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Hepatic Steatosis in C57BL/6] Mice
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Summary We investigated the effect of short-term feeding of conjugated linoleic acid
(CLA) on adipose tissue weights, liver weight, hepatic lipid metabolism, and serum lipopro-
tein profiles in C57BL/6] mice. Mice were fed semi-synthetic diets containing either 6%
high-linoleic safflower oil (HL-SAF) or 4% HL-SAF+2% CLA for 1 wk. Short-term feeding of
CLA showed an anti-obesity effect without inducing hepatomegaly in mice. In addition to
the decline of hepatic triglyceride concentration, significant inhibition of A9 desaturation of
fatty acid in the total liver lipids was found in CLA-fed mice. The CLA diet significantly
increased the activities of peroxisomal B-oxidation and decreased the activities of diacylglyc-
erol acyltransferase, a triglyceride synthesis-related enzyme, in the liver. Moreover, serum
lipoprotein profiles of CLA-fed mice showed preferable changes in the atherogenic indices.
However, serum leptin and adiponectin were drastically decreased by CLA feeding, suggest-
ing that prolonged administration of CLA would induce further decrease of serum adipocy-
tokine levels, which may be a cause of lipodystrophy in mice. These results show that short-

term feeding of CLA does not induce adverse effect in C57BL/6] mice.
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Conjugated linoleic acid (CLA) is a mixture of posi-
tional and geometric isomers of linoleic acid with con-
jugated double bonds. It is found in meat and dairy
products, such as beef, milk, and processed cheese (1,
2). CLA has attracted considerable attention because of
its potentially beneficial effects in inhibiting carcinogen-
esis, attenuating atherosclerosis, alleviating diabetes,
and reducing body fat in animal models and humans
(3-7). Recently, we reported that CLA and its isomer
(10trans,12cis-CLA) prevent the development of both
obesity-related and essential hypertension in model
animals (8-10). Feeding a CLA mixture and the
10trans,12cis-CLA isomer with a low-fat diet for more
than 1 mo, however, induced lipodystrophy, which is
characterized by an increase in hepatic lipid contents
concomitant with a decrease in body fat mass, in mice
(11, 12). CLA-induced hepatic steatosis has been found
only in mice and has not been reported in other species
(13-16). Increasing the amount of fat in a CLA-supple-
mented diet substantially reduces the lipodystrophy in
mice (17). Lipodystrophy may occur in mice because
they are sensitive to CLA-induced body fat reduction.
Therefore, short-term feeding should be sufficient to
reveal the physiological effects of CLA in mice.

In the present study, we investigated the effect of
short-term feeding of CLA on adipose tissue weights,
liver weight, hepatic lipid metabolism, and serum lipo-
protein profiles in C57BL/6] mice.
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MATERIALS AND METHODS

Animals and diets. Male C57BL/6] mice aged 7 wk
were purchased from CLEA Japan, Inc. (Osaka, Japan)
and housed individually in an air-conditioned room
(24°C) with a 12-h light/dark cycle. After a 1-wk adap-
tation period, the mice were assigned to two groups (six
rats each).

The basal diets were prepared according to the rec-
ommendation of the AIN-93G and contained (in weight
%): casein, 20; a-cornstarch, 13.2; sucrose, 10; cellu-
lose, 5; vitamin mixture (AIN-93™), 1; mineral mix-
ture (AIN-93G™), 3.5; I-cystein, 0.3; choline bitar-
trate, 0.25; fat, 6; tert-butylhydroquinone, 0.0014; and
B-cornstarch, 40.7486. Dietary fats were composed of
6% high linoleic safflower oil (HL-SAF) in the control
diet and a mixture of 4% HL-SAF+2% CLA (triglyceride
form) in the CLA diet. The composition of the semi-syn-
thetic diets and their fatty acid contents are listed in
Table 1. The animals received the diets ad libitum using
Rodent CAFE (KBT Oriental Co. Ltd., Saga, Japan) for 1
wk. At the end of the feeding period, the mice were sac-
rificed by exsanguinations from the heart after a 9-h
starvation. White adipose tissues and liver were excised
immediately, and serum was separated from the blood.
All aspects of the experiment were conducted according
to the guidelines provided by the Ethical Committee for
Experimental Animal Care at Saga University.

