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Abstract—Compared to Singular Value Decomposition (SVD),
Generalized Low Rank Approximations of Matrices (GLRAM)
can consume less computation time, obtain higher compression
ratio, and yield competitive classification performance. GLRAM
has been successfully applied to applications such as image
compression and retrieval, and quite a few extensions have been
successively proposed. However, in literature, some basic proper-
ties and crucial problems with regard to GLRAM have not been
explored or solved yet. For this sake, we revisit GLRAM in this
paper. First, we reveal such a close relationship between GLRAM
and SVD that GLRAM’s objective function is identical to SVD’s
objective function except the imposed constraints. Second, we
derive a lower-bound of GLRAM'’s objective function, and discuss
when the lower-bound can be touched. Moreover, from the
viewpoint of minimizing the lower-bound, we answer one open
problem raised by Ye (Machine Learning, 2005), i.e., a theoretical
justification of the experimental phenomenon that, under given
number of reduced dimension, the lowest reconstruction error
is obtained when the left and right transformations have equal
number of columns. Third, we explore when and why GLRAM
can perform well in terms of compression, which is a fundamental
problem concerning the usability of GLRAM.

Index Terms—Dimensionality Reduction, Singular Value De-
composition, Generalized Low Rank Approximations of Matrices,
Reconstruction Error

I. INTRODUCTION

To obtain a compact representation of data, one usually
employs dimensionality reduction, with Singular Value De-
composition (SVD) [1] being one of the most well-known
methods. SVD has the appealing property that it can achieve
the smallest reconstruction error among all the rank-k approxi-
mations, and has been successfully applied to face recognition
[2], [3], information retrieval [4], [5], etc.

Applications of SVD to high-dimensional data, such as
images and videos, quickly run up against practical com-
putational limits, mainly due to the high time and space
complexities of the SVD computation for large matrices [1],
[6]. To deal with the problem of high space complexity,
incremental algorithms have been proposed in [7], [8], [9].
To speed the computation of SVD, random sampling has been
employed in [10], [11], [12]. Like the traditional SVD, these
improvements on SVD all treat data as one-dimensional vector
patterns.
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Recently, Ye [6], [13] proposed the Generalized Low Rank
Approximations of Matrices (GLRAM) method, which treats
data as the native two-dimensional matrix patterns. Benefited
by the two-dimensional representation of data, GLRAM was
reported to consume less computation time and yield higher
compression ratio than SVD in applications such as image
compression and retrieval. Compared to the two-dimensional
methods such as two-dimensional Principal Component Anal-
ysis [14], GLRAM employs two-sided transformations rather
than single-sided one, and yields higher compression ratio.
Moreover, GLRAM is applied in [6] as a pre-processing step
for SVD to devise the GLRAM+SVD method, i.e., performing
SVD after the intermediate dimensionality reduction stage us-
ing GLRAM. Compared to GLRAM, GLRAM+SVD achieves
a significant reduction of the reconstruction error, while keep-
ing the computation cost small. GLRAM has been success-
fully applied in applications such as image compression and
retrieval, achieving competitive classification performance to
SVD. Since the main goal of GLRAM itself is to obtain
compact representation of data, we study GLRAM from the
viewpoint of compression in this paper.

It is generally believed that GLRAM does not admit a
closed-form solution, and thus Ye employed an iterative pro-
cedure to compute the so-involved two-sided transformations
in [6], [13]. Following Ye’s pioneer work, researchers have
carried out quite a few studies that focus on non-iterative
extensions for accelerating the computation of the two-sided
transformations. Ding and Ye [15] proposed a two-dimensional
SVD (2dSVD) based on row-row and column-column covari-
ance matrices and studied the optimality properties of the
2dSVD; Zhang et al. [16] adopted a natural representation for
images using eigenimages; Inoue and Urahama [17] proposed
a dyadic SVD based on the higher-order SVD presented
by Lathauwer et al. [18]; Liang and Shi [19] claimed to
obtain an analytical GLRAM algorithm, but as pointed out
in [20], [21], such a claim is incorrect and the so-called
analytical GLRAM is in fact a variant of 2dSVD; Liu and
Chen [21] proposed a Non-Iterative GLRAM (NIGLRAM)
to approximately optimize the objective function of GLRAM;
and Inoue and Urahama [20] proved that some non-iterative
methods are in fact equivalent to some extent. Compared to
GLRAM, these non-iterative extensions can be computed more
efficiently and meanwhile can obtain competitive compression
ratio and classification performance.

GLRAM has also been extended to the scenario of tensor
representation [22], [23], [24], [25]. For example, the MPCA
(Multilinear Principal Component Analysis) proposed by Lu et
al. [22] extends GLRAM to tensor with modes over 2; and the



element rearrangement technique proposed by Yan et al. [25]
can be used to improve the approximation performance of
GLRAM.

