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Research article

A discrete particle swarm optimization
algorithm for rectilinear branch pipe routing

Qiang Liu

Liaoning Province Key Laboratory of Multidisciplinary Optimal Design for Complex Equipment,
Northeastern University, Shenyang, China, and

Chengen Wang
Key Laboratory of Process Industry Automation (Ministry of Education), Northeastern University, Shenyang, China

Abstract
Purpose – The purpose of this paper is to develop a new rectilinear branch pipe-routing algorithm for automatic generation of rectilinear branch pipe
routes in constrained spaces of aero-engines.
Design/methodology/approach – Rectilinear branch pipe routing that connects multiple terminals in a constrained space with obstacles can be
formulated as a rectilinear Steiner minimum tree with obstacles (RSMTO) problem while meeting certain engineering rules, which has been proved to be
an NP-hard and discrete problem. This paper presents a discrete particle swarm optimization (PSO) algorithm for rectilinear branch pipe routing
(DPSO-RBPRA) problems, which adopts an attraction operator and an energy function to plan the shortest collision-free connecting networks in a
discrete graph space. Moreover, this paper integrates several existing techniques to evaluate particles for the RSMTO problem in discrete Manhattan
spaces. Further, the DPSO-RBPRA is extended to surface cases to adapt to requirements of routing pipes on the surfaces of aero-engines.
Findings – Pipe routing numeral computations show that, DPSO-RBPRA finds satisfactory connecting networks while considering several engineering
rules, which demonstrates the effectiveness of the proposed method.
Originality/value – This paper applies the Steiner tree theory and develops a DPSO algorithm to plan the aero-engine rectilinear branch pipe-routing
layouts.

Keywords Aircraft engines, Pipe routing, Rectilinear paths, Branches, Particle swarm optimization, Steiner tree, Programming and algorithm theory
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Introduction

Routing pipes, in particular branch pipes with multiple

terminals, poses a considerable challenge to complex product

developments such as aero-engine engineering. Given that

manual routing usually leads to numerous revisions and waste,

pipe-routing algorithms that enable automation for pipe routes

extensively draw attention from both academic researchers and

practitioners in engineering disciplines. However, during the

past decades, while the two-terminal pipe-routing problems are

widely studied (Lee, 1961; Hightower, 1969; Kang et al., 1999;

Ito, 1999; Sandurkar and Chen, 1999; Guirardello and

Swaney, 2005; Fan et al., 2006; Van Der Velden et al., 2007;

Roh et al., 2007; Liu and Wang, 2010; Yin et al., 2010; Liu and

Wang, 2011a), only a few researches have been conducted on

the branch pipe-routing problems due to its complexity.
As a more general case of two-terminal pipe-routing

problems, branch pipe routing with multiple terminals that

can be formulated as a Steiner minimal tree problem (detailed

analysis will be conducted in section “Problem description”)

is NP-hard even in 2D spaces, which means that no exact

algorithm can solve this problem in polynomial time. For

instance, without consideration of obstacles, the shortest pipe

path between two terminals is the straight line connecting

both terminals; however, the multi-terminal routing problem

is much more complex even in this case since the Steiner

points (branch point) are difficult to be determined. And, the

obstacle-avoidance multi-terminal routing problem is more

complicated.
Park and Storch (2002) take branch pipes into

consideration in the cell-generation method, where a branch

pipeline is regarded as a compound of two simple forms: end

forked and middle forked. Fan et al. (2003) present a branch

pipe-routing algorithm based on maze algorithm, where he

first connects two terminals and then connects the remainders

one by one. Asmara and Nienhuis (2006) apply the particle

swarm optimization (PSO) (Kennedy and Eberhart, 1995)

and Dijkstra’s (1951) algorithm in conjunction to connect the

terminals sequentially. Even though these methods can

provide feasible solutions, few rectilinear branch pipe-

routing algorithms are studied by using the Steiner tree

theory which reflects the mathematical model of rectilinear

branch pipe-routing problems, i.e. the RSMTO. Liu and

Wang (2011b) present a PSO-based routing algorithm for
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solving Euclidean Steiner minimal tree with obstacles

(ESMTO) problem to plan non-rectilinear branch pipes in

Euclidean spaces, however, the rectilinear pipe-routing
problems need to use the concept of Manhattan distance in

a discrete space, which makes it much difficult (if not
impossible) to directly implement planning algorithms

commonly used in Euclidean spaces to solve rectilinear
problems in discrete Manhattan spaces (detailed differences

between ESMTO and RSMTO problems will be described in
section “Problem formulation”).

