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Abstract Using the convex functions on Grassmannian manifolds, the authors obtain the
interior estimates for the mean curvature flow of higher codimension. Confinable properties
of Gauss images under the mean curvature flow have been obtained, which reveal that if
the Gauss image of the initial submanifold is contained in a certain sublevel set of the
v-function, then all the Gauss images of the submanifolds under the mean curvature flow
are also contained in the same sublevel set of the v-function. Under such restrictions,
curvature estimates in terms of v-function composed with the Gauss map can be carried
out.
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1 Introduction

For a hypersurface, there are support functions which play an important role in the hyper-
surface investigation. This technique would also be used for a general submanifold in Euclidean
space. We can define generalized support functions related to the generalized Gauss map whose
image is the Grassmannian manifold. The Plücker imbedding of the Grassmannian manifold
into Euclidean space gives us the “height function” w on the Grassmanian manifold.

In the case of positive “height function”, we can define the function v = w−1 on an open
subset U in the Grassmannian manifold. Now, the key issue is the estimates of Hessian of
v-function. In our previous paper [18], a quite accurate lower bound of the Hess(v) has been
given. The estimates also give the corresponding convex region of the function.

In the previous work of the first author with Jost [6], the largest geodesic convex set BJX

in the Grassmannian manifold was found. It is interesting to note that the convex region of
the v-function is just BJX. Based on it, we can define auxiliary functions which enable us to
carry out the Schoen-Simon-Yau type curvature estimates and Ecker-Huisken type curvature
estimates for minimal submanifolds in higher codimension (see [18]), and for submanifolds with
prescribed Gauss image and mean curvature (see [17]).

Now, we continue to explore applications of those convex functions on the Grassmannian
manifolds to other related problems.

We consider the deformation of a complete submanifold in R
m+n under the mean curvature

flow. For codimension one case, there are many deep results given by Ecker-Huisken [4, 5, 7, 8].
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In recent years, considerable attention has been paid to higher codimensional mean curvature
flow (see [1–3, 9–12]). In previous papers, we studied mean curvature flow with convex Gauss
image (see [16]) and curvature estimates for minimal submanifolds (see [19]). Some results in [4]
has been generalized to higher codimension. Now, the convex v-function on the Grassmannian
manifold can be used in the interior estimates for mean curvature flow in higher codimension
and some results in [5] can be generalized to the higher codimensional situation.

We obtain the confinable properties (see Theorem 4.1). This is an interesting feature which
tells us that if the Gauss image of the initial submanifold is contained in a certain sublevel
set of the v-function, then all the Gauss images of the submanifolds under the MCF are also
contained in the same sublevel set of the v-function. In particular, if the initial submanifold
is an entire graph, then the graphic situation is always remained under the MCF. Moreover,
v-function composed with Gauss map is just the volume element. If its value is less than 2
initially, then their values are always less than 2 under the MCF.

Under such restrictions, we can carry out the curvature estimates under the MCF (see
Theorems 5.1 and 5.2) in terms of ṽ = v ◦ γ with the Gauss map γ.

2 Convex Functions on Grassmannian Manifolds

Let R
m+n be an (m+ n)-dimensional Euclidean space. All oriented n-subspaces constitute

the Grassmannian manifold Gn,m.
Fix P0 ∈ Gn,m in the sequel, which is expressed by a unit n-vector ε1 ∧ · · · ∧ εn. For any

P ∈ Gn,m, expressed by an n-vector e1 ∧ · · · ∧ en, we define an important function on Gn,m,

w
def.= 〈P, P0〉 = 〈e1 ∧ · · · ∧ en, ε1 ∧ · · · ∧ εn〉 = detW,

where W = (〈ei, εj〉).
Denote

U = {P ∈ Gn,m : w(P ) > 0}.
Let {εn+α} be m vectors such that {εi, εn+α} form an orthornormal basis of R

m+n. Then we
can span arbitrary P ∈ U by n vectors fi,

fi = εi + ziαεn+α,

where Z = (ziα) are the local coordinates of P in U. Here and in the sequel we use the
summation convention and agree the range of indices:

1 ≤ i, j ≤ n, 1 ≤ α, β ≤ m.

The Jordan angles between P and P0 are defined by

θα = arccos(λα),

where λα ≥ 0 and λ2
α are the eigenvalues of the symmetric matrix WTW . On U we can define

v = w−1.

