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For the Chaplygin’s nonholonomic constrained systems, the constraint manifold
can be endowed with Riemann–Cartan geometric structure by nonholonomic map-
ping into a Riemann manifold. The two kinds of existing dynamics, nonholonomic
dynamics and vakonomic dynamics, are compared in the framework of Riemann–
Cartan geometry. It is proved that the equations of motion for nonholonomic and
vakonomic dynamics are described by the equations of autoparallel and geodesic
trajectories on the Riemann–Cartan constraint manifold, respectively. If the metric-
ity condition of Riemann–Cartan connection is satisfied, the torsionscontorsiond of
the Riemann–Cartan manifold characterizes the difference between the autoparallel
and geodesic trajectories as well as the distinction between the nonholonomic and
vakonomic equations. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1928708g

I. INTRODUCTION

Constrained systems are common dynamical systems in modern physics, mechanics and
engineering,1–13 which can be classified into holonomic and nonholonomic ones according to the
Frobenius integrability condition of constraints the systems are subject to. Unlike a holonomic
system, a nonholonomic system cannot be reduced to a free system with lower degrees of freedom
in general. Furthermore, there exist two inequivalent dynamical theories on nonholonomic con-
strained systems. One is based on Hamilton’s principle of lease action. Similar to treating holo-
nomic constrained systems, the constraints are directly incorporated into LagrangianL→L
+lafa with la being Lagrange multipliers treated as independent dynamical variables. The dy-
namical equations derived from the theory can be canonicalized since such a way to incorporate
constraints into a dynamical description does not influence on the symplectic structure of phase
space of the systems. This dynamics is usually referred to as vakonomic dynamicssvariational
axiomatic kindd.14,15The other is based on d’Alembert–Lagrange principlesor Hölder’s principle,
Gauss’s principled satisfying the condition of ideal constraints. Chetaev’s condition on variation of
coordinates induced from the nonholonomic constraints is utilized to realize the ideal constraints.
Such a theory is not canonically Lagrangian or Hamiltonian, and is called nonholonomic
dynamics.1,11 The above two dynamics are equivalent for holonomic systems.

The paradox that different dynamics can be derived from the same nonholonomic constrained
system just because of beginning with different acknowledged principles makes nonholonomic

adElectronic mail: guoyongxin@lnu.edu.cn

JOURNAL OF MATHEMATICAL PHYSICS46, 062902s2005d

46, 062902-10022-2488/2005/46~6!/062902/10/$22.50 © 2005 American Institute of Physics

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.120.242.61 On: Thu, 27 Nov 2014 15:13:35

http://dx.doi.org/10.1063/1.1928708


constrained systems and their relating theories become a focus of research and disputation.16–19

Therefore, it has been an important work to compare the two dynamics of nonholonomic systems.
In this paper, nonholonomic dynamics of Chaplygin’s linear constrained systems20 is com-

pared with the corresponding vakonomic dynamics in the framework of Riemann–Cartan
geometry.21,22In Sec. II, we briefly review the method to construct a Riemann–Cartan manifold by
using a nonholonomic mapping23–28 from a Riemann manifold. In Sec. III, the calculus of non-
holonomic variations is discussed on the manifold. The nonholonomic variations are classified into
three kinds. In Sec. IV, the two kinds of equations of motion, nonholonomic and vakonomic, for
linear nonholonomic constrained systems are proved to describe the autoparallel and geodesic
trajectories on the manifold, respectively. Some simple examples are illustrated in Sec. V ended
with a concluding remark. The Einstein’s summation convention is used throughout this paper and
i, j =1,2,… ,n; m, n, s, r, l, t=1,2,… ,m; a, b=m+1, m+2,… ,n.

II. RIEMANN–CARTAN CONSTRAINT MANIFOLD

A general system is usually subject to two kinds of constraints, the holonomic and the non-
holonomic. Suppose that the configuration space of the system isn-dimensional Riemann mani-
fold Q with local coordinateshqij after the holonomic constraints are reduced. The metric tensor
field on manifoldQ is defined by the Hessian of nondegenerate LagrangianL. The configuration
space can be further deformed into Riemann–Cartan manifold with both curvature and torsion by
the nonholonomic constraints imposed.

