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Abstract. We are concerned with the singularly perturbed Boussinesq-type

equation including the singularly perturbed sixth-order Boussinesq equation,

which describes the bi-directional propagation of small amplitude and long
capillary-gravity waves on the surface of shallow water for bond number (sur-

face tension parameter) less than but very close to 1/3. The existence and

uniqueness of the global generalized solution and the global classical solution
of the initial boundary value problem for the singularly perturbed Boussinesq-

type equation are proved.

1. Introduction. In the numerical study of the ill-posed Boussinesq equation

utt = uxx + (u2)xx + uxxxx, (1)

Daripa and Hua [2] proposed the singularly perturbed Boussinesq equation

utt = uxx + (u2)xx + uxxxx + δuxxxxxx (2)

as a dispersive regularization of the ill-posed classical Boussinesq equation (1), where
δ > 0 is small parameter. The authors use both filtering and regularization tech-
niques to control growth of the errors and to provide better approximate solutions
of this equation. Dash and Daripa [4] presented a formal derivation of equation
(2) from two-dimensional potential flow equations for water waves through an as-
ymptotic series expansion for small amplitude and long wave length. The physical
relevance of equation (2) in the context of water waves was also addressed in [4],
it was shown that equation (2) actually describes the bi-directional propagation of
small amplitude and long capillary-gravity waves on the surface of shallow water for
bond number (surface tension parameter) less than but very close to 1/3. On the ba-
sis of far-field analysis and heuristic arguments, Daripa and Dash [3] proved that the
traveling wave solutions of equations (2) are weakly non-local solitary waves char-
acterized by small amplitude fast oscillations in the far-field and obtained weakly
non-local solitary wave solutions of equation (2). Feng [5] investigated the general-
ized Boussinesq equation including the singularly perturbed Boussinesq equation

utt = [Q(u)]xx +

n∑
i=1

biu(2i+2)x, (3)
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where Q(u) = u + b0u
r, u(2i+2)x = ∂2i+2u

∂x2i+2 , r and bi (i = 1, 2, · · · , n) are all real
constants. It is easily seen that the choices b0 = 1, r = 2, n = 2, b1 = 1 and
b2 = δ lead equation (3) to the singularly perturbed Boussinesq equation (2). By
the means of two proper ansatzs, the author obtained explicit traveling solitary wave
solutions of the generalized Boussinesq equation (3). To our best knowledge, how-
ever, there have not been any discussion on global solutions of the initial boundary
value problem for the equation (2) in the literature.

It is well known that when δ = 0 equation (2) becomes the “bad” Boussinesq
equation which is ill-posed [7][8] due to the properties of the linear part that are
so “bad” that the traditional mathematical methods cease to be effective. So, one
can ask such a question, as a dispersive regularization of “bad” Boussinesq equation
(1), does the initial boundary value problem for the equation (2) admit any global
solutions? Furthermore, replacing nonlinear function u2 by the more extensive
nonlinear function σ(u) in equation (2), does the above-problem admit any global
solutions? In this paper, we consider the following generalized singularly perturbed
Boussinesq-type equation

utt = uxx + σ(u)xx + αux4 + βux6 , x ∈ Ω, t > 0, (4)

with the initial boundary value conditions

ux(0, t) = ux(1, t) = ux3(0, t) = ux3(1, t) = ux5(0, t) = ux5(1, t) = 0, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (5)

or with

u(0, t) = u(1, t) = uxx(0, t) = uxx(1, t) = ux4(0, t) = ux4(1, t) = 0, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (6)

where and in the sequel uxi = ∂iu
∂xi , σ(s) is a given nonlinear function, α > 0 and

β > 0 are real numbers, u0(x), u1(x) are given initial value functions, Ω = (0, 1).
By virtue of the Galerkin method and prior estimates, under the assumption “σ′(s)
is bounded below and σ(s) satisfies some smooth condition”, we prove that the
problem (4),(5) and (4),(6) admit a unique global generalized solution and a unique
global classical solution, respectively.

The paper is organized as follows. In Section 2, the main results are stated. The
existence and uniqueness of global generalized solution and global classical solution
of the problem (4),(5) and (4),(6) are proved in section 3.