In a recent study, Liang and Shi [26] conducted a theoretical
analysis on GLRAM. Firstly, based on the covariance matrix
of Principal Component Analysis (PCA) [2], they gave the
lower and upper bounds of GLRAM'’s objective function,
and showed that the reconstruction error of GLRAM is not
smaller than that of PCA when the reduced dimension is same.
Secondly, they proposed a non-iterative GLRAM algorithm
to compute the transformation matrices in a similar way to
NIGLRAM [21].

Despite of the successes achieved by GLRAM and its
extensions, some basic properties and crucial problems with
regard to GLRAM have not been explored or solved yet in
literature. For example, as Ye pointed out in [6], there is not a
theoretical justification of the experimental phenomenon that
the lowest reconstruction error is obtained when the left and
right transformation matrices have equal number of columns.
Likewise, we also concern the following two points: 1) the
relationship between GLRAM and SVD has not been well
studied theoretically, although GLRAM has been extensively
compared with SVD empirically in [6]; and 2) when and why
GLRAM can perform well in terms of compression, which is
a fundamental problem concerning the usability of GLRAM.

In this paper, we revisit GLRAM to answer the aforemen-
tioned problems. The studies presented in this paper can be
extended to benefit quite a few two-dimensional and tensor-
based methods [18], [22], [23], [24], [25], [27], [28], which
have attracted much attention from researches in areas of
machine learning, computer vision, neural computation, etc.

In what follows, we briefly review SVD and GLRAM in
Section II, discuss on the relationship between GLRAM and
SVD in Section III, give a new lower-bound of GLRAM’s
objective function to answer the problem why the lowest
reconstruction error can be obtained when the left and right
transformation matrices have equal number of columns in
Section IV, explore when and why GLRAM can perform well
in terms of compression by studying the relationship among
some defined criteria in Section V, conduct experiments in
Section VI, and conclude this paper in Section VII.

II. A BRIEF REVIEW OF SVD AND GLRAM
A. Notations

The major notations employed in this paper are summarized
in Table 1. Suppose the dataset is composed of N matrix
patterns A; € R**/ i = 1,2,....N, and a; = vec(4;)
denotes the d-dimensional vector pattern obtained by sequen-
tially concatenating the columns of A;. Let I, denote a ¢ X ¢
identity matrix, ® denote the Kronecker product, and ||.||r
and ||.||2 denote the Frobenius norm and the Euclidean vector
norm, respectively. For subsequent discussion convenience, we
give the following equations [1]:

A% = [Jvec(A)]]3, (1)
vec(ABC) = (CT @ A)vec(B), (2)
(AC) ® (BD) = (A® B)(C ® D), 3)

(A@ B)' = AT ® B", 4)

where A, B, C and D are matrices of proper sizes.

B. Singular Value Decomposition

In applications such as face recognition, the samples A;’s
are naturally represented as matrix patterns. When applying
SVD for dimensionality reduction (a well-known method
that applies SVD for dimensionality reduction is the Eigen-
faces [2]), one usually converts the matrix patterns A;’s to
the concatenated vectors a;,i = 1,2,...,N. Based on this
vector representation, SVD computes k& orthonormal projection
vectors in Ps,q = [pi¥d, pst?, ..., pid] € RY*F to extract
af”d = PT a; for a;. P,,q corresponds to the first k& columns

svd

of U in
X =UAVT, (6)

where X = [ay,a9,...,ay] is the data matrix, A =
diag(M1, A2, ..., A\n) contains the singular values in a non-
increasing order, and U and V contain the left and right
singular vectors of X, respectively.

The reconstructed sample of a; by SVD can be denoted as
a:'? = P,,qa5v?, and it is easy to get that Py,q provides the
globally optimal solution to

N
PR, JuaP) = 3Nl = PPTaf, )

where Js,q(Psypq) is the reconstruction error brought by SVD’s
rank-%k approximation. Therefore, SVD has the property that
it can achieve the smallest reconstruction error among all the
rank-k approximations.

C. Generalized Low Rank Approximations of Matrices

In contrast to SVD that converts matrices A;’s to vec-
tors a;’s, GLRAM directly manipulates A;’s, computes two
transformations L = [l1,1ls,...,1l;,] € Re*™ and R =
[r1,79,...,7,] € R/X™ with orthonormal columns, and
extracts Aflmm = LTA,R for A;, with the reconstructed
sample being A9 = [ A" RT,

To compute the bilateral transformations L and R, GLRAM
minimizes the following reconstruction error:

N
min  Jgiram (L, R) =Y _||A; = LLTA;RRT 7. (8)
LTL=I,, —y
RTR=1I, =
Generally speaking, Eq. (8) does not admit a closed-form
solution, and therefore [6], [13] employed an iterative pro-
cedure whose key is to optimize L under fixed R and vice
versa. More specifically, under given L, R is composed of the
n eigenvectors of

N
Mp =) ATLLTA; 9)

=1



TABLE 1

NOTATIONS
Notations  Descriptions “ Notations  Descriptions
A; the ¢-th matrix pattern N number of samples
e number of rows in A; f number of columns in A;
d sample dimension (d = ef) L the left transformation
R the right transformation L the ¢-th column in L
r; the ¢-th column in R m number of columns in L
n number of columns in R s common value for m and n
a; concatenated vector pattern of A; Psya the projection matrix obtained by SVD
Pyiram the projection matrix obtained by GLRAM k the number of columns in Ps,q or Pyiram
asvd extracted features by SVD A Iram  oxtracted features by GLRAM
NMSE Normalized Mean Square Error NMLB  Normalized Mean Lower-Bound
MSLS Mean Similarities of Left Subspaces MSRS Mean Similarities of Right Subspaces

corresponding to the largest n eigenvalues; and under given
R, L is composed of the m eigenvectors of

N
My = Z A;RRT AT (10

i=1

corresponding to the largest m eigenvalues.

