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For the Chaplygin's nonholonomic constrained systems, the constraint manifold
can be endowed with Riemann—Cartan geometric structure by nonholonomic map-
ping into a Riemann manifold. The two kinds of existing dynamics, nonholonomic
dynamics and vakonomic dynamics, are compared in the framework of Riemann—
Cartan geometry. It is proved that the equations of motion for nonholonomic and
vakonomic dynamics are described by the equations of autoparallel and geodesic
trajectories on the Riemann—Cartan constraint manifold, respectively. If the metric-
ity condition of Riemann—Cartan connection is satisfied, the tor@ontorsion of

the Riemann—Cartan manifold characterizes the difference between the autoparallel
and geodesic trajectories as well as the distinction between the nonholonomic and
vakonomic equations. @005 American Institute of Physics.

[DOI: 10.1063/1.1928708

I. INTRODUCTION

Constrained systems are common dynamical systems in modern physics, mechanics and
engineering;®which can be classified into holonomic and nonholonomic ones according to the
Frobenius integrability condition of constraints the systems are subject to. Unlike a holonomic
system, a nonholonomic system cannot be reduced to a free system with lower degrees of freedom
in general. Furthermore, there exist two inequivalent dynamical theories on nonholonomic con-
strained systems. One is based on Hamilton’s principle of lease action. Similar to treating holo-
nomic constrained systems, the constraints are directly incorporated into Lagrdngidn
+\ef, with \* being Lagrange multipliers treated as independent dynamical variables. The dy-
namical equations derived from the theory can be canonicalized since such a way to incorporate
constraints into a dynamical description does not influence on the symplectic structure of phase
space of the systems. This dynamics is usually referred to as vakonomic dyr(@ariesional
axiomatic kind.****The other is based on d’Alembert—Lagrange principleHslder’s principle,
Gauss's principlesatisfying the condition of ideal constraints. Chetaev’s condition on variation of
coordinates induced from the nonholonomic constraints is utilized to realize the ideal constraints.
Such a theory is not canonically Lagrangian or Hamiltonian, and is called nonholonomic
dynamicsl.'ll The above two dynamics are equivalent for holonomic systems.

The paradox that different dynamics can be derived from the same nonholonomic constrained
system just because of beginning with different acknowledged principles makes nonholonomic
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constrained systems and their relating theories become a focus of research and dispttation.
Therefore, it has been an important work to compare the two dynamics of nonholonomic systems.
In this paper, nonholonomic dynamics of Chaplygin’s linear constrained sfé’tézmeom—
pared with the corresponding vakonomic dynamics in the framework of Riemann—Cartan
geometr)?.l’zzln Sec. Il, we briefly review the method to construct a Riemann—Cartan manifold by
using a nonholonomic mappi?ﬁjzsfrom a Riemann manifold. In Sec. lll, the calculus of non-
holonomic variations is discussed on the manifold. The nonholonomic variations are classified into
three kinds. In Sec. IV, the two kinds of equations of motion, nonholonomic and vakonomic, for
linear nonholonomic constrained systems are proved to describe the autoparallel and geodesic
trajectories on the manifold, respectively. Some simple examples are illustrated in Sec. V ended
with a concluding remark. The Einstein’'s summation convention is used throughout this paper and
i,j=1,2,....,n; w, v, o, p, \, =1,2,....m; @, B=mM+1, m+2,...,n.

II. RIEMANN—-CARTAN CONSTRAINT MANIFOLD

A general system is usually subject to two kinds of constraints, the holonomic and the non-
holonomic. Suppose that the configuration space of the systertdiimensional Riemann mani-
fold Q with local coordinategq’} after the holonomic constraints are reduced. The metric tensor
field on manifoldQ is defined by the Hessian of nhondegenerate Lagrarngidrne configuration
space can be further deformed into Riemann—Cartan manifold with both curvature and torsion by
the nonholonomic constraints imposed.

Suppose the system is subject(to-m) linear nonholonomic constraints:

4 = e%(a)a, (1)
where{g*,q*} are generalized velocities of the system. These constraints are suitable to charac-
terize most linear constrained systems. The systems subjected to such constraints are called Chap-
lygin’s nonholonomic constrained systems.

