
Results. Math. 63 (2013), 451–465
c© 2011 Springer Basel AG
1422-6383/13/010451-15
published online September 30, 2011
DOI 10.1007/s00025-011-0208-8 Results in Mathematics

Using Time Scales to Study Multi-
Interval Sturm–Liouville Problems
with Interface Conditions

Qingkai Kong and Qi-Ru Wang

Abstract. We consider a Sturm–Liouville problem defined on multiple
intervals with interface conditions. The existence of a sequence of eigen-
values is established and the zero counts of associated eigenfunctions are
determined. Moreover, we reveal the continuous and discontinuous nature
of the eigenvalues on the boundary condition. The approach in this paper
is different from those in the literature: We transfer the Sturm–Liouville
problem with interface conditions to a Sturm–Liouville problem on a time
scale without interface conditions and then apply the Sturm–Liouville
theory for equations on time scales. In this way, we are able to investi-
gate the problem in a global view. Consequently, our results cover the
cases when the potential function in the equation is not strictly greater
than zero and when the domain consists of an infinite number of intervals.
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1. Introduction

The Sturm–Liouville theory plays an important role in mathematical phys-
ics. In the past decades, there has been growing interest in Sturm–Liouville
problems (SLPs) with interface (or transmission) conditions. Such research is
motivated by the problems of heat and mass transfer, string vibration with
loaded point masses, and the thermal conduction for a strip with piecewise
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continuous coefficients, etc., see [14,16,18,19]. For the recent development of
SLPs with interface conditions, the reader is referred to [3,8,9,14,15,17,20–22]
and the references therein.

In this paper, we consider the SLP on multiple intervals consisting of the
equation

(p(t)x′)′ + q(t)x = λw(t)x on I :=
j⋃

i=1

[ai, bi], (1.1)

where j ≤ ∞ and bi < ai+1 for i = 1, . . . , j − 1, with the non-self-adjoint
interface conditions that for i = 1, . . . , j − 1,

x(ai+1) = x(bi) + li (px′)(bi),
(1.2)

(px′)(ai+1) = hi x(bi) + ki (px′)(bi);

and boundary conditions (BCs)

cos α x(a1) − sin α (px′)(a1) = 0, 0 ≤ α < π,
(1.3)

cos β x(bj) − sin β (px′)(bj) = 0, 0 < β ≤ π;

where li, hi, and ki are constants, and the quasi-derivative px′ at ai and bi

means the appropriate one-sided quasi-derivative.
This problem and its variations have been discussed by many authors,

see [8,9,17,20–22], mainly for the case with j < ∞. Under certain assump-
tions, nice results have been obtained on the structure of the spectrum and
properties of the eigenfunctions. The main approach in their work is to con-
struct a direct sum of Hilbert spaces of functions defined on each interval
[ai, bi], i = 1, . . . , j, or one Hilbert space of functions with the inner prod-
uct as a sum of inner products defined on each interval [ai, bi], i = 1, . . . , j;
and then apply the spectral theory for self-adjoint Sturm–Liouville operators.
However, there is a major limitation to this method: To form such weighted
Hilbert spaces with weight w, there must be a sign requirement for the func-
tion w. In fact, all existing results are under the restriction that w(t) is strictly
greater than zero a.e. on I, and many of them require w(t) ≡ 1. Although some
special cases of the results may be potentially extended, using substantially
more sophisticated arguments, to some cases where w(t) is allowed to be zero
on a subset of I with positive Lebesgue measure; we will never expect that
this method will work when w(t) ≡ 0 on a whole interval [ai, bi] for some
i ∈ {1, . . . , j}.