Then it is easily seen that

v(P ) = [det(In + ZZT)]
1
2 =

m∏
α=1

sec θα.
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The canonical metric on Gn,m in the local coordinates can be described as (see [14, Chapter
VII])

g = tr((In + ZZT)−1dZ(Im + ZTZ)−1dZT). (2.1)

Let Eiα be the matrix with 1 in the intersection of row i and column α and 0 otherwise.
Denote giα,jβ = 〈Eiα, Ejβ〉 and let (giα,jβ) be the inverse matrix of (giα,jβ). Then

(1 + λ2
i )

1
2 (1 + λ2

α)
1
2Eiα

form an orthonormal basis of TPGn,m, where λα = tan θα. Denote its dual basis in T ∗
PGn,m

by ωiα.
A lengthy computation yields (see [18])

Hess(v)P =
∑

m+1≤i≤n
α

vω2
iα +

∑
α

(1 + λ2
α)vω2

αα + v−1dv ⊗ dv

+
∑
α<β

[
(1 + λαλβ)v

(√
2

2
(ωαβ + ωβα)

)2

+ (1 − λαλβ)v
(√

2
2

(ωαβ − ωβα)
)2]

. (2.2)

Define

BJX(P0) =
{
P ∈ U : sum of any two Jordan angles between P and P0 <

π

2

}
.

This is a geodesic convex set, larger than the geodesic ball of radius
√

2
4 π and centered at P0.

This was found in a previous work of Jost-Xin [6]. For any real number a, let Va = {P ∈
Gn,m, v(P ) < a}. From [6, Theorem 3.2], we know that

V2 ⊂ BJX and V2 ∩BJX = ∅.
Hess(v)P is positive definite if and only if θα+θβ <

π
2 for arbitrary α = β, i.e., P ∈ BJX(P0).

From (2.2), it is easy to get an estimate

Hess(v) ≥ v(2 − v)g + v−1dv ⊗ dv, on V2.

For later applications, the above estimate is not accurate enough. Using the radial compen-
sation technique, the estimate could be refined.

Theorem 2.1 (see [18]) v is a convex function on BJX(P0) ⊂ U ⊂ Gn,m, and

Hess(v) ≥ v(2 − v)g +
( v − 1

pv(v
2
p − 1)

+
p+ 1
pv

)
dv ⊗ dv

on V2, where g is the metric tensor on Gn,m and p = min(n,m).

Remark 2.1 For any a ≤ 2, the sub-level set Va is a convex set in Gn,m.

Remark 2.2 The sectional curvature varies in [0, 2] under the canonical Riemannian metric
on Gn,m. By the standard Hessian comparison theorem, we have

Hess(ρ) ≥
√

2 cot(
√

2 ρ)(g − dρ⊗ dρ),

where ρ is the distance function from a fixed point in Gn,m.
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3 Evolution Equations

Let M be a complete n-submanifold in R
m+n. Consider the deformation of M under the

mean curvature flow, i.e., there exists a one-parameter family Ft = F ( · , t) of immersions
Ft : M → R

m+n with corresponding images Mt = Ft(M) such that

d
dt
F (x, t) = H(x, t), x ∈M,

F (x, 0) = F (x),
(3.1)

where H(x, t) is the mean curvature vector of Mt at F (x, t).
From equation (3.1), it is easily known that

( d
dt

− Δ
)
|F |2 = −2n. (3.2)

Let B denote the second fundamental form of Mt in R
m+n. It satisfies the evolution equa-

tion.

Lemma 3.1 (see [16, Lemma 3.1])
( d

dt
− Δ

)
|B|2 ≤ −2|∇|B||2 + 3|B|4. (3.3)

The Gauss map γ : M → Gn,m is defined by

γ(x) = TxM ∈ Gn,m

via the parallel translation in R
m+n for all x ∈ M . The Gauss map under the MCF satisfies

the following relation.

Proposition 3.1 (see [12])
dγ
dt

= τ(γ(t)), (3.4)

where τ(γ(t)) is the tension fields of the Gauss map γ(t) from Mt.

Let h : V → R be a smooth function defined on an open subset V ⊂ Gn,m and denote
h̃ = h ◦ γ. Then

dh̃
dt

=
d(h ◦ γ)

dt
= dh(τ(γ)).

