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a b s t r a c t

We propose a new two-mode squeezed coherent state representation |z1, z2〉g which is characteristic
of the correlation between the squeezing and the displacement. Based on it and using the technique of
integration within an ordered product of operators we obtain a generalized two-mode Fresnel operator
(GTFO), which is an image of the mapping from (z1, z2) to (sz1 + rz∗

2, rz∗
1 + sz2) in |z1, z2〉g representation.

The matrix element of GTFO in the coordinate representation leads to a generalized two-dimensional
Collins formula (Huygens–Fresnel integration transformation describing optical diffraction) in entangled
form.

© 2010 Elsevier GmbH. All rights reserved.

1. Introduction

In Fourier optical diffraction theory the two-dimensional Collins diffraction integral formula describing the light propagation in an
optical system characterized by the [A, B; C, D] ray transfer matrix is [1],

U2 (x2, y2) = k exp (ikz)
2�Bi

∫ ∫
dx1dy1U1 (x1, y1) × exp

{
ik

2B

[
A
(

x2
1 + y2

1

)
− 2 (x1x2 + y1y2) + D

(
x2

2 + y2
2

)]}
, (1)

where AD − BC = 1. This formula reflects the Huygens–Fresnel principle of wave propagation [2]. In Ref. [3], based on the coherent state
[4,5] |z〉 representation and using the technique of integration within an ordered product (IWOP) [6,7] of operators, the single-mode Fresnel
operator U1 (r, s) is derived as an image of the classical transformation from z → sz − rz∗,

U1 (r, s) ≡ √
s

∫
d2z

�

∣∣sz − rz∗〉 〈z| = exp
[(

− r

2s∗

)
a†2

]
exp

[(
a†a + 1

2

)
ln

1
s∗

]
exp

[(
r∗

2s∗

)
a2

]
, (2)

where
[
a, a†] = 1, (s, r), complex number with |s|2 − |r|2 = 1, are related to a classical ray transfer matrix

(
A B
C D

)
by

s = 1
2

[A + D − i (B − C)] , r = −1
2

[A − D + i (B + C)] , (3)

The matrix element in the coordinate |x〉 representation of U1 can lead to the transformation kernel of optical Collins formula connecting
the input light field f (x) and output light field g (x′),

g
(

x′) = 1√
2piB

∫ ∞

−∞
exp

[
i

2B

(
Ax2 − 2x′x + Dx′2)] f (x) dx, (4)
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i.e., 〈
x′∣∣U1 (r, s) |x〉 = 1√

2piB
exp

[
i

2B

(
Ax2 − 2x′x + Dx′2)] ≡ kM

1

(
x′, x

)
. (5)

M represents the matrix [A, B; C, D], Eq. (5) is the one-dimensional case of Eq. (1).
If we use Dirac’s symbol to let f (x) = 〈x| f

〉
, then Eq. (4) is expressed as

g
(

x′) =
∫ ∞

−∞

〈
x′∣∣U1 (r, s) |x〉 〈x| f

〉
dx =

〈
x′∣∣U1 (r, s)

∣∣f 〉 , (6)

which is just the quantum mechanical version of Fresnel transformation. The two-mode case was discussed in Ref. [4]. The obtained Fresnel
operator and Collins diffraction integral formula have been widely applied to the relationship between classical optics and quantum optics
[8–17].

In this paper we want to derive a new generalized two-dimensional (2D) Collins diffraction integral formula in the context of quantum
optics, to be more concrete, we shall firstly construct the two-mode squeezing–displacement related squeezed-coherent state |z1, z2〉g

representation, which is complete, g is an complex parameter, and then find a generalized two-mode Fresnel operator (GTFO) by mapping
from |z1, z2〉g →

∣∣sz1 + rz∗
2, rz∗

1 + sz2
〉

g
. It is interesting to demonstrate that the matrix element of GTFO in the coordinate basis just lead to

the generalized 2D Collins formula. Our work is arranged as follows: In Section 2, we propose the |z1, z2〉g representation, and prove its
completeness relation by virtue of the IWOP technique. In Section 3, we derive the GTFO. In Section 4, we derive the new generalized 2D
Collins diffraction integral formula in entangled form. In this theory, the relationship between quantum optics and classical optics is more
clear.