Here, we study the spectrum of SLP (1.1)–(1.3) by a different approach:
we first change SLP (1.1)–(1.3) to a SLP on a time scale and then apply the
Sturm–Liouville theory for equations on time scales. In this way, the interface
condition are absorbed into the equation and hence the resulting SLP on time
scale becomes a two-point SLP without interface conditions. Therefore, we are
able to investigate the problem in a global view, i.e., using an inner product
defined on one time scale interval rather than a combination of inner products
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defined on each [ai, bi], i = 1, . . . , j, separately. Consequently, the assumption
for w is much released. Actually, w can be zero on any subset of I as long as
its Lebesgue measure is less than

∑j
i=0(bi −ai). In particular, our results allow

that w(t) ≡ 0 on all intervals [ai, bi] except one where w(t) ≥ 0 and w(t) > 0
on a subset with positive Lebesgue measure.

Our main purpose is to establish the existence of a sequence of real
eigenvalues of SLP (1.1)–(1.3) and determine the zero counts of associated
eigenfunctions including the case when j = ∞. Moreover, we will reveal the
continuous and discontinuous nature of the eigenvalues on the BC parame-
ters α and β which is difficult to obtain without using time scales. We also
hope that the ideas in this paper will provide a foundation for the further
study of second order linear and nonlinear problems with interface conditions
or jumping conditions.

Finally, we comment that although we assume that bi < ai+1 for i =
1, . . . , j − 1 at the beginning, all work in this paper can be easily extended to
the case with bi = ai+1 for some or all i ∈ {1, . . . , j−1}. In the latter case, SLP
(1.1)–(1.3) becomes a SLP on one interval with interior jumping discontinuous
points.

This paper is organized as follows: following this introduction, we pres-
ent our main results in Sect. 2, their proofs are given in Sect. 4 after related
results on time scales are derived in Sect. 3. In Sect. 5, we summarize the
basic knowledge on time scales used in this paper just for the convenience of
the reader.

2. Main Results

We assume throughout this paper that
(A1) p, q, w ∈ C(I), p > 0, w ≥ 0, and w �≡ 0 a.e. on I;

(A2) li > 0 and hi, ki ∈ R such that ki − lihi > 0;

(A3)
∑j

i=1[(bi − ai) + lip(bi)] < ∞.
We note that assumption (A3) is automatically satisfied when j < ∞.
A solution x of Eq. (1.1) is said to have a zero at t ∈ I if x(t) = 0, and to

have a node between bi and ai+1 for some i ∈ {1, . . . , j−1} if x(bi)x(ai+1) < 0.
A generalized zero of x is then defined as a zero or a node.

Now we present the main results of this paper. The first one is on the
existence of eigenvalues and the zero counts of associated eigenfunctions.

Theorem 2.1. Under the assumptions (A1)–(A3), the non-self-adjoint SLP
(1.1)–(1.3) has an infinite number of eigenvalues {λn}∞

n=0 which are real, sim-
ple, bounded below, and can be ordered to satisfy that

−∞ < λ0 < λ1 < λ2 < · · · < λn < · · · , λn → ∞ as n → ∞.
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Moreover, each eigenfunction un associated with λn has exactly n generalized
zeros in (a1, bj).

In the next two theorems, we show how the eigenvalues λn, n ∈ N0,
depend on the BC α and β. By a normalized eigenfunction u of SLP (1.1)–
(1.3) we mean a real valued eigenfunction which satisfies that

b∫

a

[u(t)]2w(t)dt = 1.

Theorem 2.2 below reveals the continuous and jump-discontinuous nature of
λn with respect to (α, β) at different points in [0, π) × (0, π], and in Theorem
2.3, it is shown that λn is continuously differentiable whenever it is continuous
and derivative formulas are obtained.

Theorem 2.2. For n ∈ N0, λn(α, β) is continuous on [0, π) × (0, π]. Moreover,

(i) for each β ∈ (0, π],
lim

α→π−
λ0(α, β) = −∞ and lim

α→π−
λn(α, β) = λn−1(0, β) for n =

1, 2, . . .;
(ii) for each α ∈ [0, π),

lim
β→0+

λ0(α, β) = −∞ and lim
β→0+

λn(α, β) = λn−1(α, π) for n = 1, 2, . . .;

(iii) in general, when taking limits within the region (0, π) × (0, π),
lim

(α,β)→(π−,0+)
λn(α, β) = −∞ for n = 0, 1, and

lim
(α,β)→(π−,0+)

λn(α, β) = λn−2(0, π) for n = 2, 3, . . . .