A m-dimensional constraint manifold with local coordinate$g*} can be constructed by the
constraint equationél). As a subspace of Riemann manif@x however, the constraint manifold
M is not its invariant embedded submanifold since the vector fields on the constraint maifold
are not involutive due to anholonomy of the constraiijs Nevertheless, the tangent space of the
constraint manifoldM can be embedded into the tangent space of Riemann margfdig a
nonholonomic mapping;: TM—TQ:

v'= g, ()", v* ETM, (2)

induced by the constrain{d), Wheresiﬂ:sz if i takesa=m+1,m+2,...,n; siM:&; if i takesv
=1,2,...,m. This mapping can induce a nonholonomic mapgipg

q'(cy = f &), (a)do (3)
Cq

from the equivalence clagg/“(t)) of all paths on manifoldV to that on manifoldQ, wherec,
denotes any patf(t) on manifoldM. The integrals can be classified according to the end points
of pathscy, if the same initial point of the integrals is fixed, i.e., each pointgf corresponds
to an equivalence class of integrqiscq(t)). {q‘(cq(t))} can be recognized as pseudo-coordinates on
manifold M. If the constraints are integrable, the above-noted integrals are independent of paths
on M and qi(cq(t)) reduce toq'(t), the function of end point of path Cq- Then pathg“(t) M
corresponds to patty(t) € Q pointwise, i.e.g'=q'(g).

It can be verified that the metric and connection on manifdiccan be induced from the
nonholonomic mapping&2) and (3) in the same way as in Ref. 23 by generalizing the Euclid
space taken as auxiliary space to the Riemann manildrirst, the metricg; on Riemann
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manifold Q induces the metrig,, on manifoldM. According to the mapping2), u=¢ u“, vl
=elp?, foru €T, q)Q andu“,p”€ TgM. Then(u,v)= g”UUJ gije,ev"=(g, 8, ) U0". There—
fore the induced metrlc on mamfohzl is

g,u.l/: (8/1,181/) = g”SLLS]V (4)
Second, the mapping®) and(3) induce a connection on manifold,

= go-p(spa I/) gapglj SPO')MSV (5)

It is easy to verify the metricity condition of the connection, i.e., compatible condition of the
connection with metricp,g,,=0, which makes the length of a vector invariant while parallel-
transporting it along a path on manifold. But the connection is asymmetric, i.&:), #I';,,
whose antisymmetric part is named torsion of the connection:

S, =17,,= 30, T9,) = 500, (d,¢, — d,el). (6)
Obviously,S], =0 if the integrability condition of constraints, s}, -4,e!,=0, is satisfied.

Such an asymmetric connection compatible with metric is referred to as Riemann—Cartan
connection. The constraint manifoM is then a Riemann—Cartan manifold with torsigfy, and

curvature

RPT = gp}\gm-glj(f/ﬂ\ vo fiv)\fiur)’ (7)
where
fi —Ds—&s—rfw'{, (8)

On the Riemann—Cartan constraint manifddthere exist two kinds of special curves, geo-
desic and autoparallel trajectories, as follows:

¢+ TE g'q =0, (9a)

4“+17,9"9” =0, (9b)

wherel“’;gz%gm(&ggmwygﬂ—axgw) is Riemann—Christoffel connection. It can be proved in the
following that the difference of shortness from straightness on Riemann—Cartan manifold can
geometrically characterize the “inexplicable” deviation of vakonomic dynamics from nonholo-
nomic dynamics.

III. NONHOLONOMIC VARIATIONS ON RIEMANN—-CARTAN CONSTRAINT MANIFOLD

Let cq andc, be smooth curves connecting any two fixed ponﬂltand q2 on n-dimensional
Riemann manifoldQ. Consider a functlorq (t,a) €C? of two parameters, satisfying'(t,0)
—q(t) qi(t,1)= q(t) q'(ty,@)=d}, q'(t,,@)=q,. Denote the differential along any path by“d
=a,q'(t, @)dt=v'dt while the variation of the path is denoted g =d,q(t,@)da=wda with
fixed ends condition

&y, ,=0, Wl ,=0. (10)

The vector fieldw (gf) €T4Q is called variation vector field on manifol@. As in Ref. 23, denote
d, and d, the derivative along vector fieldsandw, respectively. The above-noted definition leads
to the following commutation relation of differential and variational operations:

do' - dw =0, (1)

which simply determine the variation of velocity. To define a variation it is necessary to specify
the variation of velocity as well as the variation vector field.
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A variation vector fieldw“(gq") €T4M can also be defined on manifoM with torsion. The
commutation relatiori11) on Riemann manifol®@, however, cannot be simply transplanted to the
constraint manifoldM. Relation(11) leads to

do(v' = £,v") + (d,), = 3,8, )UWH + &), (Aot = d, W) = d, (W = &}, w*) = 0. (12)
Let ef'=g*’g;e), with &f'e!,= 8%; &/, = 8. Using this condition and the connection coefficiefsis
obtained in last section, we are led to
&ps'M = SIUF:,TM, dpel'=- si”l—‘gv. (13
By the definition(6), it follows that