III. RELATIONSHIP BETWEEN GLRAM AND SVD

Although SVD and GLRAM extract features in different
forms (i.e., SVD manipulates one-dimensional vectors to
extract a‘“’d = P va@i>» while GLRAM manipulates two-
dimensional matrices to extract Aglmm LT A;R), we shall
reveal an essential relationship between GLRAM and SVD in
the following theorem.

Theorem 1: GLRAM’s objective function is identical to
SVD’s objective function except the imposed constraints.
Proof: One one hand, SVD’s objective function Eq. (7) can
be written as:

Psvdr}ili:zk Jsvd(Peva) Z la; — PoaPL ail|2.  (11)
On the other hand, we denote Py,.q,y, as
Pyiram = R® L =[p{"" "™, p§"™™,...,pSre™],  (12)
where forany ¢ =1,...,nand j =1,...,m,
sy = T L. (13)
Employing Eqgs. (2-5), we have
PgiramPotram = (R& L)' (RO L) = Iy, (14
a?" " —pec(AY) = (R@ L) a; = siram@i,  (15)
where aglmm is the concatenated vector of Aflmm, and k =

mn is the number of reduced dimension. Summarizing the
results of Egs. (12-15), GLRAM’s objective function Eq. (8)
can be written as

min

a —
L,R,Pyiram Z [l

subject to LTL =1, RT R = I,
quram =R & L P, lramPQlTU«m - [k

ngamP Iram@i | |§

ngram L R

(16)

Comparing GLRAM’s objective function Eq. (16) with SVD’s
Eq. (11), we can find that, GLRAM just optimizes the same
objective function as SVD except the imposed constraints, i.e.,
SVD’s Pg,q is only subjected to the orthonormal constraint
Psvded = I, while, besides the orthonormal constraint,
GLRAM’s Pgyjrqm is subjected to additional Kronecker prod-
uct constraints Pyjrqm = R® L, LYL = I,,, and R™R = I,,.
This ends the proof. (|

A. Remarks

First, by using Theorem 1, we can explain such experi-
mental phenomenon reported in [6] that, GLRAM achieves
higher reconstruction error than SVD under the same number
of reduced dimension. This phenomenon attributes to the facts
that: 1) both GLRAM and SVD in fact optimizes the same
objective function, and 2) GLRAM is subjected to additional
Kronecker product constraints Pyqm = R® L, LYL = I,,
and RTR = I, than SVD. It is worthwhile to note that,
[26] also answered the question why GLRAM achieves higher
reconstruction error than Principal Component Analysis [2]
under the same number of reduced dimension. However, the
employed methodologies are different, i.e., we answered this
problem by revealing that GLRAM’s objective function is
identical to SVD ’s objective function except the imposed
constraint, while [26] answered the problem by explicitly
formulating the objective function value of PCA as the lower-
bound of GLRAM’s objective function.

Second, GLRAM does not need to explicitly compute or
store Pyiram € RPF, but instead computes and stores L €
ReX™ and R € Rfxn, consuming em + fn elements; while
SVD needs to explicitly compute and store the projection
matrix Pj,q € R*F, consuming dk = efmn elements. As
a result, compared to SVD, GLRAM not only consumes less
computation time but also obtains higher compression ratio
when applied to the high-dimensional applications such as
image compression.

Third, a$*? by SVD can be denoted as

af vd __ [a p.ivd a) pgvdw ,a, psvd] (17)
and we have Zz 1(a; pwd) = )\?, since P,,q corresponds

to the first k¥ columns of U in Eq. (6). Moreover, considering
the fact that \;’s are in a non-increasing order, we have

N
2 svd
a pJ+1

(18)

Z(a pjvd

i=1



From Eq. (18), we know that the projection vector p‘“’d pre-
serves more information than pgidl, and thus the 1nformation
preserving abilities of SVD’s projection vectors are in a non-
increasing order. However, unlike (18) for SVD, the following

inequality

N

Z(anglram) Z

=1 7
generally does not hold for GLRAM (see Section IV-B for a
counter-example, and Section VI-A for experimental verifica-
tion). As a result, despite of GLRAM’s close relationships with
SVD presented in Theorem 1, GLRAM is still quite different
from SVD.

T glram

(a7 plli™)? (19)

-

1

IV. A NEwW LOWER-BOUND

As reported in [6], [13], under given number of reduced
dimension k¥ = mn, GLRAM always obtains the lowest
reconstruction error when setting s = m = n, but “a rigorous
theoretical justification behind this is still not available”[6].

