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Abstract In recent years, a projection neural network

was proposed for solving linear variational inequality

(LVI) problems and related optimization problems, which

required the monotonicity of LVI to guarantee its conver-

gence to the optimal solution. In this paper, we present a

new result on the global exponential convergence of the

projection neural network. Unlike existing convergence

results for the projection neural network, our main result

does not assume the monotonicity of LVI problems.

Therefore, the projection neural network can be further

guaranteed to solve a class of non-monotone LVI and non-

convex optimization problems. Numerical examples illus-

trate the effectiveness of the obtained result.
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1 Introduction

Consider the following linear variational inequality (LVI)

problem: find a vector x� 2 X such that

ðMx� þ qÞTðx� x�Þ� 0; 8x 2 X; ð1Þ

where M 2 Rn�n; q 2 Rn; the feasible domain X ¼ fx 2
Rn j l� x� hg: If M is positive semidefinite or positive

definite matrix, the problem (1) is called the monotone LVI

or strictly monotone LVI.

LVI problems are of crucial importance in mathematical

programming and enjoy a wide variety of science and

engineering applications. Many constrained optimiza-

tion problems, such as linear complementary problems

and linear-quadratic programming problems, can be

equivalently converted into LVI problems [1, 2]. Various

numerical algorithms for solving LVI problems, such as the

descent method [3] and the projection-type method [4],

have been studied for decades.

In recent years, recurrent neural networks have found

successful applications in signal processing, pattern recogni-

tion, associative memory, and other engineering or scientific

fields [5–10, 26–28]. Moreover, due to its inherent nature of

parallelization and distributed information process, recurrent

neural networks are promising computational models for

realtime applications. During the recent decade, some neural

networks have been proposed for solving LVI problems and

related optimization problems [11–22]. Among them, the

following projection neural network was developed and

investigated for solving LVI (1) in [11–13]:

dxðtÞ
dt
¼ k PX xðtÞ � aðMxðtÞ þ qÞð Þ � xðtÞf g; ð2Þ

where k[ 0, a[ 0 are two scaling factors and PX : Rn !
X is a projection operator defined by PXðxÞ ¼ ðPXðx1Þ;
. . .;PXðxnÞÞT with

PXðxiÞ ¼
hi; xi [ hi;
xi; li� xi� hi;
li; xi\li:

8
<

:
ð3Þ

where l ¼ ½l1; . . .; ln�T and h ¼ ½h1; . . .; hn�T : Note that x* is

a solution of problem (1) if and only if it is an equilibrium

point of the above neural network.
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As was shown in [13], the projection neural network (2)

features a very low complexity and superior than many

other neural networks for solving LVI and related prob-

lems. The global convergence of the projection neural

network has been well studied in [11–13]; however, it

requires very restrictive conditions that the LVI is mono-

tone or strictly monotone, or equivalently, M is positive

semidefinite or positive definite. As it is known, there exist

many cases that the LVI problems are non-monotone and

related optimization problems are non-convex in real-

world applications [23–25]. Therefore, reducing the con-

vergence condition of the projection neural networks (2) is

very desirable for wide engineering applications, and there

are some researchers working on this issue in these years

[14, 15, 17, 18]. For example, in [15], Hu et al. proved that

the projection neural networks can also solve LVI prob-

lems by requiring that the LVI is pseudo-monotone, which

is a weaker condition than monotonicity. In recent years,

by introducing the time delays into the projection neural

network model (2), several delayed neural networks [14,

17, 18] were proposed to solve the LVI (1), by which a

class of non-monotone LVI can be solved under some

assumptions. However, the introduction of time delays

inevitably increases the complexity of the neural networks,

which is a critical concern in hardware implementation.

Motivated by the above discussions, this paper presents

a new global convergence condition for the projection

neural network (2) to solve the LVI and related problems.

By constructing a new Lyapnuov–Krasovskii functional, a

linear matrix inequality (LMI) approach is developed to

establish a sufficient condition for the projection neural

network (2) to be globally exponentially convergent to the

optimal solution. By the proposed LMI approach, the

monotonicity assumption on the LVI is no longer neces-

sary. Therefore, the obtained result guarantees that the

projection neural network (2) can also solve effectively a

class of non-monotone LVI and non-convex optimization

problems.