(ﬂﬂsip - ﬂpsiu) = ZsiUSZp. (14)
Therefore relatio(12) can be transformed into
dy(v' = g,v") + &), (A ~ d,WH) — d, (W ~ &,WH) = 26, ], vPWH. (15)

Because of the existence of torsion tensg)[the variation vector field on the constraint manifold
M cannot satisfy the following conditions simultaneously:

d,(w -e,w") =0, (163
dyv* = dywH = 0, (16b)
dy(v' - siuv") =0, (160

which means that unlike the case of holonomic systems, there does not exist a free variation on the
manifold M. The unfree variation vector fielt and the corresponding differentia), @re named
nonholonomic variations. The first condition imposed on the variation of coordinates is induced
from the constraints and is called Chetaev’s condition. The second is the commutation relation of
differential and variational operations which leads to the existence of smooth local coordinate net
formed by the integral curves of vector fieldd andw*. The third condition is an invariance of
constraint conditions with respect to the variation operation, making the variation of velocities be
unfree.

According to relation(15), the nonholonomic variation can be classified into the following
three kinds.

(1) Holder’s variation. Choose the first two relations from the last equations, i.e.,

d, (W, — &, W) =0, d,v*~d,w;=0. (17
It follows from (15) that
dy, (v' - el o) = 2¢,S) VW, (18)

which indicates how the constraint conditions vary with respect to Holder’s variation due to the
torsion of manifoldM.
(2) Suslov’s variation. Suppose that
d,(Ws=g,we) =0, d, (' -&,0") =0. (19)

It leads from the relatiorf15) to
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dy 07 = d,Wg = 2] vwg, (20

which means that Suslov’s variation does not commute with differentiation of coordinates. Making
use of covariant differentiation,

D,wg =d,wg +I') v’Wg, Dy 07 =dy v+ I wev”. (21)

put's

The variation of velocity? can be specified by

D,W{ - D, 07 =0. (22)

(3) Vakonomic variation. Let

Ay, 0~ dW, =0, d, (' -e),0") =0. (23)

Then it is referred fronil15) that the Chetaev’s conditions cannot be satisfied and are replaced with
corresponding conditions

d, (W, - e,W) = 2¢,S] v W (24)

It should be pointed that all the three kinds of variations satisfy the fixed ends conditions

wH, = w =0. (25)

IV. NONHOLONOMIC VERSUS VAKONOMIC EQUATIONS ON CONSTRAINT
MANIFOLD

We apply Suslov’s variation and vakonomic variation to variational principle to get two kinds
of dynamical equations for the Chaplygin’s nhonholonomic constrained systems.

First, we make use of Suslov’s variation to check the recently discovered stationary action
prlnC|pIe2

o
dw S= dWJ L(g*,v*)dt=0. (26)
ty
Computing the variation directly and making use of the above variation cond2@rand fixed
ends condition$25), one can derive the equations of motion

MY auP

aL aL oL
—-d| —]=2% v”, (27)
aqr dv*

which describes nonholonomic dynamics on the constraint manifold

We concern the geometric property of nonholonomic equatié®d. Substitute £
=30,,(@v*v” into Eq. (27), then

"+ (T = 25

an

v’ =0, (28
whefe Spm:gpxsﬁﬂ, przgmﬂp and Fﬁp is Christoffel symbols. Considering the geometric
relation

T — \

F,qu - 2Spvp, - g,u)\ryp (29)

and lift the indexu, then
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D" =v*+ T vPv"=0. (30)

Thus it can be seen that the equations of motion for nonholonomic dynamics describe the auto-
parallels of Riemann—Cartan constraint maniftMd

Second, apply the vakonomic variation to the action on the maniqlthe stationary action
principle

t
L(g*,v¥)dt=0 (31

1

A, 5=y, J
t

simply leads to vakonomic equations

aL aL
d|—)-—=0. (32
vt/ g*

In fact, it is Euler—Lagrange equations. Substitﬂte%gw(q)vﬂuV into Eq. (32), then

va}‘=i))‘+ﬁjpv”v”= 0, (33

which are the geodesic equations on Riemann—Cartan constraint mavifddthe following we

verify that the geodesic equatiof33) are just a geometrical representation of vakonomic equa-

tions for Chaplygin’s nonholonomic constrained systems in Riemann—Cartan constraint manifold.
Let L be a Lagrangian of a dynamical system on the Riemann marn@olRewrite (n—m)

nonholonomic constraintdl) the system is subject to as follows:

f“:v”‘—s;':v”“zo. (34)