On the other hand, by the composition formula,

Δh̃ = Δ(h ◦ γ) = Hess(h)(γ∗ei, γ∗ei) ◦ γ + dh(τ(γ)),

where {ei} is a local orthonormal frame field on Mt. Then we derive
( d

dt
− Δ

)
h̃ = −Hess(h)(γ∗ei, γ∗ei) ◦ γ. (3.5)

4 Confinable Properties

Now, we consider the convex Gauss image situation which is preserved under the flow, so
called confinable property.

Let r : R
n+m × R → R be a smooth, nonnegative function, such that for any R > 0,

M t,R = {x ∈Mt : r(x, t) ≤ R2}
is compact.
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Lemma 4.1 Assume that r satisfies ( d
dt − Δ)r ≥ 0. Let R > 0, such that γ(M0,R) ⊂ V ⊂

Gn,m. Define ϕ = R2−r and ϕ+ denotes the positive part of ϕ. h : V → R is a smooth positive
function such that

Hess(h) ≥ Ch−1dh⊗ dh (4.1)

with C ≥ 3
2 . Then we have the estimate

h̃ϕ2
+ ≤ sup

M0,R

h̃ϕ2
+,

where h̃ = h ◦ γ.
Proof Denote η = ϕ2

+. Then at an arbitrary interior point of the support of ϕ+, we have

η′ ≤ 0, η−1(η′)2 = 4, and η′′ = 2, (4.2)

where ′ denotes differentiation with respect to r. By (4.1) and (3.5), we have
( d

dt
− Δ

)
h̃ ≤ −Ch̃−1|∇h̃|2 (4.3)

and moreover( d
dt

− Δ
)
(h̃η) =

( d
dt

− Δ
)
h̃ · η + h̃

( d
dt

− Δ
)
η − 2∇h̃ · ∇η

≤ −Ch̃−1|∇h̃|2η + h̃
(
η′

( d
dt

− Δ
)
r − η′′|∇r|2

)
− 2∇h̃ · ∇η

≤ −Ch̃−1|∇h̃|2η − 2h̃|∇r|2 − 2∇h̃ · ∇η. (4.4)

Observe

−2∇h̃ · ∇η = (2C − 2)∇h̃ · ∇η − 2C∇h̃ · ∇η
= (2C − 2)η−1(∇(h̃η) − h̃∇η) · ∇η − 2C∇h̃ · ∇η
≤ (2C − 2)η−1∇η · ∇(h̃η) − (2C − 2)h̃η−1|∇η|2 + Ch̃−1|∇h̃|2η + Ch̃η−1|∇η|2
= (2C − 2)η−1∇η · ∇(h̃η) + Ch̃−1|∇h̃|2η + (8 − 4C)h̃|∇r|2. (4.5)

Here (4.2) has been used. Substituting (4.5) into (4.4) gives
( d

dt
− Δ

)
(h̃η) ≤ (2C − 2)η−1∇η · ∇(h̃η) + (6 − 4C)h̃|∇r|2, (4.6)

on the support of ϕ+. The weak parabolic maximal principle then implies the result.

Lemma 4.2 Assume that r satisfies ( d
dt − Δ)r ≥ 0. If γ(Mt) ⊂ V for arbitrary t ∈

[0, T ] (T > 0), and h : V → R is a smooth positive function satisfying (4.1) with C ≥ 1, then
for arbitrary a ≥ 0, the following estimate holds:

sup
Mt

h̃(1 + r)−a ≤ sup
M0

h̃(1 + r)−a. (4.7)

Proof By ( d
dt − Δ)r ≥ 0,

( d
dt

− Δ
)
(1 + r)−a = −a(1 + r)−a−1

( d
dt

− Δ
)
r − a(a+ 1)(1 + r)−a−2|∇r|2

≤ −a(a+ 1)(1 + r)−a−2|∇r|2. (4.8)



Y. L. Xin and L. Yang

In conjunction with (4.3), we have

( d
dt

− Δ
)
[h̃(1 + r)−a]

≤ −Ch̃−1(1 + r)−a|∇h̃|2 − a(a+ 1)h̃(1 + r)−a−2|∇r|2 − 2∇h̃ · ∇(1 + r)−a

= −Ch̃−1(1 + r)−a|∇h̃|2 − a(a+ 1)h̃(1 + r)−a−2|∇r|2 + 2a∇h̃ · (1 + r)−a−1∇r. (4.9)

C ≥ 1 implies Ca(a+ 1) ≥ a2. Then by Young’s inequality,

( d
dt

− Δ
)
[h̃(1 + r)−a] ≤ 0.

