A note on the crosscorrelation of maximal length FCSR sequences

Tian Tian · Wen-Feng Qi

Received: 3 March 2008 / Revised: 21 July 2008 / Accepted: 25 August 2008 / Published online: 16 September 2008 © Springer Science+Business Media, LLC 2008

Abstract In this note it is shown that if the connection integers of two maximal length FCSR sequences have a common prime factor, then any crosscorrelation between them can be converted into some autocorrelation of the sequence with smaller period.

Keywords Feedback with carry shift registers $\cdot l$ -Sequences \cdot Crosscorrelations \cdot Autocorrelations

Mathematics Subject Classifications (2000) 11A07 · 11B50 · 94A55 · 94A60

1 Introduction

Feedback with carry shift registers (FCSRs) were first introduced by A. Klapper and M. Goresky in [1]. They are in many ways similar to linear feedback shift registers (LFSRs) but with the addition of an "extra memory" that retains a carry from one stage to the next. Among FCSR sequences, maximal length FCSR sequences or *l*-sequences have attracted much attention both in theory and application. It is widely believed that *l*-sequences have very good pseudorandom properties, and research has been done on distribution properties, linear complexities and correlation properties of them, see [2–6]. Moreover stream ciphers and pseudorandom generators based on *l*-sequences are not only secure but also simple, see [7,8].

Communicated by H. Wang.

T. Tian · W.-F. Qi (🖂)

Department of Applied Mathematics, Zhengzhou Information Science and Technology Institute, Zhengzhou, People's Republic of China e-mail: wenfeng.qi@263.net Let $\underline{a} = \{a(t)\}_{t=0}^{\infty}$ and $\underline{b} = \{b(t)\}_{t=0}^{\infty}$ be two binary sequences of period *T*. The *(periodic)* cross-correlation function between these two sequences at shift τ , where $0 \le \tau \le T - 1$, is defined by

$$C_{\underline{a},\underline{b}}(\tau) = \sum_{i=0}^{T-1} (-1)^{a(i)+b(i+\tau)}.$$

If the sequences <u>a</u> and <u>b</u> are the same we call it the *autocorrelation* and denote it by $C_{\underline{a}}(\tau)$. Good correlation properties are important for pseudorandom sequences. The *arithmetic crosscorrelation* investigated in [5] can be thought of as a "with carry" analogue of the usual crosscorrelation. The family of *l*-sequences and their decimations have ideal arithmetic correlations, see [5]. As for usual correlation properties of *l*-sequences, it is relatively difficult to research. Instead of directly evaluating autocorrelations of an *l*-sequence, [6] has investigated the expected value and the variance of them. But up to now almost no paper, in the literature, has given any theoretical result on the usual crosscorrelation of *l*-sequences as far as we know.

This note presents an interesting relationship between the crosscorrelation of *l*-sequences and the autocorrelation of them. In detail, for two *l*-sequences <u>a</u> and <u>b</u> of period $p^e \cdot (p-1)$ and $p^f \cdot (p-1)$ respectively, where p is an odd prime and $0 \le f \le e$, given any shift $0 \le \tau < p^e \cdot (p-1)$, there exists an $0 \le \tau' < p^f \cdot (p-1)$ such that $C_{\underline{a},\underline{b}}(\tau) = C_{\underline{b}}(\tau')$. In this case, it is shown that the result of [6] can be used to estimate crosscorrelations.

Throughout the note we use the following notations. For any positive integer n, $\mathbf{Z}/(n)$ indicates the integer residue ring, and $\{0, 1, ..., n-1\}$ is chosen as the complete set of representatives for the elements of the ring. Thus for any sequence $\underline{a} = \{a(t)\}_{t=0}^{\infty}$ over $\mathbf{Z}/(n)$, a(t) is regarded as an integer between 0 and n-1 for $t \ge 0$. For any integer sequence $\underline{b} = \{b(t)\}_{t=0}^{\infty}$, $(\underline{b} \mod n)$ denotes the sequence $\{b(t) \mod n\}_{t=0}^{\infty}$ over $\mathbf{Z}/(n)$, and the congruence $b \equiv a \mod n$ means $b(t) \equiv a(t) \mod n$ for $t \ge 0$.

