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Abstract In this note it is shown that if the connection integers of two maximal length
FCSR sequences have a common prime factor, then any crosscorrelation between them can
be converted into some autocorrelation of the sequence with smaller period.
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1 Introduction

Feedback with carry shift registers (FCSRs) were first introduced by A. Klapper and
M. Goresky in [1]. They are in many ways similar to linear feedback shift registers (LFSRs)
but with the addition of an “extra memory” that retains a carry from one stage to the next.
Among FCSR sequences, maximal length FCSR sequences or l-sequences have attracted
much attention both in theory and application. It is widely believed that l-sequences have
very good pseudorandom properties, and research has been done on distribution properties,
linear complexities and correlation properties of them, see [2–6]. Moreover stream ciphers
and pseudorandom generators based on l-sequences are not only secure but also simple,
see [7,8].
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Let a = {a(t)}∞t=0 and b = {b(t)}∞t=0 be two binary sequences of period T . The (periodic)
cross-correlation function between these two sequences at shift τ , where 0 ≤ τ ≤ T − 1, is
defined by

Ca,b(τ ) =
T −1∑

i=0

(−1)a(i)+b(i+τ).

If the sequences a and b are the same we call it the autocorrelation and denote it by Ca(τ ).
Good correlation properties are important for pseudorandom sequences. The arithmetic cros-
scorrelation investigated in [5] can be thought of as a “with carry” analogue of the usual
crosscorrelation. The family of l-sequences and their decimations have ideal arithmetic cor-
relations, see [5]. As for usual correlation properties of l-sequences, it is relatively difficult
to research. Instead of directly evaluating autocorrelations of an l-sequence, [6] has inves-
tigated the expected value and the variance of them. But up to now almost no paper, in the
literature, has given any theoretical result on the usual crosscorrelation of l-sequences as far
as we know.

This note presents an interesting relationship between the crosscorrelation of l-sequences
and the autocorrelation of them. In detail, for two l-sequences a and b of period pe · (p − 1)

and p f · (p − 1) respectively, where p is an odd prime and 0 ≤ f ≤ e, given any shift
0 ≤ τ < pe · (p − 1), there exists an 0 ≤ τ ′ < p f · (p − 1) such that Ca,b(τ ) = Cb(τ

′). In
this case, it is shown that the result of [6] can be used to estimate crosscorrelations.

Throughout the note we use the following notations. For any positive integer n, Z/(n)

indicates the integer residue ring, and {0, 1, . . . , n − 1} is chosen as the complete set of
representatives for the elements of the ring. Thus for any sequence a = {a(t)}∞t=0 over
Z/(n), a(t) is regarded as an integer between 0 and n − 1 for t ≥ 0. For any integer
sequence b = {b(t)}∞t=0, (b mod n) denotes the sequence {b(t) mod n}∞t=0 over Z/(n), and
the congruence b ≡ a mod n means b(t) ≡ a(t) mod n for t ≥ 0.

2 Recollections on binary FCSR sequences

In this section, we briefly review FCSR sequences. Reference [2] is a good introduction on
them.

Let q = q1 · 2 + q2 · 22 + · · · + qr · 2r − 1, where q1, q2,…, qr−1 ∈ {0, 1} and qr = 1. A
diagram of an r -stage FCSR is given in Fig. 1.

The FCSR changes stages by computing

σ = q1 · a(n + r − 1) + q2 · a(n + r − 2) + · · · + qr · a(n) + m(n),

Fig. 1 an r -stage FCSR
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and then set a(n +r) = (σ mod 2) and m(n +1) = (σ −a(n +r))/2. q is called the connec-
tion integer of the FCSR, and it is the arithmetic analog of the connection polynomial of an
LFSR. The output sequence a = {a(t)}∞t=0 is always ultimately periodic and if q is the least
number with which an FCSR can generate a then its period per(a) is equal to ordq(2) where
ordq(2) denotes the multiplicative order of 2 modulo q . It is clear that ordq(2) ≤ ϕ(q) where
ϕ denotes the Euler’s phi function. If a is strictly periodic and its period attains maximum
that is per(a) = ϕ(q), then a is called an l-sequence (for “long sequences”) generated by
an FCSR with connection integer q or just an l-sequence with connection integer q . In this
case, it is necessary that q be a power of a prime q = pe and 2 be a primitive root modulo q .