Analysis of lipids. Liver lipids were extracted accord-
ing to the method of Folch et al. (18), and the concen-
trations of triglyceride and cholesterol were measured
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Table 1. Fatty acid composition of experimental oils.
HL-SAF CLA-TG
(Weight%)
16:0 6.6 6.6
18:0 2.4 2.4
18:1 16.1 16.4
18:2 73.0 1.7
CLA (9¢,11t) — 32.2
(10t,12¢) —_ 33.1
(9¢,11¢) — 1.2
(10¢,12¢) — 1.1
(t,t) — 2.8
18:3 0.5 —
20:0 0.3 —
20:1 0.2 —
Others 0.9 2.6

HL-SAF, high linoleic safflower oil; CLA-TG, triglyceride-
form conjugated linoleic acid.

by the methods of Fletcher (19) and Sperry and Webb
(20), respectively. Fatty acid composition of total liver
lipids was analyzed by gas-liquid chromatography as
described previously (21). Serum lipoproteins were ana-
lyzed by an on-line dual enzymatic method for simulta-
neous quantification of triglyceride and cholesterol by
high-performance liquid chromatography at Skylight
Biotech Inc. (Akita, Japan) according to the methods of
Usui et al. (22). The serum glucose level was measured
using a commercial enzyme assay kit (Glucose CII-test
from Wako Pure Chemical Industries, Ltd., Tokyo,
Japan). Serum insulin, adiponectin, and leptin levels
were measured using commercial mouse ELISA kits
(Shibayagi Co. Ltd., Shibukawa, Japan; Otsuka Pharma-
ceutical Co. Ltd., Tokyo, Japan; and Morinaga Co. Ltd.,
Yokohama, Japan, respectively).

Preparation of liver subcellular fractions. A piece of
liver from each mouse was homogenized in six volumes
of a 0.25 M sucrose solution containing 1 mmM EDTA in a
10 mM Tris-HCl buffer (pH 7.4). After precipitating the
nuclei fraction, the supernatant was centrifuged at
10,000Xg for 10 min at 4°C to obtain mitochondria.
The resulting supernatant was recentrifuged at
125,000Xg for 60 min to precipitate microsomes, and
the remaining supernatant was used as the cytosol frac-
tion. The microsomal pellet was resuspended in a
0.25 M sucrose solution containing 1 mM EDTA in a
10 mM Tris-HCI buffer (pH 7.4). Protein concentration
was determined by the method of Lowry et al. (23),
with bovine serum albumin used as the standard.

Assays of hepatic enzyme activity. The enzyme activi-
ties of carnitine palmitoyltransferase (CPT) (24), perox-
isomal B-oxidation (25), fatty acid synthase (FAS) (26),
and diacylglycerol acyltransferase (DGAT) (27) were
determined as described in the respective references.

Statistical analyses. All values are expressed as
mean=SE. Data were analyzed with Student’s t-test,
and differences were considered significant at p<<0.05.
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RESULTS AND DISCUSSION

Lifestyle-related diseases such as hyperlipidemia,
arteriosclerosis, diabetes mellitus, and hypertension are
widespread and increasingly prevalent in industrialized
countries and have contributed to the increase in car-
diovascular morbidity and mortality (28, 29). Although
the pathogenesis of lifestyle-related diseases is compli-
cated and the precise mechanisms have not been eluci-
dated, based on epidemiologic studies obesity has
emerged as one of the major cardiovascular risk factors
(30-32). Recently, CLA has attracted considerable
attention because of its potentially beneficial effects in
alleviating obesity. CLA reduced body fat and enhanced
lean body mass in animal models (33, 34), and dietary
CLA supplementation reduced the percentage of body
fat compared with control groups in humans (7, 35).
Studies using prolonged CLA feeding, however, reported
that a drastic decrease of adipose tissue induced lipodys-
trophy, such as hepatic steatosis and hyperinsulinemia,
in mice (11, 12). Therefore, we investigated the effects
of short-term feeding of CLA in this hyper-responsive
animal.