2. The displacement–squeezing related squeezed two-mode coherent state

Since the seventies of last century, increasing attention in the field of quantum optics has been paid to squeezed states of light because
of their potential uses in optical communication and interferometers. In this section we construct a new two-mode squeezed coherent
state ∣∣z1,z2

〉
g

= exp

[
−|z1|2

2
− |z2|2

2
+ a† (fz1 + gz∗

2

)
+ b† (gz∗

1 + fz2
)

− 2fga†b†
] ∣∣00

〉
(7)

where
∣∣00

〉
is the vacuum state in Fock space,

[
b, b†] = 1, fg plays the role of squeezing parameter, with the constraint ff∗ + gg∗ = 1, in the

expression of
∣∣z1,z2

〉
g

one can see that the displacement and squeezing are related. This state is complete, since

1
�2

∫
d2z1d2z2|z1, z2〉gg 〈z1, z2| = 1, (8)

which can be verified with the use of the normal ordering form
∣∣00

〉〈
00

∣∣ =: e−a†a−b†b : and the IWOP technique∫
1

�2
d2z1d2z2|z1, z2〉gg 〈z1, z2| =

∫
1

�2
d2z1d2z2 exp

[
−|z1|2

2
− |z2|2

2
+ a† (fz1 + gz∗

2

)
+ b† (gz∗

1 + fz2
)

− 2fga†b†
]

×
∣∣00

〉〈
00

∣∣ exp

[
−|z1|2

2
− |z2|2

2
+ a

(
f ∗z∗

1 + g∗z2
)

+ b
(

g∗z1 + f ∗z∗
2

)
− 2f ∗g∗ab

]
=

∫
1

�2
d2z1d2z2 : exp{−|z1|2 − |z2|2 + z1

(
fa† + g∗b

)
+ z∗

1

(
gb† + f ∗a

)
+ z2

(
fb† + ag∗)

+z∗
2

(
ga† + f ∗b

)
− 2fga†b† − 2f ∗g∗ab − a†a − b†b} :

= exp
[(

fa† + g∗b
)(

gb† + f ∗a
)

+
(

fb† + ag∗)(
ga† + f ∗b

)
− 2fga†b† − 2f ∗g∗ab − a†a − b†b

]
= 1.

(9)

Moreover, using the completeness relation of two-mode coherent state∣∣˛, ˇ
〉

= exp

[
−|˛|2

2
− |ˇ|2

2
+ ˛a† + ˇb†

] ∣∣00
〉

,

∫
d2˛d2ˇ

�2

∣∣˛, ˇ
〉〈

ˇ, ˛
∣∣ = 1 (10)

and the overlap(11)
〈

˛, ˇ
∣∣ z1, z2〉g =

〈
˛ˇ

∣∣ exp
[
− |z1|2

2 − |z2|2
2 + ˛∗ (

fz1 + gz∗
2

)
+ ˇ∗ (

gz∗
1 + fz2

)
− 2fg˛∗ˇ∗

] ∣∣00
〉

=
〈

00
∣∣ exp

[
− |˛|2

2 − |ˇ|2
2

+ ˛∗a + ˇ∗b
]

× exp
[
− |z1|2

2 − |z2|2
2 + ˛∗ (

fz1 + gz∗
2

)
+ ˇ∗ (

gz∗
1 + fz2

)
− 2fg˛∗ˇ∗

] ∣∣00
〉

= exp
[
− |˛|2

2 − |ˇ|2
2 − |z1|2

2 − |z2|2
2 + ˛∗ (

fz1 + gz∗
2

)
+ ˇ∗ (

gz∗
1 + fz2

)
− 2fg˛∗ˇ∗]we have
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〈z1, z2| z1, z2〉g = g 〈z1z2|
∫

d2˛d2ˇ

�2

∣∣˛ˇ
〉〈

ˇ˛
∣∣ z1z2〉g = e−|z1|2−|z2|2

∫
d2˛d2ˇ

�2
exp[−|˛|2 − |ˇ|2 + ˛

(
f ∗z∗

1 + g∗z2
)