The rectilinear Steiner tree problem is also addressed in

integrated circuits design areas; however, according to Hu
(2005), only a few existing multi-terminal routing algorithms

take obstacles into consideration, which is more complicated
than the cases of the two-terminal obstacle-avoidance routing

and multi-terminal routing without consideration of obstacles.
In this paper, the rectilinear branch pipe-routing problem is

studied in the context of an aero-engine development. We first
analyze the mathematical models of two commonly used

descriptions of branch pipe-routing problems and then show

that their common mathematical model is the RSMTO
problem. Then, we present a discrete PSO algorithm

(DPSO-based rectilinear branch pipe-routing algorithm,
DPSO-RBPRA) that adopts an attraction operator and an

energy function to solve the RSMTO problem and to plan
aero-engine rectilinear branch pipes. Moreover, this paper

combine several existing techniques, the method (Liu and
Wang, 2011a) for solving two-terminal rectilinear pipe paths

and the method (Liu and Wang, 2011b) for solving the

ESMTO problem in continuous Euclidean spaces, to make
this integrated strategy be available for evaluating particles for

the RSMTO problem in discrete Manhattan spaces. To the
best of our knowledge, in this paper the Steiner tree theory is

used for the first time to solve rectilinear branch pipe-routing
problems. Finally, several numerical computations for

rectilinear branch pipe routing are conducted to
demonstrate the effectiveness of the proposed method.

Mathematical model

Problem description

According to computational geometry, the Steiner minimal

tree with obstacles (SMTO) can be formulated as finding a
shortest collision-free network interconnecting a number of

given terminals while allowing for addition of auxiliary points
called Steiner points, which are called ESMTO and RSMTO

problems when using Euclidean and Manhattan metrics,

respectively.
Even though Fan et al. (2003) has shown that the branch

pipe-routing problems can be mathematically formulated as a
Steiner minimal tree problem, so far few Steiner tree theory-

based rectilinear branch pipe-routing algorithms are
developed, which may result from the fact that there is not

a uniform description of branch pipe-routing problems.
In branch pipe-routing areas, the most commonly used

descriptions are “multi-point pipe routing” and “one to multi-

point pipe routing”. In this section, we will analyze the
mathematical models of these two descriptions in detail,

which can be described as Theorem 1.

Theorem 1. Both the “multi-point pipe routing” and “one to
multi-point pipe routing” problems have the same

mathematical formulation – a Steiner tree problem.

Proof. Given a branch pipe with (n þ 1) terminals v0, v1, v2,

v3, . . . , vn, without loss of generality, we assume that the “one
to multipoint pipe routing” problem means that v0 needs to
be connected to all the other points

V t ¼ {v1; v2; v3; . . . ; vn}. A

First, the “multi-point pipe routing” problem can be
formulated as planning a shortest collision-free network
connecting the terminals so that arbitrary two points can be

connected, while allowing for addition of auxiliary points called
Steiner points, which obviously satisfies the definition of
SMTO.

Consequently, a “multi-point pipe routing” connecting
network must meet the objective “one to multipoint” since

arbitrary two points can be connected, which naturally means
that v0 can be connected to the other points v1, v2, v3, . . . , vn.
Therefore, we have, a “multi-point pipe routing” connecting

network must be a “one to multipoint pipe routing” connecting
network.

Further, a “one to multi-point pipe routing” connecting

network where v0 can be connected to the points V t ¼
{v1; v2; v3; . . . ; vn} means that, ;vi [ V t; vj [ V t, there must
exist a path vi ! v0 ! vj shown in Figure 1, so that vi can be

connected to vj. Thus, we have, a “one to multi-point pipe
routing” connecting network must be a “multi-point pipe
routing” connecting network.

Thus, both the “multi-point pipe routing” and “one to
multi-point pipe routing” descriptions have the same the

mathematical formulation, i.e. the RSMTO problem.

Problem formulation

For the RSMTO problem, Ganley and Cohoon (1994) have

shown that there is an optimal routing for any multi-terminal
net that uses only escape segments, which can be described by
the following theorem.