Theorem 2.3. For n ∈ N0 and (α, β) ∈ [0, π) × (0, π], let un = un(·;α, β) be
the normalized eigenfunction associated with λn = λn(α, β). Then

(i) for a fixed β ∈ (0, π], λn is continuously differentiable in α on [0, π) and

dλn

dα
= −u2

n(a) − (pu′
n)2(a);

(ii) for a fixed α ∈ [0, π), λn is continuously differentiable in β on (0, π] and

dλn

dβ
= u2

n(b) + (pu′
n)2(b).

The following result regarding the monotone properties of λn is an imme-
diate consequence of Theorem 2.3.

Corollary 2.1. For n ∈ N0 and (α, β) ∈ [0, π) × (0, π], let λn = λn(α, β). Then

(i) for a fixed β ∈ (0, π], λn is strictly decreasing in α on [0, π);
(ii) for a fixed α ∈ [0, π), λn is strictly increasing in β on (0, π].
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3. Right-Semi-Definite SLPs on Time Scales

Let T be a time scale and a, b ∈ T such that a < b and consider the SLP
consisting of the equation

− (p(t)yΔ)Δ + q(t)yσ = λw(t)yσ on [a, b] ∩ T (3.1)

and the separated BC
{

Ra(y) := cos α y(ρ(a)) − sin α (pyΔ)(ρ(a)) = 0, α ∈ [0̂, π̂)
Rb(y) := cos β y(b) − sin β (pyΔ)(b) = 0, β ∈ (0, π],

(3.2)

where 0̂ =

⎧
⎨

⎩

0, if ρ(a) = a

− tan−1 μ(ρ(a))
p(ρ(a))

, if ρ(a) < a
and π̂ = π + 0̂.

In this section we assume that

(I) p, q, w : [ρ(a), σ(b)]∩T → R are rd-continuous, p > 0, w ≥ 0, and w �≡ 0
a.e.;

(II) a is right-scattered implies that a is left-scattered, and b is left-scattered
implies that b is right-scattered.

The following remark was given in [11]. We include it in this paper for the
convenience of the reader.

Remark 3.1. (i) When α = 0̂ or π̂, Ra(y) = 0 is equivalent to y(a) = 0.
In fact, this is obviously true when ρ(a) = a. Now we assume ρ(a) < a.
Then when α = 0̂, Ra(y) = 0 means that

0 = y(ρ(a)) − tan 0̂ p(ρ(a))[y(a) − y(ρ(a))]/μ(ρ(a))
= y(ρ(a)) + [y(a) − y(ρ(a))] = y(a).

Similarly for α = π̂.
(ii) Assumption (II) is not essential. In fact, when a is right-scattered but

left-dense, Ra(y) = 0 becomes

Rσ(a)(y) := cos α y(a) − sin α (pyΔ)(a) = 0, (3.3)

which is a BC at σ(a) satisfying the first condition in (II) with a replaced by
σ(a). Assume b is left-scattered but right-dense. If sin β = 0, then the BVP is
defined only on [a, b] ∩ T and hence is not affected by the nature of T to the
right of b; and if sinβ > 0, then

yΔ(ρ(b)) =
y(b) − y(ρ(b))

μ(ρ(b))
and yΔ(b) = y′(b).

Hence by Eq. (3.1)

(pyΔ)Δ(ρ(b)) = [(py′)(b) − p(ρ(b)) (y(b) − y(ρ(b))) /μ(ρ(b))] /μ(ρ(b))
= [q(ρ(b)) − λw(ρ(b))]y(b).
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This together with the relation (py′)(b) = cot β y(b) provides a new BC at ρ(b)
with a new angle γ determined by the values of p, q, w at ρ(b) and β

Rρ(b)(y) = cos γ y(ρ(b)) − sin γ (pyΔ)(ρ(b)) = 0, γ ∈ (0, π],

which satisfies the second condition of (II) with b replaced by ρ(b).