In this section, we try to solve this problem, before which,
we first prove a lemma.

Lemma 1: For any matrix A € R®*f, [ € R®*™ and R €
Rf*" that satisfy LTL = I,,, and RTR = I,,, we have

min(m,n)

> 6i(A)

where §;(A) denotes the i-th singular value of matrix A.
Proof: Let R € R/*(/=") be a matrix whose columns
are the orthonormal complement of those in R, namely,
[R RJ[R R]" = I;. Since ARRTAT is positive semi-
definite, we have trace(LTARRTATL) > 0, where trace(.)
denotes the trace of a square matrix. Therefore, we have

ILTAR||% < (20)

||ILY AR||% =trace(L" ARRT A" L)
<trace(LTA[R R]J[R R)TATL)

=trace(LTAATL) (21)
< Z 8i(A)?
i=1
By a similar derivation, we have
ILTAR|[3 <> 6:(A) (22)

=1

From inequalities (21) and (22), we can easily get the inequal-
ity (20). This ends the proof. (]

A. A Lower-bound of Jgiram(L, R) and a Theoretical Justifi-

cation of m =n
Theorem 2: Let the SVD of A; be denoted as:
A = Uil V7, (23)

where A; = diag(61(A;),02(As), ..., Smin(e,r)(As)) contains
the singular values in a non-increasmg order, U; and V; contain

the left and right singular vectors, respectively. Let &k = mn
be the reduced dimension. Then

min(e, f)

SIS

i=1 j=min(m,n)+1

JLB

qlram 5j (Ai)2 (24)

is a lower-bound of ngmm(L,R). Moreover, for given re-
duced dimension k, J1;7, (m,n) achieves the minimum when
m=n.

Proof: Employing Lemma 1, Jgirqm (L, R) satisfies
N
ngram(L7 R = Z HAZ - LLTAZRRTH%

=1

N N
=Z Al = D IILTAR|
=1 =1

N N min(m,n)
Z 1 Aill7 —

"5

N min(e,f)
=2 2

=1 j=min(m,n)+1

=J

glram(

o @9

6;(Ai)?

m,n),

where the second equality follows from LTL = I, and
RTR = I,,. Therefore, J1iZ, (m,n) offers a lower-bound
of Jyiram (L, R). Furthermore, for given A;’s and reduced
dimension k, the lower-bound .J, ngfam(m, n) is not dependent
on the computed L and R, but only dependent on m or n. It
is easy to observe that J;I  (m,n) achieves the minimum
when m = n. ]

From Theorem 2, we can offer a theoretical justification of
m = n from the viewpoint of minimizing .J, lmm( n). Note
that, although the justification is derived from the lower-bound,
it is generally applicable to Jyiram (L, R) when GLRAM
can perform well in terms of compression, since, as will be
empirically proven in Section VI-B, Jgrqm (L, R) is close to
its lower-bound in this case.

Prior to our work in this paper, researches have come up
with some different lower-bounds for GLRAM. The lower-
bound provided in [15] is dependent on the obtained L and
R and thus is quite different from ours. The lower-bound
given in [26] is the objective function value of PCA, which
is depicted by the eigenvalues of the covariance matrix of all
the vector patterns a;’s. Note that, the lower-bound given by
us is depicted by the singular values of the individual matrix
patterns A;’s, and therefore it is quite different from the one
given in [26]. Moreover, to the best of our knowledge, the
lower-bounds given in [15], [26] can not be directly used
to answer why GLRAM can obtain the lowest reconstruction
error when m = n for given reduced dimension & = mn.

In the end of this subsection, it is worthwhile to note that,
since the justification of m = n is not from ngmm(L, R), but
its lower-bound, it is possible that m = n is not a good choice
in some cases. We shall point out in Section V-C that, when e
and f are extremely imbalanced, m = n might not be a good
choice, and suggest to deal with this problem by a technique
employed in [29].



B. When the Lower-bound Can Be Touched

In this subsection, we explore when the lower-bound given
in Theorem 2 can be touched. In the following, we assume
s =m = n, and denote U; and V;® respectively as the first s
columns in U; and V;. The result in this subsection is given
in the following theorem.

Theorem 3: 1If the following two conditions are satisfied:

e Ui =1,2,...,

ie.,

N span the same projection subspace,

where Q; € R**¢ is an orthonormal transformation,
e V?,i=1,2,...,N span the same projection subspace,
ie.,

VP = VW, 27)

where W; € R%%¢ is an orthonormal transformation,
then the lower-bound Eq. (24) can be touched by setting L =
U? and R = V.
Proof: Let L = U7, R = V;?, and employing Eqgs. (26) and
(27), we have

ILT A R||% =[|UT " A Ve |13
=(|QF U A VW%
=|lUT AV 17

= i: 8;(4,)°
j=1

N
Jytram (L, R) = (14l 7 — [ILT AiR||%)
i=1
N min(e,f)
=D > ()
i=1 j=s+1
Obviously, the lower-bound Eq. (24) is touched. (]
A special case of Theorem 3 is that, U} = U7,V =
Vii,j =1,2,...,N, where L = Uy and R = V7° enable
GLRAM to touch the lower-bound. In this special case,
LY A;R = diag(61(A;),62(A;), ..., 0:(A;)), and incorporat-
ing Egs. (12), (13) and (15), we have