Suppose the system is subject tosn−md linear nonholonomic constraints:

q̇a = «m
asqndq̇m, s1d

wherehq̇m ,q̇aj are generalized velocities of the system. These constraints are suitable to charac-
terize most linear constrained systems. The systems subjected to such constraints are called Chap-
lygin’s nonholonomic constrained systems.

A m-dimensional constraint manifoldM with local coordinateshqmj can be constructed by the
constraint equationss1d. As a subspace of Riemann manifoldQ, however, the constraint manifold
M is not its invariant embedded submanifold since the vector fields on the constraint manifoldM
are not involutive due to anholonomy of the constraintss1d. Nevertheless, the tangent space of the
constraint manifoldM can be embedded into the tangent space of Riemann manifoldQ by a
nonholonomic mappingiT:TM→TQ:

vi = «m
i sqndvm, vm [ TqM , s2d

induced by the constraintss1d, where«m
i =«m

a if i takesa=m+1,m+2,… ,n; «m
i =dm

n if i takesn
=1,2,… ,m. This mapping can induce a nonholonomic mappingiq:

qiscqd =E
cq

«m
i sqddqm s3d

from the equivalence classkqmstdl of all paths on manifoldM to that on manifoldQ, wherecq

denotes any pathqmstd on manifoldM. The integrals can be classified according to the end points
of pathscqstd if the same initial point of the integrals is fixed, i.e., each point ofcqstd corresponds
to an equivalence class of integralsqiscqstdd. hqiscqstddj can be recognized as pseudo-coordinates on
manifold M. If the constraints are integrable, the above-noted integrals are independent of paths
on M and qiscqstdd reduce toqistd, the function of end pointt of path cqstd. Then pathqmstd[M
corresponds to pathqistd[Q pointwise, i.e.,qi =qisqmd.

It can be verified that the metric and connection on manifoldM can be induced from the
nonholonomic mappingss2d and s3d in the same way as in Ref. 23 by generalizing the Euclid
space taken as auxiliary space to the Riemann manifoldQ. First, the metricgij on Riemann
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manifold Q induces the metricgmn on manifoldM. According to the mappings2d, ui =«m
i um, v j

=«n
j vn, for ui,v j [TiqsqdQ andum,vn[TqM. Thensu,vd=giju

iv j =gij«m
i «n

j umvn=s«m ,«ndumvn. There-
fore, the induced metric on manifoldM is

gmn = s«m,«nd = gij«m
i «n

j . s4d

Second, the mappingss2d and s3d induce a connection on manifoldM,

Gmn
s = gsrs«r,]m«nd = gsrgij«r

i ]m«n
j . s5d

It is easy to verify the metricity condition of the connection, i.e., compatible condition of the
connection with metric,Dmgns=0, which makes the length of a vector invariant while parallel-
transporting it along a path on manifoldM. But the connection is asymmetric, i.e.,Gnm

s ÞGmn
s ,

whose antisymmetric part is named torsion of the connection:

Smn
s = Gfmng

s = 1
2sGmn

s − Gnm
s d = 1

2gsrgij«r
i s]m«n

j − ]n«m
j d. s6d

Obviously,Snm
s =0 if the integrability condition of constraints,]m«n

j −]n«m
j =0, is satisfied.

Such an asymmetric connection compatible with metric is referred to as Riemann–Cartan
connection. The constraint manifoldM is then a Riemann–Cartan manifold with torsionSmn

s and
curvature

Rmn
rt = 1

2grlgtsgijsfml
i fns

j − fnl
i fms

j d, s7d

where

fmn
i = Dm«n

i = ]m«n
i − Gmn

s «s
i . s8d

On the Riemann–Cartan constraint manifoldM there exist two kinds of special curves, geo-
desic and autoparallel trajectories, as follows:

q̈m + Ḡns
m q̇nq̇s = 0, s9ad

q̈m + Gns
m q̇nq̇s = 0, s9bd

whereḠns
m = 1

2gmls]sgnl+]ngsl−]lgnsd is Riemann–Christoffel connection. It can be proved in the
following that the difference of shortness from straightness on Riemann–Cartan manifold can
geometrically characterize the “inexplicable” deviation of vakonomic dynamics from nonholo-
nomic dynamics.