For any x ∈ R we define the deficiency of x by def (x) =
{

0, x �= 0
1, x = 0 ; and

for any subset E of R we define by |E| the number of points in E.
We first state a result in [11] on the existence of eigenvalues and the

number of the generalized zeros of corresponding eigenfunctions of SLP (3.1),
(3.2), which is a generalization of Theorems 1 and 8 in Agarwal et al. [2] for
the special case where p ≡ 1 and w ≡ 1.

Proposition 3.1. In addition to Assumptions (I ) and (II ), assume w(t) > 0
on [ρ(a), σ(b)]∩T. Then the number of eigenvalues of SLP (3.1), (3.2) is given
by

k := |[a, b] ∩ T| − def
(

tan α +
μ(ρ(a))
p(ρ(a))

)
− def (sin β). (3.4)

Moreover,
(a) all eigenvalues of SLP (3.1), (3.2) are real, simple, bounded below, and

can be ordered to satisfy that

−∞ < λ0 < λ1 < λ2 < · · · < λn < · · · , n ∈ N
k
0 ,

and

λn → ∞ as n → ∞ when k = ∞;

where N
k
0 :=

{ {0, 1, 2, . . . }, k = ∞
{0, 1, 2, . . . k − 1}, k < ∞ , and λn → ∞ as n → ∞ when

k = ∞;
(b) each eigenfunction un associated with λn has exactly n generalized zeros

in (a, b) for n ∈ N
k
0 .

We now extend Proposition 3.1 without assuming w(t) > 0 on
[ρ(a), σ(b)] ∩ T.

Theorem 3.1. Let k and N
k
0 be defined as in Proposition 3.1. Under the

Assumptions (I ) and (II ), SLP (3.1), (3.2) has k eigenvalues {λn}n∈Nk
0
. More-

over,
(a) all eigenvalues of SLP (3.1), (3.2) are real, simple, bounded below, and

can be ordered to satisfy that

−∞ < λ0 < λ1 < λ2 < · · · < λn < · · · , n ∈ N
k
0

and

λn → ∞ as n → ∞ when k = ∞;
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(b) each eigenfunction un associated with λn has exactly n generalized zeros
in (a, b) for n ∈ N

k
0 .

Proof. It is easy to see that all eigenvalues of SLP (3.1), (3.2) are real.
To prove the existence of eigenvalues of SLP (3.1), (3.2), we employ the

eigencurve approach for two-parameter SLPs used in [4,5,12]. Consider the
two-parameter problem consisting of the equation

(−p(t)yΔ)Δ + (q(t) − λw(t))yσ = ξyσ on [a, b] ∩ T (3.5)

and BC (3.2). By Proposition 3.1, for any λ ∈ R, SLP (3.5), (3.2) has k eigen-
values {ξn(λ)}n∈Nk

0
which are simple, bounded below, and can be ordered to

satisfy that

−∞ < ξ0(λ) < ξ1(λ) < · · · < ξn(λ) < · · · , n ∈ N
k
0 ,

and

ξn(λ) → ∞ as n → ∞ when k = ∞;

and each eigenfunction un associated with ξ(λ) has exactly n generalized zeros
in (a, b) for n ∈ N

k
0 . It is easy to see that λ is an eigenvalue of SLP (3.1), (3.2)

if and only if ξn(λ) = 0 for some n ∈ N
k
0 . We call Cn = {(λ, ξn(λ)) : λ ∈ R}

the n-th eigencurve of SLP (3.5), (3.2). Similar to the proof of [13, Theorem
2.1] we can show that ξn(λ) is a continuous function on R and hence Cn is a
continuous curve on R.