N N
o D0l 0i(Ay)?
>(aratr, = { 3

t=1

(28)

(29)

i=j
i#j

In this special case, we have that: 1) the inequality (19)
in Section III-A does not hold, 2) the GLRAM prOJection
vectors that benefit reconstruction are in fact pgl’“"; il
1,2,...,s, while the remaining ones are useless, ancf 3) there
are pI'O_]eCthH vectors outside Pgyqp, that can contain useful
information, so long as the rank of any A; is over s.

Generally speaking, the conditions offered in Theorem 3 are
too strong to be satisfied in real applications. However, these
two conditions remind us to measure the relationship between
A;’s by the similarities between the subspaces spanned by
U;?’s (and V;%’s), which will be discussed in detail in the next
section.

glram

(i—1)s+j (30)

V. WHEN AND WHY GLRAM CAN PERFORM WELL IN
TERMS OF COMPRESSION

In this section, we explore a fundamental problem con-
sidering the usability of GLRAM, namely, when and why
GLRAM can perform well in terms of compression. This
is quite important, since it will help practitioners to decide
whether to use GLRAM or not for compression purpose.

A. Criteria Related to the Compression Performance of
GLRAM

An important criterion that measures the compres-
sion performance of GLRAM is the reconstruction error,
Jgiram (L, R). It will be nice if the value of a criterion is
between [0 1], which is easier to use in many tasks, say,
empirical evaluation. For this sake, we employ the Normalized
Mean Square Error (NMSE) as

Jgtram (L, R) /N
YL A/

Obviously, NMSE is between [0 1], and is proportional to
Jgiram (L, R). The larger NMSE is, the worse the compres-
sion performance is, and vice versa. Based on NMSE, it
is easy to define the Normalized Mean Retained Information
(NMRI) as NMRI =1 — NMSE. In contrast to NMSE,
the larger N M RI is, the better the compression performance
is. One key parameter in NMSE is the value of s, and we
want to obtain low NMSFE at small s.

The remaining problem is to define some proper criteria
that can help determine when and why low NAMSE can be
obtained at small s. Our motivation comes from the analysis
of the normalized reconstruction error of a given matrix A.
According to Lemma 1, we have

NMSE = 31)

[IAll%

—ILTAR|} o S5 8:(A4)° — 354 6:(A)°
IA[Z - S 5, (A)2

from which we can observe that

e The lower-bound of the normalized reconstruction error
is determined by the distribution of the singular values.
Specifically, if the leading s singular values of A does
not dominate, the normalized reconstruction error can not
be small, and vice versa. Since this lower-bound is only
determined by the given sample itself, we call this factor
as the within-samples factor.

e When the lower-bound is small, it is meaningful to
consider whether there exist L and R that can make the
normalized reconstruction error close to the lower-bound.
Obviously, when L and R correspond to the leading s left
and right singular vectors of A, respectively, the lower-
bound is touched. Moreover, considering the fact that we
are looking for L and R for compressing N samples
A;’s, then L (and R) should be the tradeoff among U;’s
(and V;*’s). Since L and R are tradeoff among all the
matrix samples, we call this factor as the between-samples
factor.



To depict the within-samples factor, we make use of the
singular values of the matrices A;’s to compute the lower-
bound J, lmm(m, n) defined in Eq. (24). Similar to the intro-
duction of N M SE, which can bring convenience to tasks such
as evaluation, we define the Normalized Mean Lower-Bound
(NMLB) as

NMLB = Jsiram (7 1) /N 32
=S AN (32)
Ei:l || i||F/N
Like the relationship between Jyiqm (L, R) and J1i2, (m,n)

revealed in Eq. (25), it is easy to get the relationship between
NMSE and NMLB as

NMSE > NMLB. (33)

Moreover, based on NM LB, it is easy to define the Normal-
ized Mean Upper-Bound NMUB) as NMUB = 1-NMLB,
and it is easy to get the relationship between NAM RI and
NMUB as

NMRI < NMUB. (34)

which says that, the upper-bound of NM RI is NMUB.

To depict the between-samples factor, we measure the
relationship between A;’s by the similarities between the
subspaces spanned by U?’s (and V,*’s). Specifically, we define
the Mean Similarities of Left Subspaces (MSLS) as

MSLS = -~ Z Z SLS(U:, U, (35)
( 1=1 j=i+1
where
1
SLS(U,U5) =/ S IIU: U I (36)

is the similarity of subspaces spanned by U;’ and U7 . Similarly,
we define the Mean Similarities of Right Subspaces (MSRS)
as

MSRS =~ Z Z SRS(VS, V), (37
=1 j=141
where
1
SRSV, Vi) =/ IV Vel (38)

is the similarity of subspaces spanned by V;® and V. It is
easy to get that, both M SLS and M SRS are between [0 1].
Moreover, in the case described in Theorem 3, both M SLS
and M SRS obtain the maximal value, i.e., 1.