III. NONHOLONOMIC VARIATIONS ON RIEMANN–CARTAN CONSTRAINT MANIFOLD

Let cq and c̄q be smooth curves connecting any two fixed pointsq1
i andq2

i on n-dimensional
Riemann manifoldQ. Consider a functionqist ,ad[C2 of two parameters, satisfyingqist ,0d
=qistd, qist ,1d= q̄istd; qist1,ad=q1

i , qist2,ad=q2
i . Denote the differential along any path by dqm

=]tq
ist ,addt8vidt while the variation of the path is denoted bydqi =]aqist ,adda8wida with

fixed ends condition

udqiut1,2
= 0, uwiut1,2

= 0. s10d

The vector fieldwisqjd[TqQ is called variation vector field on manifoldQ. As in Ref. 23, denote
dv and dw the derivative along vector fieldsv andw, respectively. The above-noted definition leads
to the following commutation relation of differential and variational operations:

dwvi − dvw
i = 0, s11d

which simply determine the variation of velocity. To define a variation it is necessary to specify
the variation of velocity as well as the variation vector field.

062902-3 Nonholonomic versus vakonomic dynamics J. Math. Phys. 46, 062902 ~2005!
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A variation vector fieldwmsqnd[TqM can also be defined on manifoldM with torsion. The
commutation relations11d on Riemann manifoldQ, however, cannot be simply transplanted to the
constraint manifoldM. Relations11d leads to

dwsvi − «m
i vmd + s]m«r

i − ]r«m
i dvrwm + «m

i sdwvm − dvw
md − dvswi − «m

i wmd = 0. s12d

Let «i
m8gmngij«n

j with «i
m«n

i =dn
m; «i

m«m
j =di

j. Using this condition and the connection coefficientss5d
obtained in last section, we are led to

]r«m
i = «s

i Grm
s , ]r«i

m = − «i
nGrn

m . s13d

By the definitions6d, it follows that

s]m«r
i − ]r«m

i d = 2«s
i Smr

s . s14d

Therefore relations12d can be transformed into

dwsvi − «m
i vmd + «m

i sdwvm − dvw
md − dvswi − «m

i wmd = 2«s
i Srm

s vrwm. s15d

Because of the existence of torsion tensorSrm
s the variation vector field on the constraint manifold

M cannot satisfy the following conditions simultaneously:

dvswi − «m
i wmd = 0, s16ad

dwvm − dvw
m = 0, s16bd

dwsvi − «m
i vmd = 0, s16cd

which means that unlike the case of holonomic systems, there does not exist a free variation on the
manifold M. The unfree variation vector fieldw and the corresponding differential dw are named
nonholonomic variations. The first condition imposed on the variation of coordinates is induced
from the constraints and is called Chetaev’s condition. The second is the commutation relation of
differential and variational operations which leads to the existence of smooth local coordinate net
formed by the integral curves of vector fieldsvm andwm. The third condition is an invariance of
constraint conditions with respect to the variation operation, making the variation of velocities be
unfree.

According to relations15d, the nonholonomic variation can be classified into the following
three kinds.

s1d Hölder’s variation. Choose the first two relations from the last equations, i.e.,

dvswh
i − «m

i wh
md = 0, dwh

vm − dvwh
m = 0. s17d

It follows from s15d that

dwh
svi − «m

i vmd = 2«s
i Srm

s vrwh
m, s18d

which indicates how the constraint conditions vary with respect to Hölder’s variation due to the
torsion of manifoldM.

s2d Suslov’s variation. Suppose that

dvsws
i − «m

i ws
md = 0, dws

svi − «m
i vmd = 0. s19d

It leads from the relations15d to

062902-4 Guo et al. J. Math. Phys. 46, 062902 ~2005!

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.120.242.61 On: Thu, 27 Nov 2014 15:13:35



dws
vs − dvws

s = 2Srm
s vrws

m, s20d

which means that Suslov’s variation does not commute with differentiation of coordinates. Making
use of covariant differentiation,

Dvws
s = dvws

s + Grm
s vrws

m, Dws
vs = dws

vs + Grm
s ws

rvm. s21d

The variation of velocityvs can be specified by

Dvws
s − Dws

vs = 0. s22d

s3d Vakonomic variation. Let

dwv
vm − dvwv

m = 0, dwv
svi − «m

i vmd = 0. s23d

Then it is referred froms15d that the Chetaev’s conditions cannot be satisfied and are replaced with
corresponding conditions

dvswv
i − «m

i wv
md = 2«s

i Smr
s vrwv

m. s24d

It should be pointed that all the three kinds of variations satisfy the fixed ends conditions

uwmut1 = uwmut2 = 0. s25d

IV. NONHOLONOMIC VERSUS VAKONOMIC EQUATIONS ON CONSTRAINT
MANIFOLD

We apply Suslov’s variation and vakonomic variation to variational principle to get two kinds
of dynamical equations for the Chaplygin’s nonholonomic constrained systems.