Define a Hilbert space

H = {y ∈ [ρ(a), b] ∩ T : y2 is integrable on [ρ(a), b] ∩ T}
with the inner product

< y1, y2 > =

b∫

ρ(a)

y1(t)y2(t)Δt for y1, y2 ∈ H

and induced norm ‖y‖ = < y, y >1/2. Define an operator T by

Ty = −(pyΔ)Δ + qyσ

on the domain

D = {y ∈ H : y, pyΔ are Δ-integrable, Ty ∈ H, and y satisfies BC (3.2)}.

Let U be the unit sphere in H and F any subspace of D(T ). The by Theorem
1 of [2] and the self-adjoint spectral theory we see that for λ ∈ R and n ∈ N

k
0

ξn(λ)=min
F

{max
y

{< Ty, yσ >−λ < wyσ, yσ >: y ∈ F ∩ U} : dim F =n + 1}.

(3.6)
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Let sup w be the supremum of w on [ρ(a), σ(b)] ∩ T. By assumption (I) we
have that supw > 0. It is easy to see that for ε ∈ (0, sup w), there exists an
n-dimensional subspace F of D(T ) such that

< wyσ, yσ >≥ supw − ε > 0 for all y ∈ F ∩ U. (3.7)

Thus for λ > 0 and y ∈ F ∩ U we have
ξn(λ)

λ
≤ < Ty, yσ >

λ
− < wyσ, yσ > ≤ < Ty, yσ >

λ
− supw + ε.

This, together with the fact that < Ty, yσ > is bounded above on F ∩ U ,
implies that ξn(λ) < 0 for λ sufficiently large.

If ξ0(0) ≥ 0. then for n ∈ N
k
0 , ξn(0) ≥ 0. By the continuity of ξn(λ), there

exists λn ≥ 0 such that ξn(λn) = 0. This shows that λn is the n-th eigenvalue
of SLP (3.1), (3.2).

If ξ0(0) ≤ 0, let λ∗ < 0 satisfying

< Ty, yσ > −λ∗

b∫

ρ(a)

w(t)(yσ(t))2Δt ≥ 0 (3.8)

for all y ∈ F defined by (3.7). Denote q̄ = q − λ∗w, λ̄ = λ − λ∗, and ξ̄ = ξ.
Then we may change Eq. (3.5) to

(−p(t)yΔ)Δ + (q̄(t) − λ̄w(t))yσ = ξ̄yσ on [a, b] ∩ T. (3.9)

By (3.6), where q, λ, and ξ are replaced by q̄, λ̄, and ξ̄, we have that ξ̄(λ̄)
satisfies that

ξ̄n(0) = min
F

{max
y

{< T̄y, yσ >: y ∈ F ∩ U} : dim F = n + 1},

where

T̄ y = −(pyΔ)Δ + q̄yσ = Ty − λ∗wy.

Hence by (3.8) we have that for y ∈ F ,

< T̄y, yσ > = < Ty, yσ > −λ∗

b∫

ρ(a)

w(t)(yσ(t))2Δt ≥ 0. (3.10)

This shows that ξ̄n(0) ≥ 0 for n ∈ N
k
0 . Similar to the above we have that

ξ̄n(λ) < 0 for λ sufficiently large. By the continuity of ξn(λ), there exists
λ̄n ≥ 0 such that ξ̄n(λ̃n) = 0. This implies that λ̄n is the n-th eigenvalue of
the SLP consisting of the equation

−(pyΔ)Δ + q̃yσ = λ̄wyσ on [a, b] ∩ T

and BC (3.2) and hence λn = λ̄n − λ∗ is the n-th eigenvalue of the SLP (3.1),
(3.2).