Hence (4.7) follows from the maximal principle for parabolic equations on complete manifolds
(see [4]).

Theorem 4.1 If the initial submanifold is an entire graph over R
n, i.e., M0 = graph f0,

where f0 = (f1
0 , · · · , fm

0 ), fα
0 = fα

0 (x1, · · · , xn), and

Δf0 < 2,

where

Δf (x) =
[
det

(
δij +

∂fα

∂xi
(x)

∂fα

∂xj
(x)

)] 1
2
,

then the submanifolds under the MCF are still entire graphs over the same hyperplane, i.e.,
Mt = graph ft, and

Δft < 2.

Moreover, if (2 − Δf0)−1 has growth

(2 − Δf0)
−1(x) ≤ C0(|x|2 + 1)a,

where C0, a are both positive constants, then the growth of (2 − Δft)−1 can be controlled by

(2 − Δft)
−1 ≤ 2C0(|x|2 + 2nt+ 1)a.

Proof Define h = v
3
2 (2 − v)−

3
2 . Then on {P : v(P ) < 2}, we have (see [18, inequality

(4.6)])

Hess(h) = h′Hess(v) + h′′dv ⊗ dv ≥ 3hg +
3
2
h−1dh⊗ dh. (4.10)

Define r(x, t) = |F |2 + 2nt. Then ( d
dt − Δ)r = 0. Hence, the estimate in Lemma 4.1 holds.

For arbitrary x0 ∈ Mt0 , choose R > 0, such that r(x0, t0) < R2. Then ϕ+(x0, t0) > 0 and
Lemma 4.1 implies

h̃(x0, t0) ≤ 1
ϕ+(x0, t0)

sup
M0,R

h̃ϕ2
+ < +∞. (4.11)

Noting that h̃→ +∞ when v → 2−, we have v(x0, t0) < 2 and the first result follows.
For x ∈ R

n, it is not difficult to see that
( d

dt
− Δ

)
(|x|2 + 2nt) ≥ 0.

Now, we define r = |x|2 + 2nt and the second assertion easily follows from Lemma 4.2.
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Choose
h = sec2(

√
2 ρ)

and by the similar argument, we can improve the previous result of the first author [16] as
follows.

Theorem 4.2 If the Gauss image of the initial complete submanifold M0 is contained in
an open geodesic ball of the radius R0 ≤

√
2

4 π in Gm,n, then the Gauss images of all the
submanifolds under the MCF are also contained in the same geodesic ball. Moreover, if

(√
2

4
π − ρ

)−1

≤ C0(|F |2 + 1)a, on M0,

where ρ denotes the distance function on Gn,m from the center of the geodesic ball, and C0, a

are both positive constants. Then

(√
2

4
π − ρ

)−1

≤ 2C0(|F |2 + 2nt+ 1)a

for arbitrary a ≥ 0.

Let γ : M → R
4 be a surface. Let π1 : G2,2 → S2 be the projection of G2,2 into its first

factor, and π2 be the projection into the second factor. Define γi = πi ◦ γ. We also obtain that
if the partial Gauss image of an initial surface M in R

4 is contained in a hemisphere, then the
partial Gauss images of all the surfaces under MCF are in the same hemisphere.

5 Curvature Estimates

Let h : V → R be a smooth function defined on an open subset V ⊂ Gn,m, and h ≥ 1.
Suppose that Hess(h) is nonnegative definite on V and has the estimate

Hess(h) ≥ 3hg +
3
2
h−1dh⊗ dh, (5.1)

where g is the metric tensor on Gn,m. r is a smooth, non-negative function on R
n+m × R

satisfying ∣∣∣( d
dt

− Δ
)
r
∣∣∣ ≤ C(n) and |∇r|2 ≤ C(n)r. (5.2)

Theorem 5.1 Let R > 0 and T > 0 be such that for any x ∈ M t,R, where t ∈ [0, T ], we
have γ(x) ∈ V. Then for any t ∈ [0, T ] and θ ∈ [0, 1), we have the estimate

sup
x∈Mt,θR

|B|2 ≤ C(n)(1 − θ2)−2(t−1 +R−2) sup
x∈Ms,R,s∈[0,t]

h̃2, (5.3)

where h̃ = h ◦ γ.
The proof of Theorem 5.1 will be given later. At first, we will see several applications of it.
Let r = |x|2 for x ∈ R

n. Then

∣∣∣( d
dt

− Δ
)
r
∣∣∣ =

∣∣∣2xi
( d

dt
− Δ

)
xi − 2|∇xi|2

∣∣∣ ≤ 2n,

|∇r|2 = |2xi∇xi|2 = 4(xi)2|∇xi|2 ≤ 4r.