First, we make use of Suslov’s variation to check the recently discovered stationary action
principle25

dws
S= dwsE

t1

t2

Lsqm,vmddt = 0. s26d

Computing the variation directly and making use of the above variation conditions20d and fixed
ends conditionss25d, one can derive the equations of motion

]L
]qm − dvS ]L

]vmD = 2Smn
r

]L
]vrvn, s27d

which describes nonholonomic dynamics on the constraint manifoldM.
We concern the geometric property of nonholonomic equationss27d. Substitute L

= 1
2gmnsqdvmvn into Eq. s27d, then

gmnv̇
n + sḠmnr − 2Srnmdvrvn = 0, s28d

where Srnm=grlSnm
l , Ḡmnr=gmlḠnr

l and Ḡnr
l is Christoffel symbols. Considering the geometric

relation

Ḡmnr − 2Srnm = gmlGnr
l s29d

and lift the indexm, then

062902-5 Nonholonomic versus vakonomic dynamics J. Math. Phys. 46, 062902 ~2005!
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Dvv
l = v̇l + Gnr

l vrvn = 0. s30d

Thus it can be seen that the equations of motion for nonholonomic dynamics describe the auto-
parallels of Riemann–Cartan constraint manifoldM.

Second, apply the vakonomic variation to the action on the manifoldM, the stationary action
principle

dwv
S= dwvE

t1

t2

Lsqm,vmddt = 0 s31d

simply leads to vakonomic equations

dvS ]L
]vmD −

]L
]qm = 0. s32d

In fact, it is Euler–Lagrange equations. SubstituteL= 1
2gmnsqdvmvn into Eq. s32d, then

D̄vv
l = v̇l + Ḡnr

l vrvn = 0, s33d

which are the geodesic equations on Riemann–Cartan constraint manifoldM. In the following we
verify that the geodesic equationss33d are just a geometrical representation of vakonomic equa-
tions for Chaplygin’s nonholonomic constrained systems in Riemann–Cartan constraint manifold.

Let L be a Lagrangian of a dynamical system on the Riemann manifoldQ. Rewrite sn−md
nonholonomic constraintss1d the system is subject to as follows:

fa = va − «m
avm = 0. s34d

Based on Hamilton’s principle of least action, the vakonomic equations

fLgi = − laffagi − dvslad
] fa

]vi s35d

can be derived by the method of Lagrange multipliers. Using the notationsli =di
ala, f i =vi

−«m
i vm=0 in order to map the equations onto the constraint manifoldM conveniently, the vako-

nomic equations are then equivalent to

fLgi = − l jff jgi − dvl j
] f j

]vi . s36d

It can be derived by simple computation:

] f j

]vi = di
j − di

m«m
j ,

] f j

]qi = − di
n«s

j Gnm
s vm, ff jgi = 2di

n«s
j Smn

s vn. s37d

Substitute it into the vakonomic equations, then

fLgi = − 2di
nl j«s

j Smn
s vn + dvli + dvl j«m

j di
m. s38d

Supposing the LagrangianL on Riemann manifoldQ is independent of coordinatesqa and ne-
glecting any integral constants, the Lagrange multipliers can be found out from the above equa-
tions

li = − «i
m ]L

]vm , dvli = − «i
mDvS ]L

]vmD s39d

along with the reduction of vakonomic equations onto the constraint manifoldM:
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fLgm = 2Smn
s vn ]L

]vs − DvS ]L

]vmD . s40d

For a mechanical system,L= 1
2gmnvmvn, the above equations can be transformed into

gmnD̄vv
n + gmnDvv

n = 2gnsSmr
n vrvs. s41d

Expand further, then

2gmnD̄vv
n + sKmrs − Ssmrdvrvs = 0, s42d

whereKmrs=gmnKrs
n =gmnsGrs

n −Ḡrs
n d, Ssmr=gnsSmr

n . Substitute the geometric relation

Kmrs − Ssmr = Krms = − Ksmr s43d

into the above equation, we finally obtain Eq.s33d, a geodesic representation of vakonomic
equations on the constraint manifoldM.