2 Preliminaries

For the sake of later discussion, a definition and two lem-

mas and some notations are introduced in this section. In

what follows, I denotes the unity matrix with suitable

dimension; kmaxð�Þ and kminð�Þ represent the maximum and

minimum eigenvalues of the given matrix, respectively; for

a vector / 2 Rn; k / k denotes the vector l2-norm; diagð�Þ
denotes a diagonal matrix formed from its vector argument.

Definition 1 The projection neural network (2) is said to

be globally exponentially stable at the equilibrium point x*

if every trajectory x(t) of (2) with the initial point xðt0Þ 2
Rn satisfies that:

k xðtÞ � x� k � k0 k xðt0Þ � x� k expð�gðt � t0ÞÞ; 8t� t0;

where k0 and g are positive constants independent of the

initial point.

Lemma 1 [14] The projection operator PX satisfies the

following inequality for any x; y 2 Rn:

kPXðxÞ � PXðyÞk� kx� yk

and

ðPXðxÞ � PXðyÞÞTðPXðxÞ � PXðyÞÞ� ðPXðxÞ � PXðyÞÞTðx� yÞ:

Lemma 2 [11] For each xðt0Þ 2 Rn; there exists a unique

continuous solution x(t) for the projection neural network

(2) over t 2 ½t0;1Þ.

3 Main results

In this section, we analyze the global stability and con-

vergence of the projection neural network (2) and obtain a

new condition for its global exponential convergence to the

optimal solution of problem (1).

Firstly, we reformulate the projection neural network (2)

as follows:

dxðtÞ
dt
¼ PXðAxðtÞ þ bÞ � xðtÞ; ð4Þ

where A = (aij)n 9 n = I - a M and b ¼ ðb1; b2; . . .; bnÞT
¼ �aq:

Then, let x* be the equilibrium point of the neural net-

work (4) and ai ¼ ½ai1; ai2; . . .; ain�: By coordinate trans-

formation u(t) = x(t) - x*, we get the following system

from (4):

duðtÞ
dt
¼ f ðAuðtÞÞ � uðtÞ; ð5Þ

where

f ðAuðtÞÞ ¼ f1ða1uðtÞÞ; f2ða2uðtÞÞ; . . .; fnðanuðtÞÞ½ �T ;

and

fiðaiuðtÞÞ ¼ PX½aiðuðtÞ þ x�Þ þ bi� � PXðaix
� þ biÞ;

i ¼ 1; 2; . . . ; n:

Clearly, x* is globally exponentially stable for system

(4) if and only if the zero solution of system (5) is globally

exponentially stable.

Theorem 1 If there exist a positive definite symmetric

matrix P 2 Rn�n and positive definite diagonal matrices
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D ¼ diagfd1; d2; . . .; dng and L ¼ diagfl1; l2; . . .; lng 2
Rn�n and a constant k [ 0 such that the following LMI (6)

holds, then the equilibrium point of the neural network (5)

is globally exponentially stable.

N ¼ ð2k � 2ÞP ð2k � 1ÞAT Dþ Pþ AT L

� DAþ AT D� 2L

� �

\0: ð6Þ

Proof Construct the following Lyapunov–Krasovskii

functional:

VðuðtÞÞ ¼ e2kðt�t0ÞuTðtÞPuðtÞ þ 2e2kðt�t0Þ
Xn

i¼1

di

Zaiu

0

fiðgÞ dg:

ð7Þ

From the definition of PX; it is obvious that PX½aiðuðtÞ þ
x�Þ þ bi� is a non-decreasing function, so fi (ai u(t)) is also

non-decreasing. In addition, it easy to see that fi (0) = 0,

for i ¼ 1; 2; . . .; n: Therefore, if ai u C 0, then for

0 B g B ai u, it can be obtained that

0�
Zaiu

0

fiðgÞdg� aiufiðaiuÞ;

and if aiu \ 0, then for 0 C g C aiu, we obtain

0�
Z0

aiu

fiðgÞdg� � aiufiðaiuÞ:

Consequently, for any aiu, we can obtain that

0�
Zaiu

0

fiðgÞdg� aiufiðaiuÞ: ð8Þ

Calculating the time derivative of V[u(t)] along the

trajectory of (5) yields:

dVðuðtÞÞ
dt

¼ 2ke2kðt�t0ÞuTðtÞPuðtÞ þ 2e2kðt�t0ÞuTðtÞP duðtÞ
dt

þ 4ke2kðt�t0Þ
Xn

i¼1

di

Zaiu

0

fiðgÞ dg

þ 2e2kðt�t0Þf TðAuðtÞÞDA
duðtÞ

dt

�ð2k � 2Þe2kðt�t0ÞuTðtÞPuðtÞ
þ 2e2kðt�t0ÞuTðtÞ½Pþ ð2k � 1ÞAT D�f ðAuðtÞÞ
þ 2e2kðt�t0Þf TðAuðtÞÞDAf ðAuðtÞÞ ð9Þ

From Lemma 1, we can obtain that:

½PXðAxþ bÞ � PXðAx� þ bÞ�T ½PXðAxþ bÞ � PXðAx� þ bÞ�
� PXðAxþ bÞ � PXðAx� þ bÞ½ �T Aðx� x�Þ;

that is

f TðAuðtÞÞf ðAuðtÞÞ� f TðAuðtÞÞAuðtÞ:

For any positive definite diagonal matrix L ¼ diag

fl1; l2; . . .g; the following inequality holds:

f TðAuðtÞÞLf ðAuðtÞÞ� f TðAuðtÞÞLAuðtÞ: ð10Þ

Substituting (10) into (9), it yields:

dVðuðtÞÞ
dt

�ð2k�2Þe2kðt�t0ÞuTðtÞPuðtÞ

þ2e2kðt�t0ÞuTðtÞ½Pþð2k�1ÞAT DþAT L�f ðAuðtÞÞ
þ2e2kðt�t0Þf TðAuðtÞÞðDA�LÞf ðAuðtÞÞ

Let tTðtÞ¼ uT f TðAuðtÞÞ½ �; then

dVðuðtÞÞ
dt

� e2kðt�t0ÞtTNt;

where

N ¼ ð2k � 2ÞP ð2k � 1ÞAT Dþ Pþ AT L

� DAþ AT D� 2L

� �

: ð11Þ

Therefore, V(u(t)) B V(u(t0)) if (6) holds. Furthermore,

Vðuðt0ÞÞ ¼ uTðt0ÞPuðt0Þ þ 2
Xn

i¼1

di

Zaiuðt0Þ

0

fiðgÞ dg

� kmaxðPÞ uðt0Þk k2þ2 max
i
ðdiÞ½Auðt0Þ�T f Auðt0Þ½ �

� kmaxðPÞ uðt0Þk k2þ2 max
i
ðdiÞuTðt0ÞðAT AÞuðt0Þ

� kmaxðPÞ þ 2 max
i
ðdiÞkmaxðAT AÞ

� �

uðt0Þk k2:

ð12Þ

Meanwhile, it is easy to see that:

VðuðtÞÞ� e2kðt�t0ÞuTðtÞPuðtÞ
� e2kðt�t0ÞkminðPÞ uðtÞk k2

ð13Þ

Therefore, from (12) and (13) we obtain,

kuðtÞ � u�k�/kuðt0Þ � u�ke�kðt�t0Þ;

where

/ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmaxðPÞ þ 2 maxiðdiÞkmaxðAT AÞ

kminðPÞ

s

:

By Lyapunov stability theory and Definition 1, the

equilibrium point of neural network (5) is globally

exponentially stable if (6) holds. This completes the proof.

Remark 1 Compared with the existing exponential con-

vergence results in [11–13], Theorem 1 does not require

that M is positive semidefinite or positive definite. It

implies that the projection neural network (2) can solve a

class of non-monotone LVI. Therefore, Theorem 1 extends
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the results obtained in [11–13]. Moreover, the condition in

Theorem 1 is described in the LMI form, which is easy to

check by many efficient LMI solvers.

Remark 2 Based on the neural network model (2),

delayed projection neural networks were developed in [14,

17, 18], which can solve a class of non-monotone LVI (1).

However, Theorem 1 shows that the projection neural

network (2) can solve a class of non-monotone LVI

problems without the need of introducing time delays.

Moreover, the results obtained in [14, 17, 18] were under

the assumption that I - aM is non-singular. In contrast,

Theorem 1 has no such restriction.

4 Numerical simulations

In order to demonstrate the effectiveness of the projection

neural network (2) for solving non-monotone LVI and non-

convex optimization problems, two illustrative examples

are presented in this section.