With the criteria defined above, we are ready to discuss
when and why GLRAM can perform well in terms of com-
pression in the coming subsections.

B. Discussion on the Normalized Mean Lower-Bound Crite-
rion

Considering the definition of NM LB of NMSE and their
relationship revealed in inequality (33), it is easy to get the
following proposition

Proposition 1: For given s:

e When NM LB is large, NM SE is large too, and there-

fore GLRAM can not work well in terms of compression.

e When NM LB is small, it is possible that GLRAM can
work well in terms of compression, depending on whether
NMSE can be close to NMLB.

Note that, NM LB decreases with increasing s, and in the
extreme case, N M LB decreases to zero when s = min(e, f).
However, the purpose of GLRAM is to obtain compact rep-
resentation at low reconstruction error, and thus low NM LB
should be obtained at relatively small s. Therefore, we have
the following proposition

Proposition 2: For varying s: To ensure that GLRAM can
work well in terms of compression (obtaining compact rep-
resentation at low reconstruction error), the value of NM LB
should decrease sharply with increasing s, so that NM LB
can be low when s is small.

To elaborate Proposition 2, we analyze the following two
special cases. The first one is that, the singular valqes of A;
(i=1,...,N) are the same, so that NM LB(s) = %ef)f;s
Obviously, NMLB 1is large when s is far smaller than
min(e, f), and GLRAM can not compress well by obtaining
low NMSE at low s. The second one is that, d1 (A;), the first
singular value of A; (¢ = 1,...,N) is extremely larger than
the rest singular values, so that for every s, NM LB is equal
to 0 numerically. In this case, one can choose s = 1 to ensure
small NMLB (= 0 numerically). The difference between
these two special cases are that, with increasing s, NM LB
decreases slowly (linearly) in the first case while extremely
sharply in the second one. Of course, for real databases, the
distribution of singular values is between these two special
case, and obviously GLRAM is suitable for the case that the
leading few singular values dominate.

When N M LB is low at small s, it is worthwhile to consider
whether the obtained N M SFE can be close to its lower-bound
NMLB. We will discuss this in the next subsection.

C. Discussion on the Similarities Among Subspaces Criteria

In looking for L and R that compress the N samples A;’s,
it is obvious that for a given sample A;, if L (and R) spans
the same subspace as U (and V*), the reconstruction error of
A; can touch the lower-bound, i.e., ||A; — LLTA;RRT||% =
Zgﬁ(e’f) 8;(A;)?. Since L (and R) is a tradeoff among the
U?’s (and V;%’s), then it is reasonable that, when U;’s (and
V:?’s) span close subspaces, the obtained L (and R) is likely
to be close to the given U;’ (and V;?) so that the reconstruction
error of A; is close to its lower-bound. Based on this analysis,
we give the following proposition:

Proposition 3: MSLS and MSRS Ceriteria:

The larger M SLS and M SRS are, the more likely NMSFE
is close to NM LB.

We elaborate this proposition by two examples. For the first
one, considering the case presented in Theorem 3, it is obvious
that MSLS = MSRS = 1. In this example, NM SE equals
NMLB. For the second one, suppose that there are N rank
1 matrices A; = w;v;", where uj u; =0 (Vi # j), v v; =0
Vi # 7), ulul—l andv 'ul—l Wesets=m=n=1
and apply GLRAM to compress these /N matrices. Obviously,
in this example, NM LB = 0, and MSLS = M SRS = 0. By
some careful mathematical deductions, we can get NMSE =




N-1

~» Which is far larger than NMLB = 0, especially for
large N.

From Proposition 3, we know that, when MSLS and
MSRS are large, NM SFE is likely to be close to its lower-
bound NM LB. For better revealing the relationship among
NMSE, NMLB, MSLS and MSRS, we make use of
gﬁgg = tx%gg which depicts the ratio between the
retained information and the upper-bound NMUB. Obvi-
ously, the larger JJ\,VAI‘//[III;”JIB is, the closer NM SE is to NMLB.
Our experiments in Section VI-B show that, with increasing
MSLS and MSRS, ]J\Y 1]\‘/[/[[%), generally increases as well.

It is meaningful to point out that, there are some special
cases when M SLS and M SRS are low, but NMSE is pos-
sibly close to NM LB. Here we also consider the two special
cases employed in Section V-B. For the first one, we assume
that A;’s are matrices with equal singular values, and that the
spaces spanned by U;’s (and V;?) are not close so that M.SLS
and M SRS are small. In this case, it is possible that NM SE
can be close to NMLB. For the second case, we assume
that, 01(A;), the first singular value of A; (i = 1,...,N) is
extremely larger than the rest singular values, and the first left
(and right) singular vectors U}’s (and V;!’s) are the same, but
the remaining left (and right) singular vectors differ quite a
lot. When when setting s > 1, it is possible that NM SFE and
NMLB are both 0 numerically, but that M SLS and M SRS
are small. However, these two cases can be addressed by
using the distribution of N M L B under varying s. For the first
case, NM LB decreases linearly with varying s, and therefore
GLRAM does perform well in terms of compression due to
high NMSE at low s. For the second one, since NMLB
decreases extremely sharply, then s = 1 is enough for compact
compression, with VM SE being close to N M LB (both equal
0 numerically), and MSLS = MSRS = 1.