Finally, we show that the set {λn}n∈Nk
0

does not have cluster points which
follows that λn → ∞ as n → ∞ when k = ∞. Assume the contrary and let
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λ∗ be such a cluster point. Then the set {ξn}n∈Nk
0

must have a cluster point
ξ∗ ≤ 0, which contradicts that ξn → ∞ as n → ∞ when k = ∞. This completes
the proof. �

4. Proof of the Main Results

We define a time scale as a union of closed intervals T =
j⋃

i=1

[ci, di] in the

following way:

c1 = a1, di − ci = bi − ai, i = 1, . . . , j; and
ci+1 − di = lip(bi), i = 1, . . . , j − 1.

(4.1)

It is easy to see that for i = 1, . . . , j, [ci, di] is a shift of [ai, bi] with the same
length. Moreover, under assumption (A3), T is a bounded time scale. Define
an operator Γ : I → T by

s = Γ(t) = t − ai + ci for t ∈ [ai, bi], t = 1, . . . , j. (4.2)

Obviously, Γ is strictly increasing on I and hence its inverse t = Γ−1(s) is
defined on T. For s ∈ T, denote y(s) = x(Γ−1(s)) and let

p̃(s) = p(Γ−1(s)), q̃(s) = q(Γ−1(s)), and w̃(s) = w(Γ−1(s)).

Without confusion we still use y′ for the derivative of y with respect to s
when s ∈ (ci, di) and the appropriate one-sided derivative when s = ci or
di, i = 1, . . . , j. Let yΔ be the Δ-derivative of y on the time scale T except at
dj and yΔ(dj) := lims→dj− yΔ(s).

Due to Assumption (A2), we we may define a dynamic equation on T

given as follows:

(p̃yΔ)(s))Δ + f(s)(p̃yΔ)(σ(s)) + g(s)y(σ(s)) = λr(s)y(σ(s)), (4.3)

where for i = 1, . . . , j − 1,

f(s) =

⎧
⎨

⎩

0, s ∈ [ci, di)

− ki − 1 − hili
lip̃(di)(ki − hili)

, s = di,

g(s) =

⎧
⎨

⎩

q̃(s)(s)), s ∈ [ci, di)

− hi

lip̃(di)(ki − hili)
, s = di,

and

r(s) =
{

w̃(s) s ∈ [ci, di)
0, s = di.

We consider the two-point BC

cos α y(c1) − sin α (p̃yΔ)(c1) = 0, 0 ≤ α < π,

cos β y(dj) − sin β (p̃yΔ)(dj) = 0, 0 < β ≤ π.
(4.4)
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Now we present a result on the relation between the SLP (1.1)–(1.3) on multi-
interval I with non-self-adjoint interface conditions and the SLP (4.3), (4.4)
on the time scale T without interface conditions.

Theorem 4.1. Let assumptions (A1)–(A3) hold. Then λ is an eigenvalue of
SLP (1.1)–(1.3) if and only if it is an eigenvalue of SLP (4.3), (4.4). More-
over, the eigenfunctions of SLP (1.1)–(1.3) and SLP (4.3), (4.4) associated
with this λ have exactly the same number of generalized zeros.

Proof. It is easy to see that λ is an eigenvalue of SLP (1.1)–(1.3) with x(t) as an
associated eigenfunction if and only if λ is an eigenvalue with y(s) := x(Γ−1(s))
as an eigenfunction of the SLP consisting of the equation

(p̃(t)y′)′ + q̃(t)y = λw̃(t)y for s ∈
j⋃

i=1

[ci, di] (4.5)

with the interface condition that for i = 1, . . . , j − 1,

y(ci+1) = y(di) + li (p̃y′)(di),
(p̃y′)(ci+1) = hi y(di) + ki (p̃y′)(di); (4.6)

and boundary conditions (BCs)

cos α y(c1) − sin α (p̃y′)(c1) = 0, 0 ≤ α < π,
cos β y(dj) − sin β (p̃y′)(dj) = 0, 0 < β ≤ π.

(4.7)

By (4.1) and the first condition in (4.6) we have

(p̃yΔ)(di) = (p̃y′)(di) = lim
s→di−

(p̃y′)(s) = lim
s→di−

(p̃yΔ)(s).