+ ˇ
(

g∗z1 + f ∗z∗
2

)
− 2f ∗g∗˛ˇ + ˛∗ (

fz1 + gz∗
2

)
+ ˇ∗ (

gz∗
1 + fz2

)
− 2fg˛∗ˇ∗] = 1

1 − 4
∣∣fg∣∣2

(12)

where we have used the formula∫
d2z

�
exp{�|z|2 + �z + �z∗ + fz2 + gz∗2} = 1√

�2 − 4fg
exp

{
−��� + �2g + �2f

�2 − 4fg

}
, (13)

so the normalization of
∣∣z1,z2

〉
g

is(
1 − 4

∣∣fg∣∣2
)

g
〈z1, z2| z1, z2〉g = 1. (14)

Due to

a|z1, z2〉g =
[(

fz1 + gz∗
2

)
− 2fgb†] |z1, z2〉g

b|z1z2〉g =
[(

gz∗
1 + fz2

)
− 2fga†] |z1, z2〉g,

(15)

|z1, z2〉g obeys the eigenvector equation

a + 2fgb†√
1 − 4

∣∣fg∣∣2
|z1, z2〉g =

(
fz1 + gz∗

2

)
|z1, z2〉g

b + 2fga†√
1 − 4

∣∣fg∣∣2
|z1, z2〉g =

(
gz∗

1 + fz2
)

|z1, z2〉g.
(16)

If we let a + 2fgb†/
√

1 − 4
∣∣fg∣∣2 ≡ a′, b + 2fga†/

√
1 − 4

∣∣fg∣∣2 = b′, then
[
a′, a′†] = 1,

[
b′, b′†] = 1, |z1, z2〉g is a two-mode squeezed state

indeed, but it differs from the usual one, since its squeezing parameter is related to its displacement parameter.

3. The generalized two-mode Fresnel operator in the |z1, z2〉g representation

We now consider that the two-mode squeezed coherent state |z1, z2〉g has a movement in (z1, z2) space characteristic of (z1, z2) →(
sz1 + rz∗

2, rz∗
1 + sz2

)
. Corresponding to it, we construct the following ket-bra integration operator,

U2g (r, s) = ss∗
∫

1
�2

d2z1d2z2

∣∣sz1 + rz∗
2, rz∗

1 + sz2
〉

gg
〈z1, z2| , (17)

where s and r are complex, satisfying

|s|2 − |r|2 = 1, (18)

which indicates that the movement is symplectic. Using Eq. (13) and the IWOP technique we can perform the integration in Eq. (17) and
obtain

U2g (r, s) = ss∗
∫

1
�2

d2z1d2z2

∣∣sz1 + rz∗
2, rz∗

1 + sz2
〉

gg
〈z1, z2| = ss∗

∫
1

�2
d2z1d2z2 : exp{−|s|2|z1|2 − |s|2|z2|2 − sr∗z1z2 − s∗rz∗

1z∗
2

+
(

fsa† + gr∗a† + g∗b
)

z1 +
(

fsb† + gr∗b† + g∗a
)

z2 +
(

frb† + gs∗b† + f ∗a
)

z∗
1 +

(
fra† + gs∗a† + f ∗b

)
z∗

2 − 2fga†b† − 2f ∗g∗ab

− a†a − b†b}:= exp

[(
f 2r

s∗ + g2r∗

s

)
a†b†

]
: exp

[(
a†a + b†b

)(
|f |2
s∗ + |g|2

s
− 1

)]
: × exp

[
−

(
f ∗2r∗

s∗ + g∗2r

s

)
ab

]
. (19)

Then with the help of the operator identity

exp
(

l
(

a†a + b†b
))

=: exp
[(

el − 1
)(

a†a + b†b
)]

: (20)

we have

U2g (r, s) = exp

[(
f 2r

s∗ + g2r∗

s

)
a†b†

]
exp

[(
a†a + b†b

)
ln

(
|f |2
s∗ + |g|2

s

)]
× exp

[
−

(
f ∗2r∗

s∗ + g∗2r

s

)
ab

]
. (21)

In particular, when g = 0 and f = 1 Eq. (21) reduces to

U2g=0 (r, s) = √
s∗U2 (r, s) (22)

where

U2 (r, s) = s

∫
1

�2
d2z1d2z2

∣∣sz1 + rz∗
2, rz∗

1 + sz2
〉

〈z1, z2| = exp
(

r

s∗ a†b†
)

exp
[(

a†a + b†b + 1
)

ln
(

1
s∗

)]
exp

(
− r∗

s∗ ab
)