There is an analog of the trace representation of LFSR sequences, which is called the
exponential representation, see [2]. We present here the exponential representation for
l-sequences.

Proposition 1 [2, Theorem 6.1] Let a = {a(t)}∞t=0 be an l-sequence with connection integer
pe and γ = (2−1 mod pe) be the multiplicative inverse of 2 in the ring Z/(pe). Then there
exists a unique A ∈ Z/(pe) such that gcd(A, p) = 1 and

a(t) = (A · γ t mod pe mod 2), t ≥ 0.

Moreover, the ϕ(pe) possible different non-zero choices of Z/(pe) give cyclic shifts of a, and
this accounts for all the binary l-sequences with connection integer pe.

Here the notation (mod pe mod 2) means that first the number A · γ t is reduced modulo
pe to give a number between 0 and pe −1, and then that number is reduced modulo 2 to give
an element in {0, 1}. If we denote α = {

A · γ t mod pe
}∞

t=0, then we can write

a = α mod 2 = {α(t) mod 2}∞t=0 .

Note that α is a primitive (linear recurring) sequence of order 1 over Z/(pe) for γ is a prim-
itive root modulo pe (see Sect. 3 for the definition of primitive sequences over Z/(pe)) and
α is uniquely determined by a. Therefore we call α = {

A · γ t mod pe
}∞

t=0 the associated
primitive sequence to a. Following corollary can be deduced from Proposition 1.

Corollary 1 Let a be an l-sequence with connection integer pe and e ≥ 2. If α is the asso-
ciated primitive sequence to a, then (α mod pe−i mod 2) is an l-sequence with connection
integer pe−i and its associated primitive sequence is (α mod pe−i ) for 1 ≤ i ≤ e − 1.

3 Main results

At the end of Sect. 2, for any l-sequence with connection integer pe, e ≥ 1, we have associ-
ated a primitive sequence over Z/(pe) to it. That relationship is vital for us to derive our main
result of this section, and so let us begin with some necessary introduction about primitive
sequences over Z/(pe).

Let p be an odd prime and e be a positive integer. A sequence s = {s(t)}∞t=0 of elements
of Z/(pe) satisfying the relation

s(t + n) ≡ cn−1 · s(t + n − 1) + cn−2 · s(t + n − 2) + · · · + c0 · s(t) mod pe

for t ≥ 0 is called a (nth-order) linear recurring sequence over Z/(pe) and the polynomial

f (x) = xn − cn−1xn−1 − · · · − c1x − c0 ∈ Z/(pe)[x]
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is called a characteristic polynomial of the linear recurring sequence s. If f (x) is a primitive
polynomial over Z/(pe) and (s(0) mod p, s(1) mod p, . . . , s(n − 1) mod p) is a nonzero
vector, then s is called a primitive sequence over Z/(pe). In such case, per(s mod pi ) attains
pi−1 · (pn − 1), 1 ≤ i ≤ e − 1, and particularly (s mod p) is just an m-sequence in Z/(p).
(See [9] whose discussions hold for odd primes too.)

Any element u in Z/(pe) has a unique p-adic expansion as

u = u0 + u1 · p + · · · + ue−1 · pe−1,

where ui ∈ {0, 1, . . . , p − 1}, 0 ≤ i ≤ e − 1. Then similarly a sequence s over Z/(pe) has
a unique p-adic expansion as

s = s0 + s1 · p + · · · + se−1 · pe−1

where si is a sequence over Z/(p), 0 ≤ i ≤ e − 1. The following two facts are important
results on primitive polynomials and primitive sequences over Z/(pe).

Lemma 1 [10] Let f (x) be a primitive polynomial of degree n ≥ 1 over Z/(pe) where p is
an odd prime and integer e ≥ 1. Then there exists a unique nonzero polynomial h f (x) over
Z/(p) with deg(h f (x)) < n such that

x pi−1·T ≡ 1 + pi · h f (x)(mod f (x), pi+1), i = 1, 2, . . . , e − 1 (1)

where T = pn − 1.

Here the notation (mod f (x), pi+1) means that the congruence x pi−1·T ≡ 1 + pi ·
h f (x) mod f (x) holds over Z/(pi+1). Let L denote the left shift operator, that is, for any
sequence a = {a(t)}∞t=0 and i ≥ 0, Li a = {a(t + i)}∞t=0. Besides, a + b = {a(t) + b(t)}∞t=0
for two integer sequences a = {a(t)}∞t=0 and b = {b(t)}∞t=0.