Thus, p̃yΔ is continuous at di.
It follows from the second condition in (4.6) that

(p̃yΔ)(ci+1)−(p̃yΔ)(di)=(p̃y′)(ci+1)−(p̃y′)(di)=hiy(di)+(ki − 1)(p̃yΔ)(di).

This together with (4.1) shows that

lip̃(di)(p̃yΔ)Δ(di) = (ci+1 − di)(p̃yΔ)Δ(di)

= (p̃yΔ)(ci+1) − (p̃yΔ)(di) = hiy(di) + (ki − 1)(p̃yΔ)(di)

= hi(y(ci+1) − li(p̃yΔ)(di)) + (ki − 1)(p̃yΔ)(di)

= hiy(ci+1) + (ki − 1 − hili)(p̃yΔ)(di). (4.8)

Note that

(p̃yΔ)(di) = (p̃yΔ)(ci+1) − lip̃(di)(p̃yΔ)Δ(di).

Then from (4.8) we get

lip̃(di)(p̃yΔ)Δ(di) = hiy(ci+1) + (ki − 1 − hili)(p̃yΔ)(ci+1)

−(ki − 1 − hili)lip̃(di)(p̃yΔ)Δ(di).
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This follows that

(p̃yΔ)Δ(di)− ki − 1 − hili
lip̃(di)(ki − hili)

(p̃yΔ)(ci+1)− hi

lip̃(di)(ki − hili)
y(ci+1) = 0.

(4.9)

Combining (4.5) and (4.9) we see that y(s) satisfies Eq. (4.3). In view of the
facts that y(s) satisfies (4.7), (p̃yΔ)(c1) = (py′)(c1), and (p̃yΔ)(dj) = (py′)(dj),
we have that y(s) satisfies (4.4). �

Proof of Theorem 2.1. We note that f defined in (4.3) is regressive and let
ef (·, 0) be the exponential function of f at 0 defined on T. Then we have

(ef (s, 0)(p̃yΔ)(s))Δ = ef (s, 0)[(p̃yΔ)Δ(s) + f(s)(p̃yΔ)(σ(s))].

Let

P (s) = ef (s, 0)p̃(s), Q(s) = ef (s, 0)g(s), and W (t) = ef (s, 0)r(s).

Then SLP (4.3), (4.4) changes to the problem consisting of the equation

(P (s)yΔ(s))Δ + Q(s)y(σ(s)) = λW (s)y(σ(s)) (4.10)

and the BC

cos α̃ y(c1) − sin α̃ (PyΔ)(c1) = 0,

cos β̃ y(dj) − sin β̃ (PyΔ)(dj) = 0;
(4.11)

for some α̃ ∈ [0, π) and β̃ ∈ (0, π]. This means that SLP (4.3), (4.4) and SLP
(4.10), (4.11) have exactly the same eigenvalues and eigenfunctions.

Since

1 + μ(di)f(di) = 1 − ki − 1 − hili
ki − hili

=
1

ki − hili
> 0,

we see that ef (s, 0) > 0 for all s ∈ T. Thus Assumptions (I) and (II) in
Section 2 are satisfied with p, q, w replaced by P,Q,W and [a, b] replaced by
[c1, dj ]; 0̂ = 0 and π̂ = π for the time scale T, and k = ∞ for the number k
defined in (3.4). Thus, Theorem 3.1 applies to SLP (4.10), (4.11). As a result,
SLP (4.10), (4.11) has an infinite number of eigenvalues {λn}∞

n=0 which satisfy
conclusions (i) and (ii) of Theorem 3.1.