(23)
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is the two-mode Fresnel operator in Ref. [4]; on the other hand, when g = 1, f = 0,

U2g=1 (r, s) = √
sU2 (r∗, s∗) . (24)

Thus we name Ug (r, s) the generalized two-mode Fresnel operator (GTFO). Further, using the IWOP technique and the formulas Eq. (2) and
Eq. (1) we can verify

U†
2g (r, s) = U−1

2g (r, s) , (25)

so U2g (r, s) is a unitary operator.
Using the normally ordered form of U2g (r, s) in Eq. (19) we take its two-mode coherent state matrix element and immediately have〈

z′
1, z′

2

∣∣U2g (r, s) |z1, z2〉 = exp{
(

f 2r

s∗ + g2r∗

s

)
z

′∗
1 z

′∗
2 −

(
f ∗2r∗

s∗ + g∗2r

s

)
z1z2 +

(
|f |2
s∗ + |g|2

s

)(
z′

1
∗z1 + z′

2
∗z2

)
− |z1|2

2
− |z2|2

2

− |z′
1|2
2

− |z′
2|2
2

} = exp

{
Yz′

1
∗z′

2
∗ − Vz1z2 + K

(
z′

1
∗z1 + z′

2
∗z2

)
− |z1|2

2
− |z2|2

2
− |z′

1|2
2

− |z′
2|2
2

}
(26)

where we have defined

K ≡ |f |2
s∗ + |g|2

s
, V ≡ f ∗2r∗

s∗ + g∗2r

s
, Y ≡ f 2r

s∗ + g2r∗

s
, (27)

Then, in the entangled state representation [18]∣∣�〉
= exp

(
−|�|2

2
+ �a† − �∗b† + a†b†

)∣∣00
〉

, (28)

we can get the entangled state matrix element of U2g(r,s),〈
�′ ≡ �

∣∣U2g (r, s)
∣∣�〉

=
∫

d2z1d2z2d2z′
1d2z′

2

�4
〈�| z′

1, z′
2

〉〈
z′

1, z′
2

∣∣U2g (r, s) |z1, z2〉 〈z1, z2| �
〉

=
∫

d2z1d2z2d2z′
1d2z′

2

�4
exp

[
−|z1|2 − |z2|2 − |z′

1|2 − |z′
2|2 − |�|2

2
− |�|2

2

]
× exp

[
−Vz1z2 + z∗

1z∗
2 + �z∗

1 + Kz′
1

∗z1 + Kz′
2

∗z2 + Yz′
1

∗z′
2

∗ + z′
1z′

2 + �∗z′
1 − �∗z∗

2 − �z′
2

]
= − 1

K
[
K − K−1 (1 + V) (1 − Y)

]
× exp

{
−|�|2K

[
K + K−1 (1 + V) (1 + Y)

]
− |�|2K

[
K + K−1 (1 − Y) (1 − V)

]
+ 2�∗�K + 2��∗K

−2K
[
K − K−1 (1 + V) (1 − Y)

] }
(29)

By introducing

A = 1
2

[
K + K−1 (1 − V) (1 − Y)

]
,

B = i

2

[
K − K−1 (1 + V) (1 − Y)

]
,

C = − i

2

[
K − K−1 (1 − V) (1 + Y)

]
,

D = 1
2

[
K + K−1 (1 + V) (1 + Y)

]
,

(30)

which just obeys

AD − BC = 1, (31)

then we can rewrite Eq. (29) as〈
�′ ≡ �

∣∣U2g (r, s)
∣∣�〉

= 1
K2Bi

exp
{

i

2B

[
A|�|2 + D|�|2 − (�∗� + ��∗)

]}
≡ �

K
�(r,s)

2

(
�′, �

)
≡ �

K
�M

2

(
�′, �

)
(32)

where the superscript M only means that the parameters of �M
2 are [A, B; C, D] and the subscript 2 means the two-dimensional kernel. Eq.

(32) has the similar form as Eq. (5) except for its complex form. Taking �1 = x1, �2 = x2 and �1 = x′
1, �2 = x′

2, we have

�M
2

(
�′, �

)
= �M

2

(
x′

1, x′
2; x1, x2

)
= �M

1

(
x′

1, x1
)

⊗ �M
1

(
x′

2, x2
)

(33)

This show that U2g (r, s) is really a generalized 2D Fresnel transformation operator.