2. Main theorems. Throughout this paper, we use the abbreviations ‖ · ‖ =
‖ · ‖L2(Ω). In the following we state the main results of this paper.

Theorem 2.1. Assume that u0 ∈ H6(Ω), u1 ∈ H3(Ω),
∫ 1

0
u0(x)dx =

∫ 1

0
u1(x)dx =

0, u0x2k+1(0, t) = u0x2k+1(1, t) = u1x2k+1(0, t) = u1x2k+1(1, t) = 0 (k = 0, 1, 2),
σ ∈ C5(R) and σ′(s) is bounded below, namely there exists a constant C0 such that
σ′(s) ≥ C0, for any s ∈ R. Then, for any T > 0 the initial boundary value problem
(4),(5) admits a unique global generalized solution u(x, t) with

u ∈ C([0, T ];H6(Ω)) ∩ C1([0, T ];H3(Ω)) ∩ C2([0, T ];L2(Ω)).

Theorem 2.2. Assume that the assumptions of Theorem 2.1 hold, u0 ∈ H10(Ω),
u1 ∈ H7(Ω), σ ∈ C9(R). Then, the initial boundary value problem (4),(5) admits
a unique global classical solution u(x, t).
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Theorem 2.3. Assume that u0 ∈ H6(Ω), u1 ∈ H3(Ω), u0x2k(0, t) = u0x2k(1, t) =
u1x2k(0, t) = u1x2k(1, t) = 0 (k = 0, 1, 2), σ ∈ C5(R), σ(2i)(0) = 0 (i = 1, 2) and
σ′(s) is bounded below. Then, for any T > 0 the initial boundary value problem
(4),(6) admits a unique global generalized solution u(x, t) with

u ∈ C([0, T ];H6(Ω)) ∩ C1([0, T ];H3(Ω)) ∩ C2([0, T ];L2(Ω)).

Theorem 2.4. Assume that the assumptions of Theorem 2.3 hold, u0 ∈ H10(Ω),
u1 ∈ H7(Ω), σ ∈ C9(R) and σ(2i)(0) = 0 (i = 3, 4). Then, the initial boundary
value problem (4),(6) admits a unique global classical solution u(x, t).

3. Global solution of the problem (4),(5) and (4),(6). We first discuss the
initial boundary value problem (4),(5).

Integrating both sides of Eq.(4) over (0,1) and using (5) and the assumption of

Theorem 2.1, we obtain
∫ 1

0
u(x, t)dx = 0, t ≥ 0. Let v(x, t) =

∫ x
0
u(ξ, t)dξ, then

u = vx and v satisfies

vtt = vxx + σ(vx)x + αvx4 + βvx6 , x ∈ Ω, t > 0, (7)

v(0, t) = v(1, t) = vxx(0, t) = vxx(1, t) = vx4(0, t) = vx4(1, t) = 0, t > 0, (8)

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ Ω, (9)

where v0(x) =
∫ x

0
u0(ξ)dξ, v1(x) =

∫ x
0
u1(ξ)dξ.

In the following, we first prove the initial boundary value problem (7)-(9) admits
a unique global generalized and classical solution. For this goal, we introduce an
orthogonal basis in L2(Ω). Let {wj(x)} be the orthogonal basis in L2(Ω) composed
of the eigenfunctions of the eigenvalue problem

w′′(x) + λw(x) = 0, x ∈ Ω, w(0) = w(1) = 0,

corresponding to eigenvalue λj (j = 1, 2, · · · ). And let vn(x, t) =
∑n
j=1 Tjn(t)wj(x)

be Galerkin approximate solution of the problem (7)-(9), where Tjn(t) (j = 1, · · · )
are functions to be determined, n is a nature number. Assume that the initial data
v0(x) and v1(x) can be expressed by

v0(x) =

∞∑
j=1

αjwj(x), v1(x) =

∞∑
j=1

βjwj(x),

where αj , βj (j = 1, 2, · · · ) are constants. Substituting the approximate solution
vn(x, t) into (7)-(9), we have

vntt = vnxx + σ(vnx )x + αvnx4 + βvnx6 , (10)

vn(0, t) = vn(1, t) = vnxx(0, t) = vnxx(1, t) = vnx4(0, t) = vnx4(1, t) = 0, (11)

vn(x, 0) = vn0 (x), vnt (x, 0) = vn1 (x). (12)

Multiplying both sides of (10) and (12) by wj(x),respectively, and integrating on
Ω, we obtain

(vntt − vnxx − αvnx4 − βvnx6 − σ(vnx )x, wj) = 0, (13)

Tjn(0) = αj , Ṫjn(0) = βj , j = 1, 2, · · · , n, (14)

where (·, ·) denotes the inner product of L2(Ω), and “ · ” denotes d
dt .