Hence Theorem 5.1 yields the following corollary.
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Corollary 5.1 Let R > 0 and T > 0 be such that for any t ∈ [0, T ], Mt∩((BR ⊂ R
n)×R

m)
is a graph over BR, i.e., Mt ∩ ((BR ⊂ R

n) × R
m) = {(x, ft(x)) : x ∈ BR}, and Δft < 2. Then

the following estimate holds for arbitrary t ∈ [0, T ] and θ ∈ [0, 1) :

sup
(x,ft(x))∈K(t,θR)

|B|2 ≤ C(n)(1 − θ2)−2(t−1 +R−2) sup
s∈[0,t]

sup
(x,fs(x))∈K(s,R)

(2 − Δfs)
−3,

where
K(s,R) = {(x, fs(x)) : x ∈ BR}.

Combining Corollary 5.1 and Theorem 4.1 yields the following corollary.

Corollary 5.2 If the initial submanifold is an entire graph over R
n, i.e., M0 = graph f0,

and Δf0 < 2, (2 − Δf0)−1 = o(|x|2a), then we have the estimate

sup
(x,ft(x))∈K(t,θR)

|B|2 ≤ C(n)(1 − θ2)−2(t−1 +R−2)(R2 + 2nt+ 1)3a,

where θ ∈ [0, 1) and the denotation of K( · , · ) is similar to that in Corollary 5.1.

Similarly, if
r = |x|2 + 2nt,

then it is easy to check that r satisfies (5.2). Applying Theorems 5.1 and 4.2, we have the
following corollary.

Corollary 5.3 Let R > 0 and T > 0 be such that for any t ∈ [0, T ], if x ∈ Mt satisfies
|F |2 + 2nt ≤ R2, then γ(x) lies in an open geodesic ball centered at a fixed point P0 of radius√

2
4 π in Gn,m. Then the following estimate holds for arbitrary t ∈ [0, T ] and θ ∈ [0, 1) :

sup
x∈K(t,θR)

|B|2 ≤ C(n)(1 − θ2)−2t−1 sup
0≤s≤t

sup
x∈K(s,R)

(√
2

4
π − ρ

)−3

,

where
K(s,R) = {x ∈Ms : |F |2 + 2ns ≤ R2}.

Corollary 5.4 If the Gauss image of the initial complete submanifold M0 is contained in
an open geodesic ball of radius

√
2

4 π in Gn,m, and (
√

2
4 π − ρ)−1 has growth

(√
2

4
π − ρ

)−1

= o(|F |2a),

then we have the estimate

sup
x∈K(t,θR)

|B|2 ≤ C(n)(1 − θ2)−2t−1(R2 + 1)3a,

where θ ∈ [0, 1) and the denotation of K( · , · ) is similar to that in Corollary 5.3.

Remark 5.1 When x ∈ K(t, θR),

2nt ≤ |F |2 + 2nt ≤ θ2R2 ≤ R2,

so
R−2 ≤ 1

2n
t−1.

Hence in the process of applying Theorem 5.1 to Corollary 5.3, t−1 +R−2 could be replaced by
t−1.
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Proof of Theorem 5.1 Let ϕ = ϕ(h̃) be a smooth nonnegative function of h̃ to be
determined later, and ′ denotes the derivative with respect to h̃. Then from (3.3), (3.5) and
(5.1), we have

( d
dt

− Δ
)
|B|2ϕ =

( d
dt

− Δ
)
|B|2 · ϕ+ |B|2

( d
dt

− Δ
)
ϕ− 2∇|B|2 · ∇ϕ

≤ (−2|∇|B||2 + 3|B|4)ϕ+ |B|2
(
ϕ′

( d
dt

− Δ
)
h̃− ϕ′′|∇h̃|2

)
− 2∇|B|2 · ∇ϕ

≤ (−2|∇|B||2 + 3|B|4)ϕ− |B|2ϕ′
(
3h̃|B|2 +

3
2
h̃−1|∇h̃|2

)

