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a b s t r a c t

Yeast two-hybrid (Y2H) screens were used to test for interactions between leukocyte cell-derived che-
motaxin 2 (LECT2) and a liver cDNA expression library of ayu, Plecoglossus altivelis. Of the 9 independent
interacting clones identified, 2 were identical and closely related to C-type lectin receptor (CLR) genes of
fish, while the other 7 were partial sequences from transferrin genes. Ayu CLR (aCLR) showed similarity
to immune-relevant mammalian receptors in terms of amino acid sequence and overall organization
within the C-type lectin-like domain (CTLD). The aCLR transcript was detected with the highest levels in
the head kidney and peripheral blood leukocytes (PBLs), and more weakly in the heart, liver and gill. The
interaction between aCLR and ayu LECT2 (aLECT2) was confirmed by in vitro co-immunoprecipitation of
the two proteins. This interaction may be responsible for the ‘‘neutrophil-chemotactic’’ characteristic of
LECT2. Y2H assays using different parts of the two proteins showed that the CTLD part of aCLR was
involved in the interaction with mature aLECT2, and the contact structure of CTLD was essential for the
interaction. The identification of this CLR/LECT2 interaction sheds light on the mechanism of serum
LECT2 changes resulting in cellular immune responses.

� 2009 Elsevier Ltd. All rights reserved.

Leukocyte cell-derived chemotaxin 2 (LECT2) was first isolated
from the culture fluid of the human (Homo sapiens) T cell line SKW-
3 and was shown to have neutrophil chemotactic activity [1].
Proteins homologous to LECT2 have since been isolated in many
other vertebrates. Current evidence suggests that LECT2 may be
a multifunctional protein, involved in cell growth, differentiation,
damage/repair processes and in the autoimmune response [2–5]. In
recent studies, fish LECT2 transcripts were significantly increased
after bacterial infection, indicating that LECT2 might participate in
immune regulation of fish [6,7].

Ayu (Plecoglossus altivelis) is an important cultured freshwater
fish in Japan and China. However diseases occur frequently and
limit production efficiencies and food quality of this economic fish.
Recently, ayu bacterial diseases have been posing a serious threat to
cultured ayu in Mainland China [8]. Resistance to infectious
diseases would improve ayu production efficiency, but the cellular
and molecular processes involved in disease resistance are poorly
understood in this species and we have therefore begun to study
the ayu genes related to immunology. In this paper, we report
studies using a yeast two hybrid (Y2H) system showing that LECT2

interacts with a C-type lectin receptor (CLR) of ayu. The possible
roles of this interaction in the immune responses are discussed.

About 30 healthy ayu, weighing 20–25 g each, were obtained
from a commercial farm in Huangtian Reservoir, Ningbo City, China.
These fish were kept in freshwater tanks at 20–22 �C in a recircu-
lating system with filtered water, fed with pelleted dry food once
a day, and acclimatized to laboratory conditions for at least one
week before experiments. All fish used in this study were appar-
ently healthy without any pathological signs. The construction of
the bait plasmid pGBKT7-aLECT2 and ayu liver cDNA library for
Y2H was done as previously described [9].

Using expressed aLECT2 as bait in Y2H screens, 9 independent
interacting clones were identified after two separate screenings of
an ayu cDNA expression library (2.5 � 106 independent clones).
Each clone could induce the two reporter genes, allowing growth
on quadruple dropout plates and expression of a-galactosidase
activity. Sequencing showed that 2 of 9 were partial sequences from
a C-type lectin receptor gene, while the other 7 clones were partial
sequences from a transferrin (Tf) gene [9]. Subsequently, the
complete cDNA sequence of ayu C-type lectin receptor gene (EMBL
accession number: FN396582) was determined. It was 1265
nucleotides in length excluding the poly(A) tail. The ORF was pre-
dicted to produce a protein of 256 amino acids with MW 29.30 kDa.