Based on Hamilton’s principle of least action, the vakonomic equations

af¢

[L]I == )\a[fa]i - dv()\a)_i (35)
Jv

can be derived by the method of Lagrange multipliers. Using the notadpns’\,, fil=y!
—szuv“=0 in order to map the equations onto the constraint manifbldonveniently, the vako-

nomic equations are then equivalent to

[L] ==\ ], —duxjg—lf}ji. (36)
It can be derived by simple computation:
o d-grel, Th=-aelrnen, (0= 28el50" @
Substitute it into the vakonomic equations, then
[L]i= = 28\jel,S,v" + d,\; + d,\je), 8. (39

Supposing the Lagrangidn on Riemann manifold is independent of coordinateg’ and ne-
glecting any integral constants, the Lagrange multipliers can be found out from the above equa-
tions

aL dL
)\i = - S’M_, dv)\i = - SiU'DU( ) (39)

dvt

along with the reduction of vakonomic equations onto the constraint mariold
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[L], = 27,0 —Dv<$). (40)

wregu” ™

For a mechanical system,:%ng“v”, the above equations can be transformed into

04D + 8,,D,0" = 20,8070 (41)
Expand further, then

20,,D,0" + (K, = Sy, )0 0" =0, (42)

upo

whereKMpU:gWK;U:gW(FZU—FZG), Ssup=910S,,- Substitute the geometric relation

Kipor— S

ppo ™ Soup = Kppo ==K (43

oup

into the above equation, we finally obtain E@3), a geodesic representation of vakonomic
equations on the constraint manifaldl.

Remark 1We have not applied Holder’s variation to the action because the result is the same
as that of the vakonomic variation if we did for the particular action, which does not imply that
Holder’s variation cannot give any new result for general nonholonomic systems.

Remark 2:0n the Riemann—Cartan manifod satisfying the metricity of connection the
autoparallel trajectories will coincide with the geodesic ones if the torsion vanishes. In this case
the nonholonomic equations also coincide with the vakonomic ones. However, it does not mean
that the constraints are integrable in the sense of Frobenius theorem although inverse proposition
is certainly true. This fact will be illustrated by example 3 of Sec. V.

V. ILLUSTRATIVE EXAMPLES

Now we are going to show by the following simple examples how the interrelation between
the nonholonomic and vakonomic equations can be geometrically characterized on a Riemann—
Cartan manifold.

Example 1:We illustrate the above result by the following example of a nonholonomically
constrained particle with the Lagrangihn%(k2+y2+'zz) and the nonholonomic constraiptyx.

By means of the usual method, the nonholonomic and vakonomic equations are given by

LYY

x+1+y2—0, y=0, (449
g+ DY 0 yoye=o (44b)

1+y2 L L

respectively. We will illustrate that they describe autoparallel and geodesic trajectories on a two-
dimensional Riemann—Cartan constraint manifeldvith local coordinategx,y).
Let x,y; X,y play the role of theg#, g* andzz the role of theq®, g% in our discussion of the
general theory. Obviously,j=1,2,3; u,v=1,2; «=3 and
e1=1,6=0,e2=0,65=1; &l=y,e3=0.
The metricg,,, andg*” take the form
1+y? o) 0
= vy = [ 14y
(g,w)(0 1) (9" (0 1)

The nonvanishing coefficients of the corresponding Christoffel symbols are given by
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oy TLefio Y
11 -y 1271217 +y?

Then the geodesic equations on the manifdid

q +21—~1q1q2_ , q +F2qlql_

take the form of vakonomic equatio44b) after a replacement af',g? with x,y.
It can be verified that the only one nonvanishing coefficient of Riemann—Cartan connection on
the manifoldM is

y
1+y?

F%lz
Then the autoparallel equations

G +To0%" =0, =0

are simply the nonholonomic equatiot#a if the coordinatesy!,g° are replaced witlx,y.

Example 2 A special Chaplygin sleigh. Let us consider the free motion of a sleigh on a
horizontal plane in the case when the projection of the center of mass coincides with the point of
contact of a sharp wheel and the plane. We suppose the simplified sleigh has unit mass and unit
moment of inertia inR? X T with coordinategx,y, ¢), subjected to the nonholonomic constraint
y=X tang. Then the regular Lagrangian is given by 5(x+y2+&?).