2 Recollections on binary FCSR sequences

In this section, we briefly review FCSR sequences. Reference [2] is a good introduction on them.

Let $q = q_1 \cdot 2 + q_2 \cdot 2^2 + \dots + q_r \cdot 2^r - 1$, where $q_1, q_2, \dots, q_{r-1} \in \{0, 1\}$ and $q_r = 1$. A diagram of an *r*-stage FCSR is given in Fig. 1.

The FCSR changes stages by computing

$$\sigma = q_1 \cdot a(n+r-1) + q_2 \cdot a(n+r-2) + \dots + q_r \cdot a(n) + m(n),$$

Fig. 1 an r-stage FCSR

2

and then set $a(n+r) = (\sigma \mod 2)$ and $m(n+1) = (\sigma - a(n+r))/2$. q is called the *connection integer* of the FCSR, and it is the arithmetic analog of the connection polynomial of an LFSR. The output sequence $\underline{a} = \{a(t)\}_{t=0}^{\infty}$ is always ultimately periodic and if q is the least number with which an FCSR can generate \underline{a} then its period $per(\underline{a})$ is equal to $ord_q(2)$ where $ord_q(2)$ denotes the multiplicative order of 2 modulo q. It is clear that $ord_q(2) \leq \varphi(q)$ where φ denotes the Euler's phi function. If \underline{a} is strictly periodic and its period attains maximum that is $per(\underline{a}) = \varphi(q)$, then \underline{a} is called an *l-sequence* (for "long sequences") generated by an FCSR with connection integer q or just an *l*-sequence with connection integer q. In this case, it is necessary that q be a power of a prime $q = p^e$ and 2 be a primitive root modulo q.

There is an analog of the trace representation of LFSR sequences, which is called the exponential representation, see [2]. We present here the exponential representation for *l*-sequences.

Proposition 1 [2, Theorem 6.1] Let $\underline{a} = \{a(t)\}_{t=0}^{\infty}$ be an *l*-sequence with connection integer p^e and $\gamma = (2^{-1} \mod p^e)$ be the multiplicative inverse of 2 in the ring $\mathbf{Z}/(p^e)$. Then there exists a unique $A \in \mathbf{Z}/(p^e)$ such that gcd(A, p) = 1 and

 $a(t) = (A \cdot \gamma^t \mod p^e \mod 2), t \ge 0.$

Moreover, the $\varphi(p^e)$ possible different non-zero choices of $\mathbb{Z}/(p^e)$ give cyclic shifts of \underline{a} , and this accounts for all the binary *l*-sequences with connection integer p^e .

Here the notation (mod $p^e \mod 2$) means that first the number $A \cdot \gamma^t$ is reduced modulo p^e to give a number between 0 and $p^e - 1$, and then that number is reduced modulo 2 to give an element in {0, 1}. If we denote $\underline{\alpha} = \{A \cdot \gamma^t \mod p^e\}_{t=0}^{\infty}$, then we can write

 $\underline{a} = \underline{\alpha} \mod 2 = \{\alpha(t) \mod 2\}_{t=0}^{\infty}$.

Note that $\underline{\alpha}$ is a primitive (linear recurring) sequence of order 1 over $\mathbf{Z}/(p^e)$ for γ is a primitive root modulo p^e (see Sect. 3 for the definition of primitive sequences over $\mathbf{Z}/(p^e)$) and $\underline{\alpha}$ is uniquely determined by \underline{a} . Therefore we call $\underline{\alpha} = \{A \cdot \gamma^t \mod p^e\}_{t=0}^{\infty}$ the associated primitive sequence to \underline{a} . Following corollary can be deduced from Proposition 1.

Corollary 1 Let \underline{a} be an *l*-sequence with connection integer p^e and $e \ge 2$. If $\underline{\alpha}$ is the associated primitive sequence to \underline{a} , then ($\underline{\alpha} \mod p^{e-i} \mod 2$) is an *l*-sequence with connection integer p^{e-i} and its associated primitive sequence is ($\underline{\alpha} \mod p^{e-i}$) for $1 \le i \le e-1$.