Database searching and alignment using BLAST indicates that
ayu C-type lectin receptor was most similar to the previously
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reported Atlantic salmon (Salmo salar) C-type lectin receptor A
(sCLRA) [10], and it was therefore tentatively named as ayu C-type
lectin receptor (aCLR). Mammalian dendritic cell (DC) – specific
intercellular adhesion molecule 3 – grabbing non-integrin receptor
(DC-SIGN) had the most closely related complete C-type lectin
domain (CTLD) compared to that of fish CLRs by a BLASTP non-
redundant database search. aCLR was predicted to be a monomeric
transmembrane receptor like sCLRA, as there was no recognizable
coiled-coil domain in its extracellular region (Fig. 1). aCLR had
a longer N-terminal cytoplasmic tail with a potential tyrosine
phosphorylation site (YTSL) that resembles an ITIM-like motif
(YxxL) [11]. The CTLD was present at its C-terminus and consisted of
139 residues (amino acid position 118–256). aCLR had a number of
conserved residues characteristic of the C-type lectins [12]. Each
had six cysteine residues at conserved positions within the CTLD
required for formation of the three intramolecular disulfide bonds
(C118–C129, C146–C248, C225–C240) that were essential for CTLD fold
stability (Fig. 1). It also had four residues essential in coordinating
a Ca2þ ion at site 1 and five of the six residues at site 2 (Fig. 1). The
motif that controls carbohydrate specificity was Glu-Pro-Asn (EPN),
which primarily binds mannose and related carbohydrates [10].
aCLR contained such a motif at position 211–213 (Fig. 1).

From the amino acid sequence analysis, aCLR has a relatively
higher similarity to that of the sCLRA (71.4%) than to that of other
fish CLR (41.6–69.5%). It had 21.7–25.3% identity to those immune-
related, lectin-like receptors (Illrs) from zebrafish (Danio rerio),
while less than 15% identity to mammalian DC-SIGN. Phylogenetic
analysis showed that most fish CLRs formed a large cluster, while
zebrafish Illrs formed another separate small cluster. Mammalian
DC-SIGN grouped tightly and formed a cluster distantly related to
two fish clusters (Fig. 2).

Ayu tissues were dissected from healthy fish, and peripheral blood
leukocytes (PBLs) were purified as previously described [10]. The

total RNAs from tissues (5 mg) and cells (2 mg) were purified using
RNAiso regents (TaKaRa, Kyoto, Japan). A 961 bp fragment of the ayu
CLR mRNA was then amplified by reverse transcription polymerase
chain reaction (RT-PCR) using the RNA PCR Kit (AMV) Ver.3.0
(TaKaRa, Kyoto, Japan) with primers pCLR(þ): 50-TGATTGGATACTA
GACCAAG-30 and pCLR(�): 50-CAATCTGCCCCTCAATTGAC-30. As an
internal PCR control, primers pActin2(þ): 50-TCGTGCGTGACATC
AAGGAG-30 and pActin2(�): 50-CGCACTTCATGATGCTGTTG-30 were
used to amplify a 231 bp fragment of the housekeeping b-actin gene.
RT-PCR conditions were: denaturing for 2 min at 94 �C, then 30 cycles
of denaturing for 30 s at 94 �C, annealing for 30 s at the optimized
temperature (57.0 �C for CLR, 60.5 �C for b-actin) and extension for
60 s at 72 �C; the cycles were followed by a final extension step of
10 min at 72 �C. The products were separated on a 1.5% agarose gel
and stained with ethidium bromide. The aCLR transcripts were
detected with the highest levels in the head kidney and PBLs, and
weakly in the heart, liver and gill (Fig. 3). The mRNA expression
pattern of aCLR was similar to that of sCLRA [10]. To examine the
mRNA expression changes following Listonella anguillarum infection,
the liver and head kidney from artificially infected fish were collected
at 6 h post-injection (hpi). Transcript abundances of aLECT2 and aCLR
were quantified using quantitative real-time PCR (qPCR), as
described previously [13]. Data indicated that bacterial infection
caused a significant up-regulation in the mRNA expression level of
aLECT2 in liver (up to 67.3-fold) and aCLR in head kidney (up to 12.5-
fold) at acute phase (6 hpi), normalized against b-actin.