In the end of this subsection, it is worthwhile to make
use of Proposition 3 to point out that, when e and f are
extremely imbalanced, i.e., e > f or f > e, m = n might
not be a good choice for GLRAM. Without loss of generality,
we assume f = 2 and e > f. In this case, although we
can set s = m = n = 2 (note that, m < e and n < f)
achieving NMLB = 0, NMSE can be typically large
when the subspaces spanned by U;’s differ greatly so that
MSLS is very low. From this special case, we can say that
GLRAM should be applied to databases with balanced e and
f. Moreover, a possible way to deal with imbalanced e and
f is to reshape the imbalanced matrices to the balanced ones,
and this technique has been employed in [29].

From the discussion in the previous subsections, we can say
that when 1) N M LB decreases sharply with increasing s, and
can achieve a low value at small s, and meanwhile 2) M SLS
and M SRS are relatively large, GLRAM can work well in
terms of compression.

VI. EXPERIMENTS

To study the information preserving abilities of GLRAM
projection vectors, and to empirically discuss the relationship
among the criteria defined in Section V, we conduct experi-

ments on the following three datasets (one synthetic and two
real-world face datasets):

« RAND is a synthetic dataset consisting of 400 matrices
of size 112 x 92. The 10304 entries in each matrix are
randomly generated from the normal distribution with
mean 0 and standard derivation 1;

o ORL! contains the face images of 40 persons, for a total
of 400 images. The resolution of the face images is 112 x
92;

o« FERET [30] is a database that consists of a total of
14,051 gray-scale images representing 1,199 subjects. In
this paper, we conduct experiments on a subset of the
FERET test 1996, fa, which contains 1,196 face images.
The resolution of the face images is 150 x 130.

When implementing the GLRAM algorithm, we follow the
similar setting as in [6], namely, the parameter 1 (which
is defined as the ratio between the values of Root Mean
Square Reconstruction Error [6] corresponding to two adjacent
iterative steps, and controls the convergence precision) is set
to 1075, and s = m = n = 10.

glram ,

A. On Information Preserving Abilities of p s

In this subsection, we explore the information preserving
abilities of pglmm’s defined in (13). We conduct experi-
ments on RAND and ORL, and report results in Fig. 1,
where the z-axis corresponds to j, the number of projec-
tion vector, and the y-axis corresponds to the logarithmic
preserved information ln(zij\il(a;fp?lmmf). From Fig. 1,
we can clearly observe that, unlike SVD, the information
preserving abilities of GLRAM projection vectors are not
in a non-increasing order. We would like to point out that,

the preserved information of the projection vector p?"*™

J
N ! . .
measured by >_;", (a; pJ"*")? has an equivalence relation-

ship with the reconstruction error by this projection vector
glram __glram

measured by Zf\il lla; —p]

2
; ] a;||3, as we can eas-
glram __glram

ily verify S0 [la; — " pf" " aill3 = 3oL, a3 -
Zﬁvzl(a;fp?lmm)? We choose the former measurement for
better distinguishing the information preserving abilities of
each individual projection vector.

Next, we explore whether there are certain projection vec-
tors that on one hand are orthogonal to GLRAM projection
vectors, and on the other hand can preserve more information
than the GLRAM projection vectors. For this sake, we com-
pute 1) r;,i = n+1,..., f that are the f — n eigenvectors
of Mp corresponding to the rest f — n eigenvectors in a
non-increasing order, and 2) l;,j7 = m + 1,...,e that are
the e — m eigenvectors of My corresponding to the rest
e —m eigenvectors in a non-increasing order. Obviously, the
projection vectors 7, ®1;,Vi=n+1,...,f,j=1,...,eand
i=1,...,f,7=m+1,..., e are orthogonal to the GLRAM
projection vectors ; @ l;, ¢ = 1,...,n,5 = 1,...,m. Our
experimental results on RAND and ORL show that, there are
respectively 86 and 106 projection vectors that on one hand are
orthogonal to GLRAM projection vectors in FPyj.q.,, and on

Uhttp://www.uk.research.att.com/facedatabase.html
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Fig. 1. The information preserving abilities of p’ s. The z-axis

corresponds to j, the number of projection vector, and the ?—axis corresponds
to the logarithmic preserved information In(3 N l(a;rp? ramy2y,

the other hand can preserve more information than the worst
GLRAM projection vector.

B. On Different Criteria

First, we verify s = m = n from the viewpoint of
minimizing the lower-bound of GLRAM'’s objective function,
when the GLRAM solution is close to its lower-bound. For this
sake, we fix the reduced dimension & = mn = 100, and try the
following five combinations for m xn: 1x 100, 5% 20, 10x 10,
20 x 5, and 100 x 1, and conduct experiments on FERET. The
results are reported in Fig. 2, from which we can see that,
1) NMSE is close to NMLB, and 2) both NMLB and
NMSFE obtain the minimal values when s = m = n = 10.