3 Main results

At the end of Sect. 2, for any *l*-sequence with connection integer p^e , $e \ge 1$, we have associated a primitive sequence over $\mathbf{Z}/(p^e)$ to it. That relationship is vital for us to derive our main result of this section, and so let us begin with some necessary introduction about primitive sequences over $\mathbf{Z}/(p^e)$.

Let *p* be an odd prime and *e* be a positive integer. A sequence $\underline{s} = \{s(t)\}_{t=0}^{\infty}$ of elements of $\mathbf{Z}/(p^e)$ satisfying the relation

$$s(t+n) \equiv c_{n-1} \cdot s(t+n-1) + c_{n-2} \cdot s(t+n-2) + \dots + c_0 \cdot s(t) \mod p^e$$

for $t \ge 0$ is called a (*n*th-order) *linear recurring sequence* over $\mathbb{Z}/(p^e)$ and the polynomial

$$f(x) = x^n - c_{n-1}x^{n-1} - \dots - c_1x - c_0 \in \mathbb{Z}/(p^e)[x]$$

🖄 Springer

is called a *characteristic polynomial* of the linear recurring sequence \underline{s} . If f(x) is a primitive polynomial over $\mathbf{Z}/(p^e)$ and $(s(0) \mod p, s(1) \mod p, \dots, s(n-1) \mod p)$ is a nonzero vector, then \underline{s} is called a *primitive sequence* over $\mathbf{Z}/(p^e)$. In such case, $per(\underline{s} \mod p^i)$ attains $p^{i-1} \cdot (p^n - 1), 1 \le i \le e - 1$, and particularly ($\underline{s} \mod p$) is just an *m*-sequence in $\mathbf{Z}/(p)$. (See [9] whose discussions hold for odd primes too.)

Any element u in $\mathbb{Z}/(p^e)$ has a unique p-adic expansion as

$$u = u_0 + u_1 \cdot p + \dots + u_{e-1} \cdot p^{e-1},$$

where $u_i \in \{0, 1, ..., p-1\}, 0 \le i \le e-1$. Then similarly a sequence \underline{s} over $\mathbb{Z}/(p^e)$ has a unique *p*-adic expansion as

$$\underline{s} = \underline{s}_0 + \underline{s}_1 \cdot p + \dots + \underline{s}_{e-1} \cdot p^{e-1}$$

where \underline{s}_i is a sequence over $\mathbf{Z}/(p)$, $0 \le i \le e - 1$. The following two facts are important results on primitive polynomials and primitive sequences over $\mathbf{Z}/(p^e)$.

Lemma 1 [10] Let f(x) be a primitive polynomial of degree $n \ge 1$ over $\mathbb{Z}/(p^e)$ where p is an odd prime and integer $e \ge 1$. Then there exists a unique nonzero polynomial $h_f(x)$ over $\mathbb{Z}/(p)$ with deg $(h_f(x)) < n$ such that

$$x^{p^{i-1} \cdot T} \equiv 1 + p^{i} \cdot h_{f}(x) \pmod{f(x), p^{i+1}}, \quad i = 1, 2, \dots, e-1$$
(1)

where $T = p^n - 1$.

Here the notation $(\text{mod} f(x), p^{i+1})$ means that the congruence $x^{p^{i-1} \cdot T} \equiv 1 + p^i \cdot h_f(x) \mod f(x)$ holds over $\mathbb{Z}/(p^{i+1})$. Let *L* denote the left shift operator, that is, for any sequence $\underline{a} = \{a(t)\}_{t=0}^{\infty}$ and $i \ge 0$, $L^i \underline{a} = \{a(t+i)\}_{t=0}^{\infty}$. Besides, $\underline{a} + \underline{b} = \{a(t) + b(t)\}_{t=0}^{\infty}$ for two integer sequences $\underline{a} = \{a(t)\}_{t=0}^{\infty}$ and $\underline{b} = \{b(t)\}_{t=0}^{\infty}$.