A plasmid pGADT7-aCLR with the complete aCLR ORF in
a pGADT7 vector was constructed subsequently and retransformed
back to yeast either alone or in combination with pGBKT7-aLECT2,
Lamin C, or the binding domain vector alone. The reporter genes
were only induced in combination with pGBKT7-aLECT2. The
interaction between aLECT2 and aCLR was confirmed by in vitro co-
immunoprecipitation (Co-IP) of the two proteins expressed from

Fig. 1. Predicted amino acid sequence of ayu CLR (aCLR) aligned with the homologous sequences from Atlantic salmon (Salmo salar) CLRA (sCLRA) (NM_001123579), Northern pike
(Esox lucius) CLR (eCLR) (BT079281), rainbow trout (Oncorhynchus mykiss) CLR (tCLR) (AY593994), and zebrafish (Danio rerio) CLR (zCLR) (BC134972) using the ClustalW program.
Threshold for shading is >70%, similar residues are marked as gray shadow, identical residues as black shadow and alignment gaps as ‘‘-’’. CT: cytoplasmic tail; TMR: transmembrane
region; NR: neck region; CTLD: C-type lectin domain. Conserved Cys residues are marked as ‘‘D’’. A novel YXXL-dependent signaling cascade is marked as ‘‘****’’. A mannose-binding
lectin motif ‘‘EPN’’ is marked as ‘‘###’’. The numbers 1 and 2 above the alignment indicate the residues normally conserved among CTLDs which coordinate Ca2þ at sites 1 and 2.
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the TNT T7 Coupled Reticulocyte Lysate System [9]. Proteins of the
expected sizes of 18.6 kDa (c-Myc-aLECT2) and 30.9 kDa (HA-aCLR)
were obtained, but were not detected in the control (Fig. 4). aLECT2
and aCLR were prokaryotic expressed, and polyclonal antisera
against them were then raised in mice (Balb/C), respectively.
Western blots using these two polyclonal antisera were performed
on Co-IP product, and confirmed that the bands noted were indeed
the proteins of interest (Fig. 5).

The aLECT2 gene was divided into two parts (Table 1) and each
was inserted into a pGBKT7 vector. The aCLR gene was divided into
several parts (Table 1) according to the deduced structure (Fig. 1)
and each was inserted into a pGADT7 vector. Y2H assays using
different parts of the two proteins (Table 1) showed that the CTLD
part of aCLR was involved in the interaction with mature aLECT2,
and the contact structure of CTLD was essential for the aCLR/aLECT2
interaction (Table 1).

In accordance with the previous reports, ayu LECT2 and CLR
transcripts were significantly increased after bacterial infection,
indicating that they two might participate in immune regulation
[6,7,10]. Although there is little information on fish LECT2 and CLRs,
studies on well-characterized mammalian LECT2 and CLRs should
provide functional clues. Besides its neutrophil chemotactic activity
[1], some investigations further indicate that mammalian LECT2
should play a role in immune regulation. In LECT2-deficient mice,
the proportion of NKT cells in the liver increased and hepatic injury
was exacerbated in severe concanavalin A-induced hepatitis [5].

The significantly exacerbated arthritis and altered expression of
inflammatory cytokines were also found in LECT2-deficient mice
[4]. These two reports revealed that LECT2 might be an important
regulator of leukocyte differentiation and activation. However, as
a cytokine, the receptor of LECT2 remains unclear. Mammalian DC-
SIGN contains the most closely related complete CTLD to that of fish
CLRs, which recognize specific carbohydrate structures of patho-
gens to internalize pathogens for degradation in lysosomal
compartments to enhance antigen processing [14]. The DC-SIGN
cytoplasmic tail also carries a YxxL motif, which is known to play
a role in the induction of intracellular signals related to DCs
maturation [15]. Therefore, we suggest that DC-SIGN or similar
CLRs are possible receptors of LECT2. The interaction between CLR
and LECT2 of ayu suggests that serum LECT2 may influence the
immune system through the activation of CLRs and intracellular
signaling pathways, and their roles in immune regulation of fish
might be closely related to macrophage activation and polarization.

