation

In order to show the usefulness of the present method above, in this section, we consider
two examples. Both examples are Pekeris waveguide with different bottom: one for fluid
and the other is an elastic bottom. An isovelocity layer of water lies over the bottoms. The
calculation is programmed by using the software MatLab.

Table 1 shows parameters used in the calculation for the fluid bottom. The reflection
coefficient of the sea surface is set to −1, and the reflection coefficient of the fluid bottom can
be found in a textbook. We here concentrate to trapped modes with phase speeds less than
the sound speed of bottom; these modes are most interested in practical applications for long
distance propagation. Figure 1(a) gives the calculated line Im(Φ) = 0 in the complex k plane.
Figure 1(b) gives the corresponding Re(Φ) and cycles locate at the position of eigenvalues
when Re(Φ) = mπ. The mode 1 is the lower right corner and mode 9 is the most left one. The
curve Im(Φ) = 0 is calculated by using a Runge-Kutta difference code (Matlab) of Eq. (17)
starting with the initial value kb = ω/cb, in a step of 10−5. A comparison with the results of
KrakanC is given in Figs. 1(c) and 1(d). In the WKB approach, sound field is determined
completely by the normal mode wave numbers. The lower panels show a comparison of the
transmission Loss (TL) (from r = 1.0 km to r = 100 km) (taking zs = zr = 50 m) of the
fluid bottom calculated in the WKB approach and that calculated based on KrakanC with
good agreement.

Similarly, Table 2 shows parameters for the elastic bottom. Both longitudinal and shear
waves with attenuation. Figure 2 gives the corresponding calculated results.

Table 1. Parameters for the Pekeris waveguide of fluid bottom (f = 100 Hz).

Layer Density kg/m3 Thickness m Wave Type Wave speed m/s Attenuation dB/λ

Water 1000 100 Pressure 1500 0.0
Sediment 1800 Half space Compressional 2000 0.2
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. Calculated results for fluid bottom: (a) curve Im (Φ) = 0 in the complex k-plane, (b) the corresponding
Re (Φ) value. ◦ = eigenvalues. (c) eigenvalues kn: ⊗ = Hamiltonian, ∗ = KrakenC (d) abs[∆Rek]: difference
of eigen-horizontal wave numbers between the Hamilton Solver and KrakenC (e). Right TL from 1km–
100 km, (f) TL from 50 km–60 km.
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Table 2. Parameters for the Pekeris waveguide of elastic bottom (f = 100 Hz).

Layer Density kg/m3 Thickness m Wave Type Wave speed m/s Attenuation dB/λ

Water 1000 100 Pressure 1500 0.0
Sediment 1800 Half space Longitudinal 2000 0.2

Shear 800 0.2

(a)
(b)

(c) (d)

(e) (f)

Fig. 2. Calculated results for fluid bottom: (a) curve Im (Φ) = 0 in the complex k-plane, (b) the corresponding
Re(Φ) value. ◦ = eigenvalues. (c) eigenvalues kn: ⊗ = Hamiltonian, ∗ = KrakenC (d) abs[∆Rek]: difference
of eigen-horizontal wave numbers between the Hamilton Solver and KrakanC. (e) TL from 1km to 100 km.
(f) TL from 5km to 10 km.
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5. Conclusion

In this short note, we have presented a new method for finding normal mode eigenvalues for
underwater acoustic propagation problem. Beside of some initial points must be specified,
this method is a true 1D method for finding eigenvalues. It is very interesting to extend
the present method to find eigenvalues for frequency broadband and range-dependent envi-
ronments. It become to constrained Hamilton systems, somewhat complicated than that
considered in this note, we shall consider these problems in near future.
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