Theorem 2 (Ganley and Cohoon, 1994). If an instance of the

RSMTO problem is solvable, then there is an optimal solution
composed only of escape segments, where the escape graph
(as shown in Figure 2) can be constructed by the lines extended

form terminals and obstacle vertices in both horizontal and
vertical directions until blocked by any obstacle or boundary of
the design.

For solving an RSMTO problem, a main task is to determine

the Steiner points. Theorem 1 shows that the RSMTO problem

Figure 1 A path: vi ! v0 ! vj
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is clearly a discrete problem such that the possible Steiner

points must belong to the set of nodes of the escape graph,
which is different from the ESMTO problem in continuous
Euclidean spaces. Moreover, the RSMTO problem has to use
the concept of Manhattan distance other than the Euclidean

distance, which further makes it much difficult (if not
impossible) to directly implement planning algorithms
commonly used in Euclidean spaces (Liu and Wang, 2011b)
to solve rectilinear branch pipe-routing problems.

The DSPO-RBPRA

As an intelligent optimization technique, the PSO algorithm
proposed by Kennedy and Eberhart (1995) extensively draws
attention from both academic researchers and practitioners
due to its good global search ability, robustness and simple

structure. In this paper, the basic idea of DPSO-RBPRA is to
apply the PSO algorithm to seek the Steiner points in a
discrete space determined by an escape graph by presenting
an attraction operator, defining the extended pipe length and
integrating several existing techniques.

Particle encoding

One key problem of solving an RSMTO problem is to
determine the number and positions of the Steiner points, this
naturally leads to an encoding method that views the number
and the coordinates of the Steiner points as a particle encoding,
as did by Yang (2006) and Liu and Wang (2011b), which,

respectively, solve the ESMT and ESMTO problems. More
specially, for an n-terminal pipe-routing problem, a particle can
be represented as an encode with a fixed length 2(n-2) þ 1,
which is determined by the full-tree with (n-2) points:

{m; x1; y1; x2; y2 . . . ; xm; ym . . . ; xn22; yn22}

where:

m the number of Steiner points, 0 #

m # n 2 2
{x1; y1; x2; y2 . . . ; xm; ym} the coordinates of the m Steiner

points.
{xmþ1; ymþ1 . . . ; xn22; yn22} the (n 2 2 2 m) potential Steiner

points. Note that, the potential

Steiner points mean that the
points may become the Steiner
points as the system iterates.

As mentioned in section “Problem formulation”, Theorem 2
has shown that the possible Steiner points must belong to the
set VG of nodes of the escape graph, then the Steiner points
represented by this encoding method thus need to be

appropriately transformed to adapt to this discrete spaces
after initiation and update. To this end, this paper presents an
attraction operator to make the original PSO algorithm can
handle this discrete case, which will be introduced in detail in
the following section.

The DPSO for solving RSMTO

In the original PSO (Kennedy and Eberhart, 1995), particles
are defined as candidate solutions and the movements of
particles are regarded as the search process. The position and
velocity of the ith particle at t iteration are represented by
xiðtÞ ¼ ðxi1ðtÞ; . . . ; xilðtÞ; . . . ; xiDðtÞÞ and vi(t) ¼ (vi1(t), . . . ,
vil(t), . . . ,viD(t)), respectively. Each particle adjusts its
position according to its previous optimal position denoted

by pi ¼ ( pi1(t), . . . ,pil(t), . . . ,piD(t)) and the group’s optimal

position denoted by pg ¼ ( pg1(t), . . . ,pgl(t), . . . ,pgD(t)). During
the iterations, particles are updated by equations (1) and (2).

vilðt þ 1Þ ¼ v · vilðtÞ þ c1 · r1 · ½ pilðtÞ2 xilðtÞ�

þ c2 · r2 · ½ pglðtÞ2 xilðtÞ� ð1Þ
xilðt þ 1Þ ¼ xilðtÞ þ vilðt þ 1Þ ð2Þ

where v is the inertia weight, c1and c2 are the acceleration

coefficients. r1 and r2are two random numbers in [0, 1].
The original PSO described above is proposed for solving

the continuous optimization problems; however, it cannot
deal with the discrete RSMTO problem. To breakthrough this

technical barrier, we present a DPSO in order to seek the
rectilinear Steiner minimum tree in a discrete space

determined by the nodes of a constructed escape graph.
Define 1: attraction operator. As shown in Figure 3, in an