Finally, Theorem 2.1 follows from the equivalent relation between SLP
(1.1)–(1.3) and SLP (4.3), (4.4) (hence SLP (4.10), (4.11)) given by Theorem
4.1. �
Proof of Theorem 2.2 and 2.3. Note that SLP (1.1)–(1.3) is equivalent to
SLP (4.10), (4.11). Then the conclusion follows from Theorems 2.2 and 2.3 in
[11] directly. Although these theorems were proved under the assumption that
w(t) > 0, the same proofs work when w satisfy assumption (A1). �
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5. Appendix: Preliminaries on Time Scales

In this section, we recall the basic concepts related to time scales used in this
paper for the convenience of the reader. For further knowledge on time scales,
the reader is referred to [1,6,7,10] and the references therein.

Definition 5.1. A time scale T is a closed subset of R with the inherited Euclid-
ean topology. For t ∈ T we define the forward-jump operator σ and the back-
ward-jump operator ρ on T by

σ(t) := inf{s ∈ T : s > t} and ρ(t) := sup{s ∈ T : s < t},

where inf ∅ := sup T and sup ∅ := inf T. If σ(t) > t, t is said to be right-scat-
tered; otherwise, it is right-dense. If ρ(t) < t, t is said to be left-scattered;
otherwise, it is left-dense. The graininess function μ : T → [0,∞) is then
defined by μ(t) := σ(t) − t.

We use the notation fσ(t) := f(σ(t)) for any function f defined on a time
scale T.

Definition 5.2. For f : T → R and t ∈ T, (if t = sup T, assume t is not left-
scattered), define the Δ-derivative fΔ(t) of f(t) to be the number, provided
it exists, with the property that, for any ε > 0, there is a neighborhood U of
t such that

|[fσ(t) − f(s)] − fΔ(t)[σ(t) − s]| ≤ ε|σ(t) − s|
for all s ∈ U . For n > 1, the n-th Δ-derivative of f(t) is defined by
fΔn

(t) := (fΔn−1
)Δ(t).

It is easily seen that if f : T → R is continuous at t ∈ T and t is right-
scattered, then

fΔ(t) =
fσ(t) − f(t)

σ(t) − t
.

Note that if T = Z, the set of integers, then

fΔ(t) = Δf(t) = f(t + 1) − f(t).

If t ∈ T is right-dense and f : T → R is differentiable at t, then

fΔ(t) = f ′(t) = lim
s→t

f(t) − f(s)
t − s

.

The following formula involving the graininess function is valid for all points
at which fΔ(t) exists:

fσ(t) = f(t) + fΔ(t)μ(t).
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Definition 5.3. If FΔ(t)=f(t), then we define the integral of f on [a, b] ∩ T by
b∫

a

f(τ)Δτ = F (b) − F (a).

In this case, we say that f is integrable on [a, b] ∩ T.

It has been shown that f is integrable on [a, b] ∩ T if f is rd-continuous
on [a, b] ∩ T, i.e., f is continuous at each right-dense point in [a, b] ∩ T and
lims→t− f(s) exists as a finite number for all left-dense points in [a, b] ∩ T.

For h > 0,we define the cylinder transformation ξh : Ch → Zh by

ξh(z) =
1
h

Log (1 + zh),

where Log is the principal logarithm function, and

Ch =
{

z ∈ C : z �= − 1
h

}
, Zh =

{
z ∈ C : −π

h
< Im(z) ≤ π

h

}
.

For h = 0, we define ξ0(z) = z for all z ∈ C.

Definition 5.4. A function p : T → R is said to be regressive on T if 1 +
μ(t)p(t) �= 0 for all t ∈ T.

Let p be regressive and t0 ∈ T. Then we define the exponential function
of p at t0 by

ep(t, t0) = exp

⎛

⎝
t∫

t0

ξμ(t)(p(τ))Δτ

⎞

⎠ , t ∈ T.

It is easy to see that ep(t, t0) > 0 on T for any t0 ∈ T if 1 + μ(t)p(t) > 0
on T. Moreover, for any Δ-differentiable function f and any t0 ∈ T, we have
that

[ep(t, t0)f(t)]Δ = ep(t, t0)[fΔ(t) + p(t)fσ(t)].
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