Example 1 [18] Consider the following third-order LVI

problem, where

M ¼
0:5 1 �0:1

�0:1 0:5 0:1

1 �0:1 0:5

2

6
4

3

7
5; q ¼

1

0

�1

2

6
4

3

7
5;

X ¼ fx 2 R3j � 5� xi� 5; i ¼ 1; 2; 3g:

ð14Þ

It is obvious that M is an asymmetric and indefinite

matrix, which means that it is a non-monotone LVI

problem, and this problem has a unique solution x =

[-0.3343, -0.5775, 2.5532]T. Thus, the results in [11–13]

and [15] are not applicable for this example.

Let k = 0.01, a = 1, after solving the LMI (6), feasible

solution can be obtained as follows:

P ¼
84:2878 12:5512 18:4989

12:5512 95:1699 �1:5830

18:4989 �1:5830 67:6605

2

6
4

3

7
5;

D ¼
135:5941 0 0

0 382:2949 0

0 0 72:6084

2

6
4

3

7
5;

L ¼
178:0005 0 0

0 298:7208 0

0 0 94:9591

2

6
4

3

7
5:

Therefore, Theorem 1 guarantee that the neural network

(2) can globally exponentially converge to the solution of

LVI (14). Figure 1 displays the transient behavior of (2)

with ten random initial points. The simulation results show

that all the trajectories are convergent to the optimal

solution x* = [-0.3343, -0.5775, 2.5532]T.

Next, we will show that the network (2) can be applied

to solve a class of non-convex optimization problems.

Example 2 Consider the following quadratic program-

ming problem:

minimize
1

2
xT Qxþ pT x

s:t: Wx� c; x� 0:
ð15Þ

where

W ¼

12
5
�1

5
2

1

�1 0

0 1

2

6
6
6
4

3

7
7
7
5
; Q ¼

0 1

1 �1

� �

; c ¼

35
12
35
2

5

5

2

6
6
6
4

3

7
7
7
5
;

p ¼
�30

�30

� �

:

This is a non-convex quadratic programming problem,

and its unique optimal solution is x* = [5, 5]T. Following a

similar line of [14], problem (15) can be solved by the

projection neural network (2), by letting

M ¼ Q WT

�W 0

� �

; q ¼
p

c

� �

;

X ¼ fz ¼ ðx; yÞ 2 R6 j z� 0g:

Let k = 0.1, a = 0.1, after solving the LMI (6), we can

get the following feasible solutions:

0 10 20 30 40 50
−5

−4

−3

−2

−1

0

1

2

3

4

5

time

x
3

x
2

x
1

Fig. 1 Transient behavior of the neural network (2) in Example 1
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P ¼

12:8048 0:0321 0:0010 0:0010 �0:0026 0

0:0321 13:1617 0:0296 �0:0317 0 �0:0295

0:0010 0:0296 12:8549 0 0 0

0:0010 �0:0317 0 12:8128 0 0

�0:0026 0 0 0 12:8564 0

0 �0:0295 0 0 0 12:8561

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

D ¼

28:8961 0 0 0 0 0

0 30:1821 0 0 0 0

0 0 28:8962 0 0 0

0 0 0 28:8962 0 0

0 0 0 0 28:8821 0

0 0 0 0 0 28:8962

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

L ¼

16:2489 0 0 0 0 0

0 15:2771 0 0 0 0

0 0 16:0927 0 0 0

0 0 0 16:2240 0 0

0 0 0 0 16:0766 0

0 0 0 0 0 16:0889

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

According to Theorem 1, the neural network (2) is

globally exponentially stable at its equilibrium point.

Figure 2 displays the transient behavior of (2) with ten

random initial points. The simulation results shows that all

the trajectories are convergent to the optimal solution

x* = [x1, x2]T = [5, 5]T.

5 Conclusion

In this paper, we proposed a new result on the exponential

convergence of a projection neural network, which was

originally proposed for solving monotone LVI and convex

optimization problems. Without the monotonicity

assumption on the LVI, we proved that the projection

neural network is still globally exponentially convergent to

the optimal solution under mild conditions. Therefore, the

application scope of the projection neural network was

extended to a class of non-monotone LVI and non-convex

optimization problems. Simulation results demonstrated

the effectiveness of the obtained result.
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