− |B|2ϕ′′|∇h̃|2 − 2∇|B|2 · ∇ϕ. (5.4)

The last term can be estimated by

−2∇|B|2 · ∇ϕ = −∇|B|2 · ∇ϕ−∇|B|2 · ∇ϕ
= −ϕ−1(∇(|B|2ϕ) − |B|2∇ϕ) · ∇ϕ− 2|B|∇|B| · ∇ϕ
≤ −ϕ−1∇ϕ · ∇(|B|2ϕ) + |B|2ϕ−1|∇ϕ|2 + 2|∇|B||2ϕ+

1
2
|B|2ϕ−1|∇ϕ|2

= −ϕ−1∇ϕ · ∇(|B|2ϕ) + 2|∇|B||2ϕ+
3
2
|B|2ϕ−1|∇ϕ|2. (5.5)

Substituting (5.5) into (5.4) gives
( d

dt
− Δ

)
|B|2ϕ ≤ −(3ϕ′h̃− 3ϕ)|B|4 −

(3
2
ϕ′h̃−1 + ϕ′′ − 3

2
ϕ−1(ϕ′)2

)
|B|2|∇h̃|2

− ϕ−1∇ϕ · ∇(|B|2ϕ). (5.6)

Now we let ϕ(h̃) = �h

1−k�h
, k ≥ 0 to be chosen. Then

3ϕ′h̃− 3ϕ = 3kϕ2, (5.7)
3
2
ϕ′h̃−1 + ϕ′′ − 3

2
ϕ−1(ϕ′)2 =

k

2h̃(1 − kh̃)2
ϕ, (5.8)

ϕ−1∇ϕ =
1

h̃(1 − kh̃)
∇h̃. (5.9)

Substituting these identities into (5.6), we derive for g = |B|2ϕ the inequality
( d

dt
− Δ

)
g ≤ −3kg2 − k

2h̃(1 − kh̃)2
|∇h̃|2g − 1

h̃(1 − kh̃)
∇h̃ · ∇g. (5.10)

As in Lemma 4.1, we define η = (R2 − r)2+. Then on the support of η,
( d

dt
− Δ

)
η = −2(R2 − r)

( d
dt

− Δ
)
r − 2|∇r|2

≤ 2C(n)R2 − 2|∇r|2

and ( d
dt

− Δ
)
gη =

( d
dt

− Δ
)
g · η + g

( d
dt

− Δ
)
η − 2∇g · ∇η

≤ −3kg2η − k

2h̃(1 − kh̃)2
|∇h̃|2gη − 1

h̃(1 − kh̃)
∇h̃ · ∇g · η

+ 2C(n)R2g − 2g|∇r|2 − 2∇g · ∇η, (5.11)
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where

−2∇g · ∇η = −2η−1∇η · ∇(gη) + 2gη−1|∇η|2
= −2η−1∇η · ∇(gη) + 8g|∇r|2 (5.12)

and

− 1

h̃(1 − kh̃)
∇h̃ · ∇g · η = − 1

h̃(1 − kh̃)
∇h̃ · ∇(gη) +

1

h̃(1 − kh̃)
∇h̃ · g∇η

≤ − 1

h̃(1 − kh̃)
∇h̃ · ∇(gη) +

k

2h̃(1 − kh̃)2
|∇h̃|2gη +

1

2kh̃
gη−1|∇η|2

= − 1

h̃(1 − kh̃)
∇h̃ · ∇(gη) +

k

2h̃(1 − kh̃)2
|∇h̃|2gη +

2

kh̃
g|∇r|2. (5.13)

Substituting (5.12) and (5.13) into (5.11) gives

( d
dt

− Δ
)
gη ≤ −3kg2η −

(
2η−1∇η +

1

h̃(1 − kh̃)
∇h̃

)
· ∇(gη)

+ C(n)
[(

1 +
1

kh̃

)
r +R2

]
g. (5.14)

Furthermore,

( d
dt

− Δ
)
(tgη) ≤ −3ktg2η −

(
2η−1∇η +

1

h̃(1 − kh̃)
∇h̃

)
· ∇(tgη)

+ C(n)
[(

1 +
1

kh̃

)
r +R2

]
tg + gη. (5.15)

Denote
m(T ) = sup

0≤t≤T
sup
Mt,R

tgη = t0g(x0, t0)η(x0, t0).