The effects of dietary CLA on the body weight, food
intake, and relative liver weight in mice are shown in
Table 2. There was no significant difference in those
growth parameters between the groups. As shown in
the Fig. 1, perirenal and west subcutaneous white adi-
pose tissue weights were significantly decreased by CLA
feeding. These results showed that short-term feeding of
CLA is enough to reveal the anti-obese effect without
inducing hepatomegaly in mice.

The effects of dietary CLA on the hepatic lipids are

Table 2. Growth parameters of C57BL/6] mice after 1
wk of feeding.

Control CLA
Final body weight (g) 17.6+0.5 17.7£0.4
Total food intake (g) 15.4+0.3 14.9+0.7
Liver weight (g/100 g BW)  4.33%+0.11 4.41x0.14

Values are expressed as mean=SE of six mice.

WAT weight
(g /100g body weight)
O Control
06 {ECLA
0.4 4 *
0.2 - *
0.0 -

Perirenal Subcutaneous
Fig. 1. Effect of dietary fatty acids on white adipose tis-
sue (WAT) weights. Mice were fed semi-synthetic diets
containing either 6% HL-SAF or 4% HL-SAF+2% CLA
for 1 wk. Values are expressed as mean+SE of six mice.
See Table 1 for composition of diets. Asterisks show sig-
nificant difference at p<<0.05.
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Hepatic lipids Table 3. Fatty acid composition of hepatic total lipids in
10 (mg /g liven) C57BL/6] mice after 1 wk of feeding.
8 4 E g:":d Control CLA
6 - (% of total)
41 * 14:0 0.380+0.024 0.303+0.036
2 16:0 25.9+0.2 25.4+0.2
0 A 16:1 1.72£0.13 0.863+0.055*
Trigiyceride Cholesterol 18:0 13.0£0.8 18.2+0.3%
Fig. 2. Effect of dietary fatty acids on the concentra- 18:1n-7 1.8220.10 ]'73i0'06*
tions of hepatic lipids. Mice were fed semi-synthetic 18:1n-9 11.420.7 8'_67i0'43
diets containing either 6% HL-SAF or 4% HL-SAF-+2% 18:2n-6 23.220.9 15.8+0.2
CLA for 1 wk. Values are expressed as mean=SE of six 9¢,11t-CLA n.d. 0.623=0.036
mice. See Table 1 for composition of diets. Asterisk 10t,12¢-CLA P'd' 0.384;Li0.020*
shows significant difference at p<<0.05. 18:3n-6 0.41520.024 0.197=0.006
20:3n-6 0.779+0.094 0.650+0.033*
. . 20:4n-6 13.3%+0.6 14.7+0.1
Enzyme activities DGAT activity 22:4n-6 0.445+0.042  0.961+0.040*
20 (mol /min /mg protein) 3 (nmol /min /mg protein) 22:5n-3 n.d. 0.257+0.008
U Control —_ 22:5n-6 0.587+0.042 3.57+0.19%
2. : 22:6n-3 7.07%x0.37 7.87*+0.33
Vaiues are expressed as mean=SE of six mice.
14 Asterisks show significant difference at p<<0.05.
it 0 Table 4. Serum parameters of C57BL/6] mice after 1
CPT Peroxisomal FAS Control CLA

goxidation
Fig. 3. Effect of dietary fatty acids on the activities of
mitochondrial carnitine palmitoyltransferase (CPT),
peroxisomal B-oxidation, cytosolic fatty acid synthase
(FAS) and microsomal diacylglycerol acyltransferase
(DGAT) in the liver of C57BL/6] mice. Mice were fed
semi-synthetic diets containing either 6% HIL-SAF or
4% HL-SAF+2% CLA for 1 wk. Values are expressed as
mean=*SE of six mice. See Table 1 for composition of
diets. Asterisks show significant difference at p<<0.05.

shown in Fig. 2. In contrast to previous reports show-
ing that feeding CLA to mice induced hepatic steatosis
(11, 12), short-term feeding of CLA decreased the tri-
glyceride content in the liver of mice. These findings
reveal that CLA also has a lipid-lowering effect in mice,
as has been shown in other animal models (36-38). In
this study, cholesterol content in the liver was not influ-
enced by dietary CLA.