Lemma 2 [11] Let f(x) be a primitive polynomial of degree $n \ge 1$ over $\mathbb{Z}/(p^e)$ where p is an odd prime and integer $e \ge 2$. Let \underline{s} be a primitive sequence with characteristic polynomial f(x) over $\mathbb{Z}/(p^e)$ and $\underline{\alpha} = (h_f(L)\underline{s}_0 \mod p)$, where $h_f(x)$ is defined by (1). Then

$$\{s_{e-1}(t+j \cdot p^{e-2} \cdot T) \mid j = 0, 1, \dots, p-1\} = \{0, 1, \dots, p-1\}$$

if $\alpha(t) \neq 0$, where $T = p^n - 1$.

With the above two lemmas we can derive following result.

Lemma 3 Let s be a primitive sequence of order 1 over $\mathbb{Z}/(p^e)$. Then

$$\{s_{e-1}(t+j \cdot p^{e-2} \cdot T) \mid j = 0, 1, \dots, p-1\} = \{0, 1, \dots, p-1\}$$

for $t \ge 0$, where T = p - 1.

Proof Assume the primitive polynomial f(x) is a characteristic polynomial of <u>s</u>. Then according to Lemma 1, there exists a nonzero constant $h_f \in \mathbb{Z}/(p)$ for which

$$x^{p^{i-1} \cdot T} \equiv 1 + p^i \cdot h_f \pmod{f(x), p^{i+1}}, \quad i = 1, 2, \dots, e-1.$$

Let $\underline{\alpha} = (h_f \cdot \underline{s}_0 \mod p)$. Since \underline{s}_0 is an *m*-sequence of order 1 over $\mathbf{Z}/(p)$, it follows that $s_0(t)$ and $\alpha(t)$ are nonzero for all $t \ge 0$. The lemma immediately follows from Lemma 2. \Box

Let \oplus denote addition modulo 2 or XOR. Then for two integer sequences $\underline{a} = \{a(t)\}_{t=0}^{\infty}$ and $\underline{b} = \{b(t)\}_{t=0}^{\infty}$, $\underline{a} \oplus \underline{b} = \{a(t) \oplus b(t)\}_{t=0}^{\infty}$. The following theorem is the main result of this section. **Theorem 1** Let <u>a</u> and <u>b</u> be two *l*-sequences with connection integers p^{e_a} and p^{e_b} respectively, where $1 \le e_b \le e_a$. Then

$$C_{a,b}(\tau) = C_b(\tau - v \mod per(\underline{b}))$$

for $0 \le \tau < per(\underline{a})$, where v is an integer determined by \underline{a} and \underline{b} .

Proof If $e_a = e_b$, then the conclusion immediately follows from Proposition 1. Thus in the following let $e_b < e_a$.

Assume the associated primitive sequence over $\mathbb{Z}/(p^{e_a})$ to \underline{a} is $\underline{\alpha}$. Write the *p*-adic expansion of $\underline{\alpha}$ as

 $\underline{\alpha} = \underline{\alpha}_0 + \underline{\alpha}_1 \cdot p + \dots + \underline{\alpha}_{e_a-1} \cdot p^{e_a-1}$

where $\underline{\alpha}_i$ is a sequence over $\mathbf{Z}/(p), 0 \le i \le e_a - 1$. Then we have

$$\underline{a} = (\underline{\alpha} \mod 2) = \underline{\alpha}_0 \oplus \underline{\alpha}_1 \oplus \cdots \oplus \underline{\alpha}_{e_a-1}.$$

Denote

$$\underline{a}_i = \underline{\alpha}_0 \oplus \underline{\alpha}_1 \oplus \dots \oplus \underline{\alpha}_i, 0 \le i \le e_a - 1.$$
⁽²⁾