l-dimensional space, given a set VGof nodes determined by an
escape graph and a particle pðxp1; xp2; . . .xplÞ, then the

attraction operator can be defined as a transformation that
transforms p into the point qðxq1; xq2; . . .xqlÞ [ V G, which has

the shortest distance to p. More specially, the attraction
operator can be mathematically formulated as follows:

xp1 ˆ xq1; xp2 ˆ xq2; . . . ; xpl ˆ xql

q [ V G & dð p; qÞ ¼ min{dð p; qiÞ}; i ¼ 1; 2; . . . ; n

where d( p,q) denotes the distance between the points

p(xp1,xp2, . . . ,xpl) and q(xq1,xq2, . . . ,xql), which can be
formulated as the Euclidean distance:

dEð p; qÞ ¼ ½ðxp1 2 xq1Þl þ ðxp2 2 xq2Þl þ · · · þ ðxpl 2 xqlÞl �1=l

ð3Þ

or the Manhattan distance:

dMð p; qÞ ¼ jxp1 2 xq1j þ jxp2 2 xq2j þ · · · þ jxpl 2 xql j ð4Þ

By using this definition, the PSO can adapt to the discrete
rectilinear branch pipe-routing problem. The main flowchart

of DPSO (Figure 4) is described as follows.

Evaluate particles

Beside the collision-free shortest pipe lengths, another

objective (engineering rule) for pipe routing is to place
pipes close to some equipment, or to keep distance from some

regions (i.e. electrical regions) for safety consideration.
Considering this, Ito (1999) has proposed the concept of

“potential energy” for a planning space divided into cells,
where cells close to obstacles (equipment) are endowed with

lower energy values, which means that one route is more
favorable if it goes along obstacles.

Figure 3 Attraction operator

q

The set VG of nodes
of an Escape Graph

a Steiner point p
represented by a particle
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To make the “potential energy” be available for the Escape

graph-based planning spaces, this paper defines an energy

function to endow the nodes and edges of the escape graph

with appropriate energy values. More specially, we classify

related obstacles into two sets: Oc ¼ {oc1, oc2, . . . , ocm} and

Od ¼ {od1, od2, . . . , odn}, which, respectively, represent the

obstacles that pipes should be placed close to and the obstacles

that pipes should keep distance from. And, each obstacle is

designated a point pci or pdj to represent the obstacle oci or odj,

where i ¼ 1,2 . . . ,m; j ¼ 1,2 . . . ,n.
Further, the engine value of a point p can be determined as

follows:
. Step 1. Select a point pc min from Pc ¼ {pc1; pc2; . . . ; pcm}

such that pc min has the shortest distance to p.
. Step 2. Select a point pd min from Pd ¼ {pd1; pd2; . . . ; pdn}

such that pd min has the shortest distance to p.
. Step 3. Compute the engine value of the point p (denoted

by E( p)) by equation (5):

Eð pÞ ¼ Ecð pÞ þ Edð pÞ

¼ dð p; pc min Þ þ ½M 2 dð p; pd min Þ� ð5Þ

where Ec( p) and Ed( p), respectively, denote the engine values

determined by Oc and Od; M is a positive constant.
Then, the generalized pipe length L0( pipe) can be defined as:

L0ð pipeÞ ¼ a · Lð pipeÞ þ b · Eð pipeÞ ð6Þ

where L( pipe) is the pipe length; E( pipe) is the engine value; a

and b are constants, 0 # a,b # 1, a þ b ¼ 1.
Now, we will introduce several existing techniques in

ESMTO and two-terminal rectilinear routing areas, and then

combine and extend these methods to RSMTO cases to meet

the requirements of evaluating particles in the discrete escape

graph space using Manhattan distance. In the method (Liu

and Wang, 2011b) for solving the ESMTO problem, given a

set of terminals S, a set of obstaclesV, and a particle S0

(i.e. several Steiner points), the objective function is

determined by the following steps:
. Step 1. Construct a visibility graph VG(S < S0,V), and then

the ESMTO problem becomes one of the Steiner minimum
tree in graphs (SMTG), as did by Provan (1988).

. Step 2. The SMTG problem can be further solved by

using the well-known method proposed by Lawler (1976),
which first constructs a Complete Graph CG(S < S0) and
then solves the minimal spanning tree (MST) of
CG(S < S0) by using Prim’s algorithm. Detailed

introduction of Prim’s algorithm can be found in the
reference (Brassard and Bratley, 1996).