Lemma 3.1. (Adams[1]) There exist constants ε > 0 and C(ε) > 0 such that for
any integers j and m, 0 ≤ j ≤ m, the following inequality holds

‖Dj
xu(t)‖2 ≤ C(ε)‖u(t)‖2 + ε‖Dm

x u(t)‖2,
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Lemma 3.2. Assume that σ ∈ C1(R), σ′(s) is bounded below, v0 ∈ H3(Ω), v1 ∈
L2(Ω) and v0x2k(0) = v0x2k(1) = v1x2k(0) = v1x2k(1) = 0, (k = 0, 1, 2). Then
for any n, the Cauchy problem (13),(14) admits a global classical solution Tjn ∈
C2[0, T ] (j = 1, 2, · · · , n). Moreover, we have the following estimate

‖vn(t)‖2H3(Ω) + ‖vnt ‖2 ≤ C1(T ), t ∈ [0, T ], (15)

here and in the sequel Ci(T ) (i = 1, 2, · · · ) are constants depending on T but inde-
pendent of n.

Proof. Let

σ1(s) = σ(s)− k0s− σ(0), k0 = min{C0, 0} ≤ 0. (16)

(16) implies that σ1(s) is a monotonically increasing function, and thus
∫ s

0
σ1(τ)dτ ≥

0. By (16), we know that equation (13) is equivalent to the following system

(vntt − (1 + k0)vnxx − αvnx4 − βvnx6 − σ1(vnx )x, wj) = 0, j = 1, 2, · · · , n. (17)

Multiplying both sides of equation (17) by 2Ṫjn, summing up for j = 1, 2, · · · , n,
and integrating by parts, we obtain

d

dt

(
‖vnt (t)‖2 + (1 + k0)‖vnx (t)‖2 − α‖vnxx(t)‖2 + β‖vnxxx(t)‖2 + 2

∫
Ω

∫ vnx

0

σ1(s)dsdx
)

= 0. (18)

When k0 < −1, by virtue of Lemma 3.1, there is constants C1 > 0 and C2 > 0
such that

‖vnx (t)‖2 ≤ C1‖vn(t)‖2 − β

4(1 + k0)
‖vnxxx(t)‖2, t > 0, (19)

‖vnxx(t)‖2 ≤ C2‖vn(t)‖2 +
β

4α
‖vnxxx(t)‖2, t > 0. (20)

Adding 2[1 − C1(1 + k0) + C2α](vn, vnt ) to the both sides of (18), integrating the
product over [0, t], making use of (19),(20) and the Cauchy inequality, we get

‖vn(t)‖2 + ‖vnt (t)‖2 +
β

2
‖vnxxx(t)‖2 + 2

∫
Ω

∫ vnx

0

σ1(s)dsdx

≤ [1− C1(1 + k0) + C2α]‖v0‖2 + ‖v1‖2 +
β

2
‖v′′′0 ‖2 + 2

∫
Ω

∫ v′0

0

σ1(s)dsdx

+[1− C1(1 + k0) + C2α]

∫ t

0

(‖vn(τ)‖2 + ‖vnt (τ)‖2)dτ, t ∈ [0, T ]. (21)

Applying the Gronwall inequality to (21), we can obtain the estimate (15).
When −1 ≤ k0 ≤ 0, adding 2(1 + C2α)(vn, vnt ) to the both sides of (18), inte-

grating the product over [0, t], making use of (20) and the Cauchy inequality and
Gronwall inequality, we get (15) immediately.