In conclusion, CLRs may be an important component involved in
LECT2 signaling transduction, and CLR/LECT2 interaction may be
responsible for the ‘‘neutrophil-chemotactic’’ characteristic of
LECT2. Our study at least sheds some light on the mechanism of
serum LECT2 changes resulting in cellular immune responses, but
much more investigations are needed.

Fig. 3. RT-PCR analysis of aCLR mRNA expression in various tissues (or cells) of ayu fish. 1, ayu genomic DNA as template; 2, without template; L, liver; S, spleen; HK, head kidney;
TK, trunk kidney; H, heart; G, gill; B, brain; PBLs, peripheral blood leukocytes. b-actin amplification included as an internal control. The size of the products is shown on the right.
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Fig. 2. Phylogenetic (neighbor-joining) analysis of C-type lectin receptor amino acid
sequences using the MEGA4.0 program. The values at the forks indicate the percentage
of trees in which this grouping occurred after bootstrapping (1000 replicates; shown
only when >60%). The scale bar shows the number of substitutions per base. Accession
numbers of sequences used are mouse (Mus musculus) DC-SIGN, AF373408; siamang
(Hylobates syndactylus) DC-SIGN, AY078884; owl monkey (Aotus trivirgatus) DC-SIGN,
EU041930; human (Homo sapiens) DC-SIGN, AF209479; black gibbon (Hylobates con-
color) DC-SIGN, AY078891; zebrafish (Danio rerio) CLR, BC134972; zebrafish illr1,
NM_001040050; zebrafish illr2, NM_001128371; zebrafish illr3, AL928975; mummi-
chog (Fundulus heteroclitus) CLR, AY735176; ayu (Plecoglossus altivelis) CLR, FN396582;
rainbow trout (Oncorhynchus mykiss) CLR, AY593994; Atlantic salmon (Salmo salar)
CLRA, NM_001123579; Atlantic salmon CLRB, NM_001123580; Atlantic salmon CLRC,
NM_001123581; Northern pike (Esox lucius) CLR, BT079281.

Fig. 4. Colorimetric (BCIP/NBT) analysis of aLECT2 co-immunoprecipitates with aCLR.
1, c-Myc-aLECT2 immunoprecipitated with anti-HA; 2, co-immunoprecipitates of the
biotinylated HA-aCLR and c-Myc-aLECT2. The sizes of the HA and c-Myc epitope tags
were 1.5 and 1.6 kDa respectively. The positions of protein size markers (kDa) are
shown on the left.
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Fig. 5. Western blot analysis using an anti-aLECT2 (a) or anti-aCLR (b) polyclonal
antiserum on Co-IP product. 1, c-Myc-aLECT2 immunoprecipitated with anti-HA; 2,
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the HA and c-Myc epitope tags were 1.5 and 1.6 kDa respectively. The positions of
protein size markers (kDa) are shown on the left.

Table 1
Interactions (negative, �; positive, þ) determined from Y2H experiments between
different regions of the aCLR and aLECT2. Human lamin C is included as a non-
specific control. The numbers are the amino acid positions in the protein sequence.
CT: cytoplasmic tail; TMR: transmembrane region; NR: neck region; CTLD: C-type
lectin domain; aa: amino acid.

CT TMR NR CTLD

aa1–
45

aa46–
69

aa70–
117

aa118–
256

aa118–
188

aa189–
256

aLECT2 aa22-
156

� � � þ � �

aLECT2 aa1-21 � � � � � �
lamin C � � � � � �
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