We discuss the two kinds of differential equations on the Riemann—Cartan submavifafid
R?x T in the following. As is well known, the reduced nonholonomic and vakonomic equations
for the system oM are given by

X+xptang=0, $=0, (458

X+2xptang=0, @-x°tang seé =0, (45b)
respectively.
Takei, j=1,2,3; u,v=1,2; «=3. Denoteg,g* by x,¢; X, andg®,q® by y,y. Obviously,
=1 82—0 81 0 82: 1; gfztan(p,s;’:O.

The metricg,,,, andg*” take the form

_ [seée 0) , _(co§<p 0)
(g,u.v)_< 0 1 ’ (g#)_ O 1 .

Then the nonvanishing coefficients of the corresponding Christoffel symbols are given by

If=-tangseéy, I},=1%=tang.

The Riemann—Cartan connection is simple to compute with only one nonvanishing coefficient

I3, =tane.

It is very easy to verify that the following autoparallel and geodesic equations,

X+T3,0x=0, =0,
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X+ 2l xp=0, $+T4xx=0,
are just the nonholonomic and vakonomic equati@s and(45b), respectively, by substituting
the above nonvanishing connection coefficients into them.

Example 3 Consider the problem of a vertically rolling disk which is another paradigm of
nonholonomic systems. Choose the following appropriate generalized coordinates: the coordinates
(x,y) of the center of mass of the disk, the azimuthal anfglehich determines the position of the
disk, and anglep describing its internal rotation.

Setting the mass of the disk equal to 1 for simplicity, the Lagrangian is givehzlzé(x2
+y2)+§(|1¢2+|2¢2) wherel,; and |, are moments of inertia. This regular Lagrangian leads to
Hessian metrig; with nonvanishing diagonal elementg; =14, g25=15, 933=1, gs4=1. The non-
holonomic constraints are given by the condition of rolling without slipping

x=(Rcosy)¢, y=(Rsiny)¢,
whereR is the radius of the disk. Following the usual procedure for setting up the nonholonomic
and vakonomic equations, we can consider the two kinds of equations of motion as the same and
simply read
(RR+1)$=0, 1,¢=0. (46)

Making use of the following notational identificationsy*,9?,q%,a%) =(¢, ¥;X,y), the above
constraints leads to

8%= 1,8%=Si=0,8§= 1; 832 RCOSlﬁ,sg: 0,8‘11= Rsin lﬂ,{;‘g: 0

from which the metrics are given by

R+ O) . RZ]-;-Il 0
(g;w)_( 0o 1) (g")—( 0 1)'

I2

It is straightforward to compute in the same way as the above examples that all of the coefficients
of Riemann—Christoffel and Riemann—Cartan connections vanish,

FI:JLO':O! Fl:U:O (IU”V’U:]"Z)’

which means that the autoparallel coincides with the geodesic and satisfies the same equations

$=0, ¢=0.

They are equivalent to E446).

This example indicates that similar to the autoparallel and geodesic, the difference between
nonholonomic and vakonomic dynamics for Chaplygin’s nonholonomic constrained systems is
determined by the torsion of the corresponding Riemann—Cartan constraint manifold. The integra-
bility of the constraints is an efficient but not a necessary condition for the coincidence of the two
dynamics.

Concluding remark.If a system is subject to Chaplygin’s nonholonomic constraints, its con-
figuration space is no longer a Riemann manifold but a Riemann—Cartan manifold with torsion, on
which the free variation operation does not exist. The stationary action principles on the constraint
manifold with respect to Suslov’s variation and vakonomic variation lead to autoparallel equations
and geodesic equations on the manifold, respectively. This result accords with principle of inertia
and principle of control theory.

Similar to the geometrization of gravitational fields in general relativity and gravitational
gauge theories, a system subject to Chaplygin’s nonholonomic constraints in an Euclidean or a
Riemann space is equivalent to a free system in a Riemann—Cartan space. By means of this
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geometrization the seeming inconsistency between nonholonomic and vakonomic dynamics can
be replaced by harmonious geometric relations: straightness and shortness on the same Riemann—
Cartan manifold. The result are applicable to most autonomous nonholonomic constrained sys-
tems, which can be generalized to nonautonomous ones by means of the theory of connection on
a contact manifold or a one-jet bundle in the forthcoming contribution.
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