We measured the activities of CPT, peroxisomal B-
oxidation, FAS, and DGAT in the liver (Fig. 3). Although
the activity of mitochondrial CPT was not changed, the
activity of peroxisomal B-oxidation was significantly
increased by CLA feeding. Thus, CLA feeding may acti-
vate peroxisomal proliferation in the liver of mice.
Because fibrate agents, artificial peroxisome prolifera-
tors, have been reported to reduce hepatic triglyceride
content (39-41), the activation of peroxisomal B-oxida-
tion by CLA may contribute to the reduction of hepatic
triglyceride content. The activity of cytosolic FAS, a late-
limiting enzyme of fatty acid synthesis, was not altered
by CLA feeding. However, the activity of microsomal
DGAT, a triglyceride synthesis-related enzyme, was sig-
nificantly reduced in the liver of CLA-fed mice. The

wk of feeding.

Control CLA

VLDL-TG (mg/dL) 23.3%2.9 5.92+0.89*
LDL-TG (mg/dL) 18.6+0.6 7.16+0.89*
HDIL-TG (mg/dL) 0.755+0.068 0.617+0.037
VLDL-cholesterol (mg/dl.) 4.86*+0.56 2.78+0.41*
LDL-cholesterol (mg/dL) 16.3x1.1 10.7+0.9*
HDL-cholesterol (mg/dL) 83.4+1.5 89.9+4.9
Glucose (mg/dL) 210+24 20825
Insulin (pg/mL) 15031 94.7+51.7
Adiponectin (ug/mL) 22.4%*1.2 6.70+0.27*
Leptin (pg/mL) 427+228 32.7+12.1*

Values are expressed as mean=+SE of six mice.
Asterisks show significant difference at p<<0.05.

reduction of hepatic triglyceride content may be attrib-
utable to the inhibition of triglyceride synthesis through
the decreased activity of DGAT.

Fatty acid composition of liver total lipids are shown
in Table 3. Many reports have shown that CLA has an
inhibitory effect on the fatty acid A9 desaturation in
vitro and in vivo (42—44). In this experiment, dietary
CLA decreased the proportion of monounsaturated
fatty acid contents and increased the contents of CLA
isomers in the liver total lipids. Thus, short-term feeding
is enough to reveal major physiological effects of CLA,
which may be induced directly by CLA isomers incorpo-
rated into the liver.

Serum lipoprotein profiles are shown in Table 4. CLA
feeding markedly lowered the concentrations of triglyc-
eride and cholesterol in the fractions of very-low-den-
sity lipoprotein (VLDL) and low-density lipoprotein
(LDL). Cholesterol levels in VLDL and LDL fractions
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were decreased and HDL-cholesterol level was not
changed in CLA-fed mice. As a result, the calculated
anti-atherogenic index (cholesterol ratio in HDL/
(VLDL+LDL)) was significantly higher in CLA-fed mice
(47.1*+6.1) compared with control mice (34.5x1.3).
Serum glucose and insulin levels were not significantly
changed by CLA feeding. However, serum levels of adi-
ponectin and leptin were drastically decreased in CLA-
fed mice. Adiponectin and leptin are both secreted
abundantly from adipose tissue and are adipocytokines
(45-47). Both adipocytokines regulate insulin sensitiv-
ity in humans and animals. Therefore, a deficiency of
adipocytokine secretion due to a paucity of adipose tis-
sue would cause lipodystrophy, which is characterized
by a severe insulin resistance, leading to hyperinsuline-
mia and hepatic steatosis (48—50). In a previous study,
a drastic decrease of adipose tissue by CLA feeding
caused lipodystropy in mice, but continuous leptin infu-
sion reversed the hyperinsulinemia (11). Thus, admin-
istering too much CLA may cause lipodystrophy in
hyper-responders.

In conclusion, our findings revealed that short-term
feeding of CLA does not induce adverse effects in
C57BL/6] mice.
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