4. The generalized 2D Collins diffraction integral formula in entangled form.

Now we examine the matrix element of GTFO in coordinate eigenstates. Using Eq. (32) we have〈
x′

1, x′
2

∣∣U2g (r, s) |x1, x2〉 =
∫

d2�d2�

�2

〈
x′

1, x′
2

∣∣ �〉 〈�| U2g (r, s)
∣∣�〉〈

�
∣∣ x1, x2〉 , (34)
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where |x1, x2 〉 is the two-mode coordinate eigenstate representation, using the Schmidt-decomposed relation of the bipartite entangled
state

∣∣�〉
(or

∣∣�′〉) [4],we can get〈
� = �1 + i�2

∣∣ |x1, x2〉 = exp (i�1�2) ı
(√

2�1 + x2 − x1
)

· exp
(
−i

√
2�2x1

)
,〈

x′
1, x′

2

∣∣ ∣∣� = �1 + i�2
〉

= exp (−i�2�1) ı
(√

2�1 + x′
2 − x′

1

)
· exp

(
i
√

2�2x′
1

)
.

(35)

On substituting Eqs. (32) and (35) into Eq. (34) we derive〈
x

′
1, x

′
2

∣∣U2g (r, s) |x1, x2〉 = 1
4KiB

∫
d�2d�2

�2
exp

[
i�2

x
′
1 + x

′
2√

2
− i�2

x1 + x2√
2

+ i

2B

(
A�2

2 + D�2
2 − 2�2�2

)]
× exp

{
i

2B

[
A

2
(x1 − x2)2 + D

2

(
x

′
1 − x

′
2

)2 − (x1 − x2)
(

x
′
1 − x

′
2

)]}
= 1

2K�
√

BC
exp

{
i

2B

[
A

2
(x1 − x2)2 + D

2

(
x

′
1 − x

′
2

)2 − (x1 − x2)
(

x
′
1 − x

′
2

)]}
× exp

{ −i

4C

[
A
(

x
′
1 + x

′
2

)2 + D(x1 + x2)2 − 2
(

x
′
1 + x

′
2

)
(x1 + x2)

]}
. (36)

In particular, if let g = 0 and f = 1 from Eqs. (27) and (30), we see

A = 1
2

(s − r + s∗ − r∗) , B = i

2
(s + r − s∗ − r∗) , C = − i

2
(s − r − s∗ + r∗) , D = 1

2
(s + r + s∗ + r∗) , (37)

in this case Eq. (36) reduces to〈
x′

1, x′
2

∣∣U2g (r, s) |x1, x2〉 = s∗ 〈
x′

1, x′
2

∣∣U2 (r, s) |x1, x2〉 , (38)

where〈
x′

1, x′
2

∣∣U2 (r, s) |x1, x2〉 = 1

2�
√

BC
exp

{
i

2B

[
A

2
(x1 − x2)2 + D

2

(
x′

1 − x′
2

)2 − (x1 − x2)
(

x′
1 − x′

2

)]}
× exp

{ −i

4C

[
A
(

x′
1 + x′

2

)2 + D(x1 + x2)2 − 2
(

x′
1 + x′

2

)
(x1 + x2)

]}
. (39)

Eq. (39) is the entangled Fresnel transform in Ref. [4]. So, Eq. (36) is really a generalized two-dimensional Collins diffraction integral
formula in entangled form.

In summary, based on the displacement–squeezing related squeezed two-mode coherent state and using the technique of integration
within an ordered product of operators we find a generalized two-mode Fresnel operator (GTFO), whose matrix element in the coordinate
representation leads to a generalized two-dimensional optical Collins formula. The GTFO corresponds to the variation of |z1, z2〉g from
|z1, z2〉g →

∣∣sz1 + rz∗
2, rz∗

1 + sz2
〉

g
, this is a new example that there exists formal connection between classical optics and quantum optics.

At this point we recall that in the history of quantum mechanics Schrödinger considered that classical dynamics of a point particle should be
the “geometrical optics” approximation of a linear wave equation, in the same way as ray optics is a limiting approximation of wave optics.
We expect that the generalized two-dimensional optical Collins formula may be realistically used in optical ray diffraction for propagation
of light emitted from some complicated objects.
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