In particular we have

$$\underline{a} = \underline{a}_{e_a-1}$$

and

$$a_i = (\alpha \mod p^{i+1} \mod 2)$$

for $0 \le i \le e_a - 1$. It follows from Corollary 1 that \underline{a}_i is an *l*-sequence with connection integer p^{i+1} and period $p^i \cdot (p-1)$ for $0 \le i \le e_a - 1$. With these notations we are going to prove

$$C_{\underline{a}_{e_a-1},\underline{b}}(\tau) = C_{\underline{a}_{e_a-2},\underline{b}}(\tau).$$

Let T = p - 1. Since $per(\underline{b}) = p^{e_b - 1} \cdot T$ which divides $p^{e_a - 2} \cdot T$, it follows that

$$C_{\underline{a}_{e_{a}-1},\underline{b}}(\tau) = \sum_{i=0}^{p^{e_{a}-1}\cdot T-1} (-1)^{a_{e_{a}-1}(i)+b(i+\tau)}$$

$$= \sum_{t=0}^{p^{e_{a}-2}\cdot T-1} \sum_{j=0}^{T} (-1)^{a_{e_{a}-1}(t+j\cdot p^{e_{a}-2}\cdot T)\oplus b(\tau+t+j\cdot p^{e_{a}-2}\cdot T)}$$

$$= \sum_{t=0}^{p^{e_{a}-2}\cdot T-1} (-1)^{b(\tau+t)} \sum_{j=0}^{T} (-1)^{a_{e_{a}-1}(t+j\cdot p^{e_{a}-2}\cdot T)}$$
(3)

for any $0 \le \tau < p^{e_a-1} \cdot (p-1)$. Because of

$$a_{e_a-1}(t+j \cdot p^{e_a-2} \cdot T) = a_{e_a-2}(t+j \cdot p^{e_a-2} \cdot T) \oplus \alpha_{e_a-1}(t+j \cdot p^{e_a-2} \cdot T)$$

implied by (2) for $t, j \ge 0$ and

$$per(\underline{a}_{e_a-2}) = p^{e_a-2} \cdot T,$$

Deringer

we obtain

$$a_{e_a-1}(t+j \cdot p^{e_a-2} \cdot T) = a_{e_a-2}(t) \oplus \alpha_{e_a-1}(t+j \cdot p^{e_a-2} \cdot T)$$
(4)

for t, $j \ge 0$. Then taking (4) into (3) yields

$$C_{\underline{a}_{e_{a-1},\underline{b}}}(\tau) = \sum_{t=0}^{p^{e_{a-2},T-1}} (-1)^{b(\tau+t)\oplus a_{e_{a-2}}(t)} \sum_{j=0}^{T} (-1)^{\alpha_{e_{a-1}}(t+j\cdot p^{e_{a-2},T})} dt_{e_{a-1}}(\tau)^{\alpha_{e_{a-1}}(t+j\cdot p^{e_{a-2},T})} dt_{e_{a-2}}(\tau)^{\alpha_{e_{a-1}}(t+j\cdot p^{e_{a-2},T})} dt_{e_{a-2}}(\tau)^{\alpha_{e_{a-2}}(t+j\cdot p^{e_{a-2},T})} dt_{e_{a-2}}(t+j\cdot p^{e_{a-2},T})} dt_{e_{a-2}}(t+j\cdot p^{e_{a-2},T})} dt_{e_{a-2}}(t+j\cdot p^{e_{a-2},T}) d$$

By Lemma 3 we have

$$\{\alpha_{e_a-1}(t+j\cdot p^{e_a-2}\cdot T)\mid j=0,1,\ldots,p-1\}=\{0,1,\ldots,p-1\}$$

which implies that

$$\sum_{j=0}^{T} (-1)^{\alpha_{e_a-1}(t+j \cdot p^{e_a-2} \cdot T)} = \sum_{j=0}^{T} (-1)^j = 1.$$

Thus

$$C_{\underline{a}_{e_{a-1}},\underline{b}}(\tau) = \sum_{t=0}^{p^{e_{a-2}}, t-1} (-1)^{a_{e_{a-2}}(t) \oplus b(\tau+t)} = C_{\underline{a}_{e_{a-2}},\underline{b}}(\tau)$$