Using (15) and the Leray-Schauder fixed point theorem [6], we can employ the
standard process to prove that the problem (10),(11) admits a solution Tjn ∈
C2[0, T ] (j = 1, 2, · · · , n). Lemma 3.2 is proved.

Lemma 3.3. (Zhou and Fu [9]). Assume that G(z) is a k-times continuously
differentiable function with respect to variables z and z ∈ L∞([0, T ];Hk(Ω)). Then∥∥∥ ∂k

∂xk
G(z)

∥∥∥2

≤ C(M,k)‖z(t)‖2Hk(Ω),
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where M = max(x,t)∈[0,T ]×Ω |z(x, t)|, C(M,k) is a positive constant depending only

on M and k.

Lemma 3.4. Assume that the assumptions of Lemma (3.2) hold, σ ∈ C5(R),
v0 ∈ H7(Ω), v1 ∈ H4(Ω). Then, the approximate solution vn(x, t) satisfies the
following inequality

‖vntt(t)‖2H1(Ω) + ‖vnt (t)‖2H4(Ω) + ‖vn(t)‖2H7(Ω) ≤ C2(T ), 0 ≤ t ≤ T. (22)

Proof. Multiplying both sides of equation (13) by 2λ4
j Ṫjn(t), summing up for j =

1, 2, · · · , n, integrating by parts, we obtain

d

dt

(
‖vnx4t(t)‖2 + ‖vnx5(t)‖2 − α‖vnx6(t)‖2 + β‖vnx7(t)‖2

)
= 2(σ(vnx )x5 , vnx4t), (23)

where the fact“σ(vnx )x2k+1

∣∣∣1
0

= 0 (k = 0, 1)” has been used. By Lemma 3.1, there is

a constant C3 > 0 such that

‖vnx6(t)‖2 ≤ C3‖vn(t)‖2 +
β

2α
‖vnx7(t)‖2, t > 0. (24)

Adding 2(1 + C3α)(vn, vnt ) to the both sides of (23), integrating the product over
[0,t] and using the Cauchy inequality, Lemma 3.3, (15) and (24), we have

‖vn(t)‖2 + ‖vnx4t(t)‖2 + ‖vnx5(t)‖2 +
β

2
‖vnx7(t)‖2

≤ ‖v0‖2 + ‖v(4)
1 ‖2 + ‖v(5)

0 ‖2 +
β

2
‖v(7)

0 ‖2 + (1 + C3α)

∫ t

0

(‖vn(τ)‖2 + ‖vnτ (τ)‖2)dτ

+

∫ t

0

(‖σ(vnx )x5‖2 + ‖vnx4τ (τ)‖2)dτ

≤ ‖v0‖2 + ‖v(4)
1 ‖2 + ‖v(5)

0 ‖2 +
β

2
‖v(7)

0 ‖2 + (1 + C3α)TC1(T )

+ (1 + C3α+ C(M))

∫ t

0

(‖vn(τ)‖2 + ‖vnx4τ (τ)‖2 + ‖vnx7(τ)‖2)dτ. (25)

where M = max(x,t)∈[0,T ]×Ω |vnx (x, t)| ( from (15) and Sobolev embedding theorem

we know that vnx (x, t) is bounded ), It follows from (15),(25) and the Gronwall
inequality that

‖vnt (t)‖2H4(Ω) + ‖vn(t)‖2H7(Ω) ≤ C3(T ), t ∈ [0, T ]. (26)

Multiplying both sides of (13) by T̈jn, summing up for j = 1, 2, · · · , n, using the
Cauchy inequality, we get

‖vntt(t)‖2 ≤ (‖vnxx(t)‖+ α‖vnx4(t)‖+ β‖vnx6(t)‖+ ‖σ(vnx )x‖)‖vntt(t)‖. (27)

Combining (26) with (27) leads to

‖vntt(t)‖2 ≤ C4(T ), t ∈ [0, T ]. (28)

Similarly, multiplying both sides of (13) by −λj T̈jn, summing up for j = 1, 2, · · · , n,
integrating by parts, using (26) and the Cauchy inequality we have

‖vnxtt(t)‖2 ≤ C5(T ), t ∈ [0, T ]. (29)