Then t0 > 0, r(x0, t0) < R2 and hence

( d
dt

− Δ
)
(tgη) ≥ 0, ∇(tgη) = 0

at (x0, t0). (5.15) implies

3kt0g2η ≤ C(n)
[(

1 +
1

kh̃

)
r +R2

]
t0g + gη.

Multiplying by t0η
3k yields

m(T )2 ≤ C(n)
3k

(
1 +

1

kh̃

)
R2t20gη +

t0gη
2

3k

≤ C(n)
3k

((
1 +

1

kh̃

)
R2T + η

)
m(T ).

By η = (R2 − r)2+ ≤ R4, we arrive at

gηT ≤ m(T ) ≤ C(n)
3k

((
1 +

1

kh̃

)
R2T +R4

)
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in MT,R. Now let

k =
1
2

inf
x∈Mt,R

t∈[0,T ]

h̃−1. (5.16)

Since ϕ = �h

1−k�h
≥ 1

1−k ≥ 1 (by h̃ ≥ 1) and η ≥ (1 − θ2)2R4 in MT,θR, we have

sup
x∈MT,θR

|B|2 ≤ C(n)(1 − θ2)−2(T−1 +R−2) sup
t∈[0,T ]

sup
x∈Mt,R

h̃2, (5.17)

and finally (5.3) follows from replacing T by t and replacing t by s in (5.17).

Substituting ϕ = h̃ into (5.6) gives
( d

dt
− Δ

)
|B|2h̃ ≤ −h̃−1∇h̃ · ∇(|B|2h̃).

Using the parabolic maximum principle for complete manifolds in [4], we have

Corollary 5.5 Let M be a complete n-submanifold in R
m+n with bounded curvature. Then

sup
Mt

|B|2h̃ ≤ sup
M0

|B|2h̃.

Remark 5.2 When V is a geodesic ball of radius ρ0 <
√

2
4 π, we can choose h = sec2(

√
2 ρ).

So the above estimate is an improvement of [16, Theorem 4.2].

Furthermore, we can give the a priori estimates for |∇mB|2 by induction.

Theorem 5.2 The denotation and assumption are similar to those in Theorem 5.1. Then
for arbitrary m ≥ 0, θ ∈ [0, 1) and t ∈ [0, T ], we have the estimate

sup
x∈Mt,θR

|∇mB|2 ≤ cm(R−2 + t−1)m+1,

where cm = cm

(
θ, n, sup

Ms,R

s∈[0,t]

h̃
)
.

Proof We proceed by induction onm. The casem = 0 has been established by Theorem 5.1.
Now we suppose the inequality holds for 0 ≤ k ≤ m− 1. Denote ψ(t) = (R−2 + t−1)−1 = R2t

R2+t .
We will estimate the upper bound of ψm+1|∇mB|2 on MT,θR for fixed θ ∈ [0, 1).

By computing, we have
( d

dt
− Δ

)
ψm+1|∇mB|2 ≤ −2ψm+1|∇m+1B|2 +

( d
dt
ψm+1

)
|∇mB|2

+ C(m,n)ψm+1
∑

i≤j≤k
i+j+k=m

|∇iB||∇jB||∇kB||∇mB|. (5.18)

By the inductive assumption, we get

sup
x∈M

t, 1+θ
2 R

ψk+1|∇kB|2 ≤ ck

for every 0 ≤ k ≤ m− 1 and t ∈ [0, T ], where

ck = ck

(
θ, n, sup

x∈Mt,R

t∈[0,T ]

h̃
)
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(note that ck depends on 1+θ
2 , which only depends on θ ∈ [0, 1)), which implies |∇iB| ≤

c
1
2
i ψ

− i+1
2 , |∇jB| ≤ c

1
2
j ψ

− j+1
2 . Moreover,

ψm+1
∑

i≤j≤k
i+j+k=m

|∇iB||∇jB||∇kB||∇mB| ≤ C
∑

i≤j≤k
i+j+k=m

ψ
k+m

2 |∇kB||∇mB|

≤ C
∑
k≤m

ψk|∇kB|2. (5.19)

On the other hand, there holds

d
dt
ψm+1 = (m+ 1)ψm R4

(R2 + t)2
≤ (m+ 1)ψm. (5.20)