Lemma 2 [11] Let f (x) be a primitive polynomial of degree n ≥ 1 over Z/(pe) where p is
an odd prime and integer e ≥ 2. Let s be a primitive sequence with characteristic polynomial
f (x) over Z/(pe) and α = (h f (L)s0 mod p), where h f (x) is defined by (1). Then

{se−1(t + j · pe−2 · T ) | j = 0, 1, . . . , p − 1} = {0, 1, . . . , p − 1}
if α(t) �= 0, where T = pn − 1.

With the above two lemmas we can derive following result.

Lemma 3 Let s be a primitive sequence of order 1 over Z/(pe). Then

{se−1(t + j · pe−2 · T ) | j = 0, 1, . . . , p − 1} = {0, 1, . . . , p − 1}
for t ≥ 0, where T = p − 1.

Proof Assume the primitive polynomial f (x) is a characteristic polynomial of s. Then
according to Lemma 1, there exists a nonzero constant h f ∈ Z/(p) for which

x pi−1·T ≡ 1 + pi · h f (mod f (x), pi+1), i = 1, 2, . . . , e − 1.

Let α = (h f · s0 mod p). Since s0 is an m-sequence of order 1 over Z/(p), it follows that
s0(t) and α(t) are nonzero for all t ≥ 0. The lemma immediately follows from Lemma 2. �	

Let ⊕ denote addition modulo 2 or XOR. Then for two integer sequences a = {a(t)}∞t=0
and b = {b(t)}∞t=0, a ⊕ b = {a(t) ⊕ b(t)}∞t=0. The following theorem is the main result of
this section.
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Theorem 1 Let a and b be two l-sequences with connection integers pea and peb respec-
tively, where 1 ≤ eb ≤ ea. Then

Ca,b(τ ) = Cb(τ − v mod per(b))

for 0 ≤ τ < per(a), where v is an integer determined by a and b.

Proof If ea = eb, then the conclusion immediately follows from Proposition 1. Thus in the
following let eb < ea .

Assume the associated primitive sequence over Z/(pea ) to a is α. Write the p-adic expan-
sion of α as

α = α0 + α1 · p + · · · + αea−1 · pea−1

where αi is a sequence over Z/(p), 0 ≤ i ≤ ea − 1. Then we have

a = (α mod 2) = α0 ⊕ α1 ⊕ · · · ⊕ αea−1.

Denote

ai = α0 ⊕ α1 ⊕ · · · ⊕ αi , 0 ≤ i ≤ ea − 1. (2)

In particular we have

a = aea−1

and

ai = (α mod pi+1 mod 2)

for 0 ≤ i ≤ ea − 1. It follows from Corollary 1 that ai is an l-sequence with connection
integer pi+1 and period pi · (p − 1) for 0 ≤ i ≤ ea − 1. With these notations we are going
to prove

Caea−1,b(τ ) = Caea−2,b(τ ).

Let T = p − 1. Since per(b) = peb−1 · T which divides pea−2 · T , it follows that

Caea−1,b(τ ) =
pea−1·T −1∑

i=0

(−1)aea−1(i)+b(i+τ)

=
pea−2·T −1∑

t=0

T∑

j=0

(−1)aea−1(t+ j ·pea−2·T )⊕b(τ+t+ j ·pea−2·T )

=
pea−2·T −1∑

t=0

(−1)b(τ+t)
T∑

j=0

(−1)aea−1(t+ j ·pea−2·T ) (3)

for any 0 ≤ τ < pea−1 · (p − 1). Because of

aea−1(t + j · pea−2 · T ) = aea−2(t + j · pea−2 · T ) ⊕ αea−1(t + j · pea−2 · T )

implied by (2) for t, j ≥ 0 and

per(aea−2) = pea−2 · T,
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6 T. Tian, W.-F. Qi

we obtain
aea−1(t + j · pea−2 · T ) = aea−2(t) ⊕ αea−1(t + j · pea−2 · T ) (4)

for t, j ≥ 0. Then taking (4) into (3) yields

Caea−1,b(τ ) =
pea−2·T −1∑

t=0

(−1)b(τ+t)⊕aea−2(t)
T∑

j=0

(−1)αea−1(t+ j ·pea−2·T ).