By (26), (28) and (29) yields (22). Lemma 3.4 is proved.
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Theorem 3.5. Assume that the assumptions of Lemma 3.4 hold, then the initial
boundary value problem (7)-(9) admits a unique global generalized solution v(x, t),
namely, v(x, t) satisfies the identity∫ T

0

∫
Ω

[
vtt − vxx − αvx4 − βvx6 − σ(vx)x

]
g(x, t)dxdt = 0, g(x, t) ∈ L2(Ω× (0, T ))

and the initial boundary value conditions (8) and (9) in the classical sense. The
solution v(x, t) has the continuous derivatives vxi(x, t) (i = 1, 2, 3) and vt(x, t) and
the generalized derivatives vxi(x, t) (i = 4, 5, 6, 7), vxit(i = 1, 2, 3, 4) and vxitt(i =
0, 1).

Proof of Theorem 3.5. It follows from Lemma 3.4 and Sobolev embedding theorem
that

‖vn(t)‖C6,λ(Ω) ≤ C6(T ), ‖vnt (t)‖C3,λ(Ω) ≤ C7(T ),

‖vntt(t)‖C0,λ(Ω) ≤ C8(T ), t ∈ [0, T ], (30)

where 0 < λ ≤ 1/2. Combining (30) with Ascoli– Arzelá theorem, we conclude
that there exists a function v(x, t) and a subsequence of {vn(x, t)}, still denoted
by {vn(x, t)} such that when n → ∞, {vnxi(x, t)} (i = 0, 1, 2, 3) and {vnt (x, t)}
uniformly converge to vxi(x, t) (i = 0, 1, 2, 3) and vt(x, t) on Ω × [0, T ] respec-
tively. By virtue of the estimate (22), we obtain that subsequences {vnxi(x, t)} (i =
0, 1, · · · , 7), {vnxit(x, t)} (i = 0, 1, 2, 3, 4) and {vnxitt(x, t)} (i = 0, 1) weakly con-
verge to vxi(x, t) (i = 0, 1, · · · , 7), vxit(x, t) (0, 1, 2, 3, 4) and vxitt(x, t) (i = 0, 1)
in L2(Ω × (0, T )) respectively. Making use of the weakly compact theorem of the
space L2(Ω× (0, T )), we can deduce that the initial boundary value problem (7)-(9)
admits a global generalized solution.

In the following, we prove the uniqueness of the solution of the initial boundary
value problem (7)-(9).

Assume that v1(x, t) and v2(x, t) are two generalized solutions of the problem
(7)-(9). Let w(x, t) = v1(x, t)− v2(x, t). Thus w(x, t) satisfies the initial boundary
value problem

wtt = wxx + σ(v1x)x − σ(v2x)x + αwx4 + βwx6 , x ∈ Ω, t > 0, (31)

w(0, t) = w(1, t) = wxx(0, t) = wxx(1, t) = wx4(0, t) = wx4(1, t) = 0, t > 0, (32)

w(x, 0) = 0, wt(x, 0) = 0, x ∈ Ω (33)

Multiplying both sides of equation (31) by 2wt and integrating over Ω, we obtain

d

dt

(
‖wt(t)‖2 + ‖wx(t)‖2 − α‖wxx(t)‖2 + β‖wxxx(t)‖2

)
= 2

∫
Ω

[σ′(v1x)v1xx − σ′(v2x)v2xx]wtdx

= 2

∫
Ω

σ′(v1x)wxxwtdx+ 2

∫
Ω

σ′′(v1x + θ(v2x − v1x))v2xxwxwtdx

≤ C9(T )(‖wt(t)‖2 + ‖wx(t)‖2 + ‖wxx(t)‖2), (34)

where 0 < θ < 1 and the fact “σ′(v1x) and σ′′(v1x + θ(v2x − v1x))v2xx are bounded
on [0, T ]× Ω ” has been used.