Substituting (5.19) and (5.20) into (5.18) gives
( d

dt
− Δ

)
ψm+1|∇mB|2 ≤ −2ψm+1|∇m+1B|2 + C

∑
k≤m

ψk|∇kB|2 (5.21)

on M t, 1+θ
2 R for arbitrary t ∈ [0, T ], where C = C

(
θ, n, sup

x∈Mt,R

t∈[0,T ]

h̃
)
. Now we define f =

ψm+1|∇mB|2(Λ + ψm|∇m−1B|2), where Λ > 0 to be chosen later. By computation, we have
( d

dt
− Δ

)
f ≤ −2ψm+1|∇m+1B|2(Λ + ψm|∇m−1B|2) + C

∑
k≤m

ψk|∇kB|2(Λ + ψm|∇m−1B|2)

− 2ψ2m+1|∇mB|4 + C
∑

k≤m−1

ψk|∇kB|2ψm+1|∇mB|2

− 2ψ2m+1∇|∇mB|2 · ∇|∇m−1B|2, (5.22)

where the last term can be estimated by

− 2ψ2m+1∇|∇mB|2 · ∇|∇m−1B|2
= −8ψ2m+1|∇mB|∇|∇mB| · |∇m−1B|∇|∇m−1B|

≤ 2ψm+1|∇m+1B|2(Λ + ψm|∇m−1B|2) + 8ψ2m+1|∇mB|4 ψm|∇m−1B|2
Λ + ψm|∇m−1B|2

≤ 2ψm+1|∇m+1B|2(Λ + ψm|∇m−1B|2) +
8cm−1

Λ + cm−1
ψ2m+1|∇mB|4. (5.23)

Hence we derive ( d
dt

− Δ
)
f ≤ −

(
2 − 8cm−1

Λ + cm−1

)
ψ−1(ψm+1|∇mB|2)2

+ Cψ−1
( ∑

k≤m

ψk+1|∇kB|2(Λ + ψm|∇m−1B|2)

+
∑

k≤m−1

ψk+1|∇kB|2ψm+1|∇mB|2
)
. (5.24)

Now let Λ = 7cm−1 + 1. Then
( d

dt
− Δ

)
f ≤ −ψ−1(Λ + ψm|∇m−1B|2)−2f2 + Cψ−1(1 + f).
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By Young’s inequality, we have

Cf ≤ 1
2
(Λ + ψm|∇m−1B|2)−2f2 +

1
2
C2(Λ + ψm|∇m−1B|2)2

≤ 1
2
(Λ + ψm|∇m−1B|2)−2f2 +

1
2
C2(8cm−1 + 1)2.

Hence we have ( d
dt

− Δ
)
f ≤ −ψ−1(δf2 − C), (5.25)

where

δ =
(C(8cm−1 + 1)2 − 1)2

2(8cm−1 + 1)2
> 0

and C is a positive constant depending on n, m and sup
Mt,R

t∈[0,T ]

h̃.

Now let ϕ = (1+θ
2 R)2 − r and η = (ϕ+)2. Then η is a nonnegative function which vanishes

outside M t, 1+θ
2 R. Similarly to (5.11), we can derive

( d
dt

− Δ
)
fη ≤ ψ−1(δf2 − C)η + C(n)R2f − 2η−1∇η · ∇(fη) (5.26)

on M t, 1+θ
2 R. Denote m(T ) = max

0≤t≤T
max

x∈M
t,

1+θ
2 R

fη = fη(x0, t0). We have

f2η ≤ 1
δ
(Cη + C(n)R2fψ).

Multiplying by η and using η ≤ R4, ψ ≤ R2, we have

f2η2 ≤ 1
δ
(Cη2 + C(n)R2fηψ) ≤ 1

δ
(CR8 + C(n)R4fη)

≤ 1
δ

(
CR8 +

δ

2
f2η2 +

C(n)2R8

2δ

)
,

i.e., m(T )2 = f2η2 ≤ CR8, and

sup
0≤t≤T

sup
x∈M

t, 1+θ
2 R

fη ≤ CR4,

where C = C
(
θ, n,m, sup

Mt,R

t∈[0,T ]

h̃
)
.

Finally, since η = ((1+θ
2 R)2 − (θR)2)2 = 1+2θ−3θ2

4 R4 on MT,R and Λ + ψm|∇m−1B| ≥
7cm−1 + 1, we have

sup
x∈MT,θR

ψm+1|∇mB| ≤ cm

(
θ, n, sup

x∈Mt,R

t∈[0,T ]

h̃
)
. (5.27)

Then the conclusion follows from replacing T by t and replacing t by s.
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