Remark 1:We have not applied Hölder’s variation to the action because the result is the same
as that of the vakonomic variation if we did for the particular action, which does not imply that
Hölder’s variation cannot give any new result for general nonholonomic systems.

Remark 2:On the Riemann–Cartan manifoldM satisfying the metricity of connection the
autoparallel trajectories will coincide with the geodesic ones if the torsion vanishes. In this case
the nonholonomic equations also coincide with the vakonomic ones. However, it does not mean
that the constraints are integrable in the sense of Frobenius theorem although inverse proposition
is certainly true. This fact will be illustrated by example 3 of Sec. V.

V. ILLUSTRATIVE EXAMPLES

Now we are going to show by the following simple examples how the interrelation between
the nonholonomic and vakonomic equations can be geometrically characterized on a Riemann–
Cartan manifold.

Example 1:We illustrate the above result by the following example of a nonholonomically
constrained particle with the LagrangianL= 1

2sẋ2+ ẏ2+ ż2d and the nonholonomic constraintż=yẋ.
By means of the usual method, the nonholonomic and vakonomic equations are given by

ẍ +
yẋẏ

1 + y2 = 0, ÿ = 0, s44ad

ẍ +
2yẋẏ

1 + y2 = 0, ÿ − yẋ2 = 0, s44bd

respectively. We will illustrate that they describe autoparallel and geodesic trajectories on a two-
dimensional Riemann–Cartan constraint manifoldM with local coordinatessx,yd.

Let x,y; ẋ,ẏ play the role of theqm, q̇m andz,ż the role of theqa, q̇a in our discussion of the
general theory. Obviously,i,j =1,2,3;m,n=1,2; a=3 and

«1
1 = 1,«2

1 = 0,«1
2 = 0,«2

2 = 1; «1
3 = y,«2

3 = 0.

The metricgmn andgmn take the form

sgmnd = S1 + y2 0

0 1
D, sgmnd = S 1

1+y2 0

0 1
D .

The nonvanishing coefficients of the corresponding Christoffel symbols are given by

062902-7 Nonholonomic versus vakonomic dynamics J. Math. Phys. 46, 062902 ~2005!
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Ḡ11
2 = − y, Ḡ12

1 = Ḡ21
1 =

y

1 + y2 .

Then the geodesic equations on the manifoldM,

q̈1 + 2Ḡ12
1 q̇1q̇2 = 0, q̈2 + Ḡ11

2 q̇1q̇1 = 0,

take the form of vakonomic equationss44bd after a replacement ofq1,q2 with x,y.
It can be verified that the only one nonvanishing coefficient of Riemann–Cartan connection on

the manifoldM is

G21
1 =

y

1 + y2 .

Then the autoparallel equations

q̈1 + G21
1 q̇2q̇1 = 0, q̈2 = 0

are simply the nonholonomic equationss44ad if the coordinatesq1,q2 are replaced withx,y.
Example 2: A special Chaplygin sleigh. Let us consider the free motion of a sleigh on a

horizontal plane in the case when the projection of the center of mass coincides with the point of
contact of a sharp wheel and the plane. We suppose the simplified sleigh has unit mass and unit
moment of inertia inR23T1 with coordinatessx,y,wd, subjected to the nonholonomic constraint
ẏ= ẋ tanw. Then the regular Lagrangian is given byL= 1

2sẋ2+ ẏ2+ẇ2d.
We discuss the two kinds of differential equations on the Riemann–Cartan submanifoldM of

R23T1 in the following. As is well known, the reduced nonholonomic and vakonomic equations
for the system onM are given by

ẍ + ẋẇ tanw = 0, ẅ = 0, s45ad

ẍ + 2ẋẇ tanw = 0, ẅ − ẋ2 tanw sec2 w = 0, s45bd

respectively.
Take i, j =1,2,3;m,n=1,2; a=3. Denoteqm,q̇m by x,w; ẋ,ẇ andqa,q̇a by y,ẏ. Obviously,

«1
1 = 1,«2

1 = 0,«1
2 = 0,«2

2 = 1; «1
3 = tanw,«2

3 = 0.