By Lemma 3.1, there is a constant C4 > 0 such that

‖wxx(t)‖2 ≤ C4‖w(t)‖2 +
β

2α
‖wxxx(t)‖2. (35)
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Adding 2(1 +C4α)
∫

Ω
wwtdx to the both sides of (34), integrating over [0, t], using

the Cauchy inequality and observing the estimate (35), we have

‖w(t)‖2 + ‖wt(t)‖2 + ‖wx(t)‖2 +
β

2
‖wxxx(t)‖2

≤ C10(T )

∫ t

0

(‖w(t)‖2 + ‖wt(t)‖2 + ‖wx(t)‖2 + ‖wxxx(t)‖2)dt. (36)

Applying the Gronwall inequality to (36) leads to

‖w(t)‖2 + ‖wt(t)‖2 + ‖wx(t)‖2 +
β

2
‖wxxx(t)‖2 = 0. (37)

(37) implies the uniqueness.

In order to show that the initial boundary value problem (7)-(9) admits a global
classical solution, we make further estimates for the approximate solution vn(x, t).

Lemma 3.6. Assume that the assumptions of Lemma 3.4 and the following con-
ditions hold: σ ∈ C9(R), v0 ∈ H11(Ω), v1 ∈ H8(Ω). Then the following estimate
holds

‖vn(t)‖2H11(Ω) + ‖vnt (t)‖2H8(Ω) + ‖vntt(t)‖2H2(Ω) + ‖vnttt(t)‖2H2(Ω) ≤ C11(T ). (38)

Proof. Multiplying both sides of equation(13) by 2λ8
j Ṫjn(t), summing up the prod-

ucts for j = 1, 2, · · · , n, integrating by parts, making use of Lemma 3.1, Lemma 3.3
and the Gronwall inequality, we deduce that

‖vn(t)‖2H11(Ω) + ‖vnt (t)‖2H8(Ω) ≤ C12(T ), t ∈ [0, T ]. (39)

Multiplying both sides of equation (13) by λ2
j T̈jn(t), summing up the products for

j = 1, 2, · · · , n, integrating by parts, by virtue of the Cauchy inequality, we obtain

‖vntt(t)‖2H2(Ω) ≤ C13(T ), t ∈ [0, T ]. (40)

Differentiating (13) with respect to t, we have

(vnttt − vnxxt − αvnx4t − βvnx6t − σ(vnx )xt, wj) = 0, j = 1, 2, · · · , n. (41)

Multiplying both sides of (41) by Tjnttt(t), summing up for j = 1, 2, · · · , n, using
the Cauchy inequality and the estimate (39), we get

‖vnttt(t)‖2 ≤ C14(T ), t ∈ [0, T ]. (42)

Multiplying both sides of (41) by λ2
jTjnttt(t), summing up for j = 1, 2, · · · , n, inte-

grating the products by parts, using the Cauchy inequality and the estimate (39),
we conclude that

‖vnttt(t)‖2H2(Ω) ≤ C15(T ), t ∈ [0, T ]. (43)

Combining the estimates (22), (39) with (43), we obtain (38). Lemma 3.6 is proved.

Theorem 3.7. Under the conditions of Lemma 3.6, the initial boundary value
problem (7)-(9) admits a unique global classical solution v(x, t) with

v ∈ C([0, T ];C7(Ω)) ∩ C1([0, T ];C1(Ω)) ∩ C2([0, T ];C1(Ω)). (44)
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Proof. It follows from (38) and Sobolev embedding theorem that

‖vn(t)‖C10(Ω) ≤ C16(T ), ‖vnt (t)‖C7(Ω) ≤ C17(T ),

‖vntt(t)‖C1(Ω) ≤ C18(T ), ‖vnttt(t)‖C1(Ω) ≤ C19(T ), t ∈ [0, T ]. (45)

By using the (45) and Ascoli-Arzelá, we can prove that the initial boundary value
problem (7)-(9) admits a global classical solution. Uniqueness of the generalized
solution ensures that of classical solution. Theorem 3.7 is proved.