By Lemma 3 we have

{αea−1(t + j · pea−2 · T ) | j = 0, 1, . . . , p − 1} = {0, 1, . . . , p − 1}
which implies that

T∑

j=0

(−1)αea−1(t+ j ·pea−2·T ) =
T∑

j=0

(−1) j = 1.

Thus

Caea−1,b(τ ) =
pea−2·T −1∑

t=0

(−1)aea−2(t)⊕b(τ+t) = Caea−2,b(τ ).

Similarly it can be recursively shown that

Caea−1,b(τ ) = Caea−2,b(τ ) = Caea−3,b(τ ) = · · · = Caeb−1,b(τ )

and so

Ca,b(τ ) = Caeb−1,b(τ ). (5)

Since both aeb−1 and b are l-sequences with connection integer peb , it follows from
Proposition 1 that there exists an integer v ≥ 0 such that

aeb−1 = Lvb. (6)

Then from (5) and (6) we get

Ca,b(τ ) = CLvb,b(τ ) = Cb(τ − v mod per(b)).

The theorem is proved. �	
In [6], the authors have investigated the expected value and the variance of autocorrelations

of an l-sequence. They derived the following main result.

Lemma 4 [6, see Theorem 2.7] Let a be an l-sequence with connection integer q = pe and
period T = pe−1 · (p − 1) . Then the expectation of its autocorrelations is E[Ca(τ )] = 0
and the variance of its autocorrelations satisfies

V ar(Ca(τ )) ≤ 256 · q · (
ln q

π
+ 1

5
)4 ·

(
1 − q−1/2

1 − p−1/2

)2

.

Based on Theorem 1, Lemma 4 can be directly used to estimate crosscorrelations. That is
the following corollary.

123



A note on the crosscorrelation of maximal length FCSR sequence 7

Corollary 2 Let a and b be two l-sequences with connection integers pea and peb respec-
tively, where 1 ≤ eb < ea. Then the expectation of crosscorrelations between a and b is
E[Ca,b(τ )] = 0 and the variance of them satisfies

V ar(Ca,b(τ )) ≤ 256 · peb ·
(

ln peb

π
+ 1

5

)4

·
(

1 − p−eb/2

1 − p−1/2

)2

.

Proof Let Ta = per(a) = pea−1 · (p − 1) and Tb = per(b) = peb−1 · (p − 1). Since

Ca,b(τ1) =
Ta−1∑

i=0

(−1)a(i)+b(i+τ1) =
Ta−1∑

i=0

(−1)a(i)+b(i+τ2) = Ca,b(τ2)

for 0 ≤ τ1, τ2 < Ta and τ1 ≡ τ2 mod Tb, it follows that

E[Ca,b(τ )] = 1

Ta

Ta−1∑

τ=0

Ca,b(τ ) = 1

Ta
· Ta

Tb

Tb−1∑

τ=0

Ca,b(τ ) = 1

Tb

Tb−1∑

τ=0

Ca,b(τ ). (7)

Moreover by Theorem 1 we obtain

Tb−1∑

τ=0

Ca,b(τ ) =
Tb−1∑

τ=0

Cb(τ − v mod Tb) =
Tb−1∑

τ=0

Cb(τ ) (8)

where the integer v is determined by a and b. Then (7) and (8) yield

E[Ca,b(τ )] = 1

Tb

Tb−1∑

τ=0

Cb(τ ) = E[Cb(τ )].

Similarly, it can be shown that

V ar [Ca,b(τ )] = V ar [Cb(τ )].
Therefore the corollary follows from Lemma 4. �	
Chebyshev’s inequality says that for any random variable X and ε > 0

Pr (|X − E[X ]| ≥ ε) ≤ V ar(X)/ε2

where E[X ] denotes the expectation of X and V ar(X) denotes the variance of X . Thus for
fixed δ > 0, we have

Pr
(∣∣Ca,b(τ )

∣∣ ≥ T (1+δ)/2
b

)
≤ T −δ

b · 256 · p

p − 1
·
(

ln peb

π
+ 1

5

)4

·
(

1 − p−eb/2

1 − p−1/2

)2

where a and b are two l-sequences as described in Corollary 2.

4 Conclusions

In this note we have found a relationship between crosscorrelations of l-sequences whose
connection integers share a common prime factor and their autocorrelations. In this case,
the known results on the expectation and the variance of autocorrelations of an l-sequence
can be used to such kind of crosscorrelations. However the distribution of more generalized
crosscorrelations between l-sequences is still an important open problem.
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