. Step 3. Then, the length of MST will be viewed as the

fitness of the particle S0.

However, in cases of RSMTO problem, the above method

becomes inappropriate since the original visibility graph
(Lozano-Pérez and Wesley, 1979) used for Euclidean spaces is
not suitable for the rectilinear problems. To breakthrough this
technical barrier, this paper modifies the above method by

replacing the original visibility graph with the Manhattan
visibility graph (MVG) method proposed by Liu and Wang
(2011a), where the basic idea of MVG is to replace the

straight lines in Euclidean spaces with the defined Manhattan
visible lines in Manhattan spaces. As shown in Figure 5, all
the cases are defined as Manhattan visible except the case
shown in Figure 5(d). Further, the MVG can be extended to

the surface cases of aero-engines by replacing the Manhattan
lines with meridians and parallels.

By integrating the above methods, we can evaluate particles for

RSMTO problem in Manhattan spaces. Note that, in this paper
the lengths of Manhattan visible lines are computed according to
the generalized pipe length formulated by equation (6).

Pipe-routing simulations

In this paper, the rectilinear branch pipe-routing problem is
studied in the context of an aero-engine development, where
the pipes need to be installed close to surface of engine jackets

to guarantee better stability and reliability. Numerical
computations for pipe routing are implemented on a
workstation (Quad CPU 2.83 GHz, 8 GB RAM) with

conventional developments of Matrix Laboratory
(MATLAB) and Unigraphics NX (UG) systems. The date
transmission between both systems is performed by TXT files.
More specially, first, the geometric information of the pipe-

routing space of a simplified aero-engine model is extracted by
using UG/Open GRIP. Then, the DPSO-RBPRA is performed
in MATLAB system. Finally, the computation results will be

transferred back to the UG system for visualization. The
parameters of DPSO are set according to the suggestions
(Clerc and Kennedy, 2002): v ¼ 1.414, c1 ¼ c2 ¼ 0.747;

Figure 4 The flowchart of DPSO
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N ¼ 15, T ¼ 20, where N is the population size and T is the

number for iterations.
By using DPSO-RBPRA, an eight-terminal routing

computation on a simplified aero-engine piping model is

performed. Figure 6 shows a satisfactory solution from several

computations, which runs in about 2.7 min, and the

convergence curve of the optimal particle is shown in

Figure 7. The routing layout shows that, a near shortest

collision-free network keeping distance from an electrical

region od1and being placed close to oc1 on the surface of the

aero-engine is found, which demonstrates the effectiveness of

DPSO-RBPRA.
To further demonstrate the effectiveness of DPSO-RBPRA,

we compare DPSO-RBPRA with the traditional methods

which connect the terminals sequentially, where the MVG

method and Dijkstra algorithm are used in conjunction to

connect pipe terminals sequentially. A four-terminal pipe-

routing problem is, respectively, solved by using both

methods. The routing layouts and computation results are,

respectively, shown in Figure 8 and Table I. As far as this

example is concerned, DPSO-RBPRA finds shorter

connecting networks than the traditional methods, which

may benefit from using the Steiner tree theory to solve branch

pipe-routing problems.

Conclusions

In this paper, the rectilinear branch pipe-routing problem is

studied. We analyze the mathematical model of the rectilinear

branch pipe-routing problems and then develop a discrete

swarm optimization algorithm (DPSO-RBPRA) which adopts

an attraction operator and an energy function to solve

RSMTO problem and to plan rectilinear branch pipe-routing

problem, while considering several engineering rules: avoiding

collision with obstacles, minimizing pipe lengths, placing

pipes on the surface of aero-engines, placing pipes close to

some equipment or keeping distance form some regions.
Unlike the traditional methods that connect the terminals

sequentially, the Steiner tree theory is used to plan the

rectilinear branch pipe-routing problems. Moreover, DPSO-

RBPRA may have the advantages in terms of global

characteristic, robustness and implementation easiness since

it applies the population-based intelligent optimization

technique. The final pipe-routing computations on a

simplified aero-engine piping model demonstrate the

effectiveness of the proposed method. Future research should

be on taking more engineering rules into consideration such as

minimization of the number of pipe bends.
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