Similarly it can be recursively shown that

$$C_{\underline{a}_{e_a-1},\underline{b}}(\tau) = C_{\underline{a}_{e_a-2},\underline{b}}(\tau) = C_{\underline{a}_{e_a-3},\underline{b}}(\tau) = \dots = C_{\underline{a}_{e_b-1},\underline{b}}(\tau)$$

and so

$$C_{\underline{a},\underline{b}}(\tau) = C_{\underline{a}_{e_{h}-1},\underline{b}}(\tau).$$
(5)

Since both \underline{a}_{e_b-1} and \underline{b} are *l*-sequences with connection integer p^{e_b} , it follows from Proposition 1 that there exists an integer $v \ge 0$ such that

$$\underline{a}_{e_{h}-1} = L^{v}\underline{b}.\tag{6}$$

Then from (5) and (6) we get

$$C_{\underline{a},\underline{b}}(\tau) = C_{L^{v}\underline{b},\underline{b}}(\tau) = C_{\underline{b}}(\tau - v \mod per(\underline{b})).$$

The theorem is proved.

In [6], the authors have investigated the expected value and the variance of autocorrelations of an *l*-sequence. They derived the following main result.

Lemma 4 [6, see Theorem 2.7] Let \underline{a} be an *l*-sequence with connection integer $q = p^e$ and period $T = p^{e-1} \cdot (p-1)$. Then the expectation of its autocorrelations is $E[C_{\underline{a}}(\tau)] = 0$ and the variance of its autocorrelations satisfies

$$Var(C_{\underline{a}}(\tau)) \le 256 \cdot q \cdot \left(\frac{\ln q}{\pi} + \frac{1}{5}\right)^4 \cdot \left(\frac{1 - q^{-1/2}}{1 - p^{-1/2}}\right)^2.$$

Based on Theorem 1, Lemma 4 can be directly used to estimate crosscorrelations. That is the following corollary.

Corollary 2 Let \underline{a} and \underline{b} be two *l*-sequences with connection integers p^{e_a} and p^{e_b} respectively, where $1 \leq e_b < e_a$. Then the expectation of crosscorrelations between \underline{a} and \underline{b} is $E[C_{a,b}(\tau)] = 0$ and the variance of them satisfies

$$Var(C_{\underline{a},\underline{b}}(\tau)) \le 256 \cdot p^{e_b} \cdot \left(\frac{\ln p^{e_b}}{\pi} + \frac{1}{5}\right)^4 \cdot \left(\frac{1 - p^{-e_b/2}}{1 - p^{-1/2}}\right)^2$$

Proof Let $T_a = per(\underline{a}) = p^{e_a-1} \cdot (p-1)$ and $T_b = per(\underline{b}) = p^{e_b-1} \cdot (p-1)$. Since

$$C_{\underline{a},\underline{b}}(\tau_1) = \sum_{i=0}^{T_a-1} (-1)^{a(i)+b(i+\tau_1)} = \sum_{i=0}^{T_a-1} (-1)^{a(i)+b(i+\tau_2)} = C_{\underline{a},\underline{b}}(\tau_2)$$

for $0 \le \tau_1, \tau_2 < T_a$ and $\tau_1 \equiv \tau_2 \mod T_b$, it follows that

$$E[C_{\underline{a},\underline{b}}(\tau)] = \frac{1}{T_a} \sum_{\tau=0}^{T_a-1} C_{\underline{a},\underline{b}}(\tau) = \frac{1}{T_a} \cdot \frac{T_a}{T_b} \sum_{\tau=0}^{T_b-1} C_{\underline{a},\underline{b}}(\tau) = \frac{1}{T_b} \sum_{\tau=0}^{T_b-1} C_{\underline{a},\underline{b}}(\tau).$$
(7)