The metricgmn andgmn take the form

sgmnd = Ssec2w 0

0 1
D, sgmnd = Scos2w 0

0 1
D .

Then the nonvanishing coefficients of the corresponding Christoffel symbols are given by

Ḡ11
2 = − tanw sec2 w, Ḡ12

1 = Ḡ21
1 = tanw.

The Riemann–Cartan connection is simple to compute with only one nonvanishing coefficient

G21
1 = tanw.

It is very easy to verify that the following autoparallel and geodesic equations,

ẍ + G21
1 ẇẋ = 0, ẅ = 0,

062902-8 Guo et al. J. Math. Phys. 46, 062902 ~2005!
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ẍ + 2G12
1 ẋẇ = 0, ẅ + G11

2 ẋẋ = 0,

are just the nonholonomic and vakonomic equationss45ad ands45bd, respectively, by substituting
the above nonvanishing connection coefficients into them.

Example 3: Consider the problem of a vertically rolling disk which is another paradigm of
nonholonomic systems. Choose the following appropriate generalized coordinates: the coordinates
sx,yd of the center of mass of the disk, the azimuthal anglec which determines the position of the
disk, and anglef describing its internal rotation.

Setting the mass of the disk equal to 1 for simplicity, the Lagrangian is given byL= 1
2sẋ2

+ ẏ2d+ 1
2sI1ḟ2+ I2ċ2d where I1 and I2 are moments of inertia. This regular Lagrangian leads to

Hessian metricgij with nonvanishing diagonal elements:g11= I1, g22= I2, g33=1, g44=1. The non-
holonomic constraints are given by the condition of rolling without slipping

ẋ = sRcoscdḟ, ẏ = sRsincdḟ,

whereR is the radius of the disk. Following the usual procedure for setting up the nonholonomic
and vakonomic equations, we can consider the two kinds of equations of motion as the same and
simply read

sR2 + I1df̈ = 0, I2c̈ = 0. s46d

Making use of the following notational identifications:sq1,q2,q3,q4d=sf ,c ;x,yd, the above
constraints leads to

«1
1 = 1,«2

1 = «1
2 = 0,«2

2 = 1; «1
3 = Rcosc,«2

3 = 0,«1
4 = Rsinc,«2

4 = 0

from which the metrics are given by

sgmnd = SR2 + I1 0

0 I2
D, sgmnd = S 1

R2+I1
0

0
1
I2

D .

It is straightforward to compute in the same way as the above examples that all of the coefficients
of Riemann–Christoffel and Riemann–Cartan connections vanish,

Ḡns
m = 0, Gns

m = 0 sm,n,s = 1,2d,

which means that the autoparallel coincides with the geodesic and satisfies the same equations

f̈ = 0, c̈ = 0.

They are equivalent to Eq.s46d.
This example indicates that similar to the autoparallel and geodesic, the difference between

nonholonomic and vakonomic dynamics for Chaplygin’s nonholonomic constrained systems is
determined by the torsion of the corresponding Riemann–Cartan constraint manifold. The integra-
bility of the constraints is an efficient but not a necessary condition for the coincidence of the two
dynamics.

Concluding remark.If a system is subject to Chaplygin’s nonholonomic constraints, its con-
figuration space is no longer a Riemann manifold but a Riemann–Cartan manifold with torsion, on
which the free variation operation does not exist. The stationary action principles on the constraint
manifold with respect to Suslov’s variation and vakonomic variation lead to autoparallel equations
and geodesic equations on the manifold, respectively. This result accords with principle of inertia
and principle of control theory.

Similar to the geometrization of gravitational fields in general relativity and gravitational
gauge theories, a system subject to Chaplygin’s nonholonomic constraints in an Euclidean or a
Riemann space is equivalent to a free system in a Riemann–Cartan space. By means of this
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geometrization the seeming inconsistency between nonholonomic and vakonomic dynamics can
be replaced by harmonious geometric relations: straightness and shortness on the same Riemann–
Cartan manifold. The result are applicable to most autonomous nonholonomic constrained sys-
tems, which can be generalized to nonautonomous ones by means of the theory of connection on
a contact manifold or a one-jet bundle in the forthcoming contribution.
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