Proof of Theorem 2.1. Differentiating (10) with respect to x, let un(x, t) = vnx (x, t),
using the equation (10) and boundary condition (11), we obtain that un(x, t) satis-
fies the following problem

untt = unxx + σ(un)xx + αunx4 + βunx6 , (46)

unx(0, t) = unx(1, t) = unx3(0, t) = unx3(1, t) = unx5(0, t) = unx5(1, t) = 0, (47)

un(x, 0) = un0 (x), unt (x, 0) = un1 (x), (48)

where un0 (x) =
∑n
j=1 ajwj(x) and un1 =

∑n
j=1 bjwj(x) are the approximation of the

u0(x) =

∞∑
j=1

ajwj(x), u1(x) =

∞∑
j=1

bjwj(x),

here aj and bj are constants.
It follows from (22) that

‖untt(t)‖2 + ‖unt (t)‖2H3(Ω) + ‖un(t)‖2H6(Ω) ≤ C20(T ), t ∈ [0, T ]. (49)

Therefore, by (49) we can employ the same method as in Theorem 3.5 to prove that
u(x, t) satisfies the identity∫ T

0

∫
Ω

[
utt−uxx−αux4 −βux6 −σ(u)xx

]
g(x, t)dxdt = 0, g(x, t) ∈ L2(Ω× (0, T ))

and the initial boundary value conditions (5) in the classical sense. Hence u(x, t)
is a global generalized solution. Using the same method as in Theorem 3.5 we can
obtain the uniqueness.Theorem 2.1 is proved.

Proof of Theorem 2.2. From (38) and Sobolev embedding theorem, we have

‖un(t)‖C9(Ω)+‖u
n
t (t)‖C6(Ω)+‖u

n
tt(t)‖C(Ω)+‖u

n
ttt(t)‖C(Ω) ≤ C21(T ), t ∈ [0, T ]. (50)

Differentiating equation (7) with respect to x, substituting vx(x, t) = u(x, t) into
the product equation, since v(x, t) is the classical global solution of the problem (7)-
(9), by (50), we know that u(x, t) is the classical global solution of initial boundary
value problem (4),(5). The uniqueness is obvious. Theorem 2.2 is proved.

In the following we study the initial boundary value problem (4),(6).

Proof of Theorem 2.3. Let v(x, t) =
∫ x

0
u(ξ, t)dξ, then u = vx and v satisfies

vtt = vxx + σ(vx)x + αvx4 + βvx6 , x ∈ Ω, t > 0, (51)

vx(0, t) = vx(1, t) = vx3(0, t) = vx3(1, t) = vx5(0, t) = vx5(1, t) = 0, t > 0,

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ Ω, (52)

where v0(x) =
∫ x

0
u0(ξ)dξ, v1(x) =

∫ x
0
u1(ξ)dξ.

We first prove the initial boundary value problem (51),(52) admits a unique global
generalized and classical solution. For this goal, we also introduce an orthonormal
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base in L2(Ω). Let {wj(x)} be the orthonormal base in L2(Ω) composed of the
eigenfunctions of the eigenvalue problem

w′′(x) + λw(x) = 0, x ∈ Ω, w′(0) = w′(1) = 0,

corresponding to eigenvalue λj (j = 1, 2, · · · ). And let vn(x, t) =
∑n
j=1 Tjn(t)wj(x)

be Galerkin approximate solution of the problem (51),(52), where Tjn(t) (j = 1, · · · )
are functions to be determined, n is a nature number. Assume that the initial data
v0(x) and v1(x) can be expressed by

v0(x) =

∞∑
j=1

αjwj(x), v1(x) =

∞∑
j=1

βjwj(x),

where αj , βj (j = 1, 2, · · · ) are constants. Substituting the approximate solution
vn(x, t) into (51),(52), we have

vntt = vnxx + σ(vnx )x + αvnx4 + βvnx6 , (53)

vnx (0, t) = vnx (1, t) = vnx3(0, t) = vnx3(1, t) = vnx5(0, t) = vnx5(1, t) = 0, (54)

vn(x, 0) = vn0 (x), vnt (x, 0) = vn1 (x). (55)

Multiplying both sides of (53) and (55) by wj(x), respectively, and integrating on
Ω, we obtain

(vntt − vnxx − αvnx4 − βvnx6 − σ(vnx )x, wj) = 0, (56)

Tjn(0) = αj , Ṫjn(0) = βj , j = 1, 2, · · · , n. (57)

In the following, we can employ a similar method as deriving Theorem 2.1 to com-
plete the proof of Theorem 2.3. Theorem 2.3 is proved.

Proof of Theorem 2.4. We can employ the same method as deriving Theorem 2.2
to complete the proof of Theorem 2.4.
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