Moreover by Theorem 1 we obtain

$$\sum_{\tau=0}^{T_b-1} C_{\underline{a},\underline{b}}(\tau) = \sum_{\tau=0}^{T_b-1} C_{\underline{b}}(\tau - \nu \mod T_b) = \sum_{\tau=0}^{T_b-1} C_{\underline{b}}(\tau)$$
(8)

where the integer v is determined by \underline{a} and \underline{b} . Then (7) and (8) yield

$$E[C_{\underline{a},\underline{b}}(\tau)] = \frac{1}{T_b} \sum_{\tau=0}^{T_b-1} C_{\underline{b}}(\tau) = E[C_{\underline{b}}(\tau)].$$

Similarly, it can be shown that

$$Var[C_{\underline{a},\underline{b}}(\tau)] = Var[C_{\underline{b}}(\tau)]$$

Therefore the corollary follows from Lemma 4.

Chebyshev's inequality says that for any random variable X and $\varepsilon > 0$

$$\Pr\left(|X - E[X]| \ge \varepsilon\right) \le Var(X)/\varepsilon^2$$

where E[X] denotes the expectation of X and Var(X) denotes the variance of X. Thus for fixed $\delta > 0$, we have

$$\Pr\left(\left|C_{\underline{a},\underline{b}}(\tau)\right| \ge T_{b}^{(1+\delta)/2}\right) \le T_{b}^{-\delta} \cdot 256 \cdot \frac{p}{p-1} \cdot \left(\frac{\ln p^{e_{b}}}{\pi} + \frac{1}{5}\right)^{4} \cdot \left(\frac{1-p^{-e_{b}/2}}{1-p^{-1/2}}\right)^{2}$$

where \underline{a} and \underline{b} are two *l*-sequences as described in Corollary 2.

4 Conclusions

In this note we have found a relationship between crosscorrelations of *l*-sequences whose connection integers share a common prime factor and their autocorrelations. In this case, the known results on the expectation and the variance of autocorrelations of an *l*-sequence can be used to such kind of crosscorrelations. However the distribution of more generalized crosscorrelations between *l*-sequences is still an important open problem.

Acknowledgments Research supported by NSF of China under Grant No. 60673081 and the National 863 Plan under Grant No. (2006AA01Z417, 2007AA01Z212).

References

- Klapper A., Goresky M.: 2-Adic shift registers. In: Fast Software Encryption, Cambridge Security Workshop. Lecture Notes in Computer Science, vol. 809, pp. 174–178. Springer-Verlag, New York (1993).
- Klapper A., Goresky M.: Feedback shift registers, 2-adic span, and combiners with memory. J. Cryptol. 10, 111–147 (1997).
- Qi W.F., Xu H.: Partial period distribution of FCSR sequences. IEEE Trans. Inform. Theory 49(3), 761– 765 (2003).
- Seo C., Lee S., Sung Y., Han K., Kim S.: A lower bound on the linear span of an FCSR. IEEE Trans. Inform. Theory 46(2), 691–693 (2000).
- Goresky M., Klapper A.: Arithmetic crosscorrelations of feedback with carry shift register sequences. IEEE Trans. Inform. Theory 43(4), 1342–1345 (1997).
- Xu H., Qi W.F.: Autocorrelations of maximum period FCSR sequences. SIAM J. Discrete Math. 20(3), 568–577 (2006).
- Arnault F., Berger T.P.: Design and properties of a new pseudorandom generator based on a filtered FCSR automaton. IEEE Trans. Inform. Theory 54(11), 1374–1383 (2005).
- Arnault F., Berger T.P., Lauradoux C.: Update on F-FSCR stream cipher, ECRYPT Stream Cipher Project Report 2006/025 (2006) http://www.ecrypt.eu.org/stream.
- Dai Z.D.: Binary sequences derived from ML-sequences over rings I: periods and minimal polynomials. J. Cryptol. 5(4), 193–207 (1992).
- Huang M.Q., Dai Z.D.: Projective maps of linear recurring sequences with maximal *p*-adic periods. Fibonacci Quart. **30**(2), 139–143 (1992).
- 11. Zhu X.Y., Qi W.F.: Compression mappings on primitive sequences over $\mathbf{Z}/(p^e)$. IEEE Trans. Inform. Theory **50**(10), 2442–2448 (2004).