Fig. 2. NMSE and N M LB under varying m X n. The x-axis corresponds
to different sizes of m X n, and the y-axis denote the values of NMSE or
NMLB.

Second, we report the values of the criteria on different
datasets in Table II. From this table, we can observe that

o GLRAM performs poorly on the synthetic dataset RAND,
with the criterion N M SE = 0.9849 being typically high.
The underlying reasons are: 1) NM LB = 0.6877 is very
high, which leads to NMSE > NMLB = 0.6877; and
2) MSLS = 0.2982 and M SRS = 0.3290 are very
small, and thus NMSFE is much larger than NM LB.
Therefore, if the value of NMLDB is relatively large
and meanwhile the values of MSLS and MSRS are
relatively small, GLRAM can not achieve relatively low
NMSE.

o GLRAM performs well on the real image datasets ORL
and FERET, with NMSE < 0.05. The underlying

reasons are that: 1) the criterion NM LB is very small;

and 2) the criteria M SLS and MSRS are very large.

Therefore, if the value of NM LB is relatively small and

meanwhile the values of MSLS and M SRS are rela-

tively large, GLRAM can achieve relatively low NMSE.
« Looking at fMEL — 1=NMSE “which depicts the ratio
between the retained information and the upper-bound
NMU B, we can see that the values on FERET and ORL
is very high (over 0.9), while the value on RAND is
very small (less than 0.1). These results are in accordance
withe results that the M SLS and M SRS criteria are high
on FERET and ORL, while low on RAND.

TABLE 11
VALUES OF THE CRITERIA ON DIFFERENT DATASETS.
Criterion RAND ORL FERET
NMSE 0.9849 0.02453 0.04272
NMLB 0.6877 0.007127  0.009400
MSLS 0.2982 0.7348 0.7172
MSRS 0.3290 0.7307 0.7808
NMRI
NS 0.04822 0.9825 0.9664

Third, we have a look at the distribution of the NM LB
criterion with varying s. We report results on ORL and RAND
in Fig. 3, from which we can see that 1) when s =1, NM LB
is already very low (less than 0.1) on ORL but quite high (over
0.9) on RAND, and 2) with increasing s, NM LB decreases
quickly to below 0.01 when s > 8 on ORL, but NMLB
remains over 0.1 when s < 50. Therefore, to ensure that
GLRAM can perform well in terms of compression, NM LB
should decrease sharply with increasing s.

ORL RAND

............

Fig. 3. The distribution of N M LB under varying s.

Fourth, we explore the relationship between NMSE an
NMLB under fixed MSLS and M SRS. For this sake, we
make use of the fractional order singular value representation
of each matrix pattern A; as [31]

AY = U ALV, (39)

where Ay = diag(61(Ai)%, ..., Omince,r)(A:)*), Ui, Vi and
d;(A;) are defined in Eq. (23), and « is a nonnegative param-
eter. Obviously, A under different nonnegative « shares the
same left and right singular vectors as A;. Therefore, by setting
different nonnegative a’s, we will generate different datasets
{AX}N °s with identical M SLS and M SRS. Moreover, for
any given A;, 0;(A;)’s are positive and in a non-increasing
order, and thus the larger « is, the higher the criterion NM LB
is. We report the results in the first row of Fig. 4, from which
we can observe

e On RAND, the value of N M LB decreases with increas-
ing «, but the value of NM SE remains very high (over



0.9). Specifically, when a« = 10, NMLB = 0.02535
is relatively small, but NMSE = 0.9688 is far larger
than N M LB. This attributes to the fact that M SLS and
M SRS are very small. Therefore, we can say that, when
MSLS and M SRS are relatively small, it is likely that
GLRAM can not obtain relatively low NMSE.

e On ORL and FERET, since the values of MSLS and
MSRS are relatively large, NMSE is very close to
NMLB. In other words, Jgiram (L, R) is close to its
lower-bound J5i2  (m,n) in Eq. (24). Therefore, the
justification of m = n (in Section IV-A) from the
viewpoint of minimizing J%Z, (m,n) is applicable to
Jgiram (L, R) for image datasets such as ORL and
FERET.

e On ORL and FERET, despite that the values of M SLS
and M SRS are very high, when setting « to 0, the value
of NMSEFE becomes typically high, which attributes to
the fact that the value of NM LB is typically large (over
0.9). Therefore, we can say that, GLRAM can not obtain
relatively low NMSE, when NM LB is relatively large.

Fifth, we explore the relationship between ]JVV 1%];113 and the

similarities among subspaces criteria MSLS and MSRS.
Here, JJ\Y ]]g[]}é = }:%%ig denotes the ratio between the re-
tained information and the upper-bound N MU B. Obviously,
the larger ]Z\\,[JJ\\/[IIIJ% is, the closer NMSE is to NMLB. To
generate varying M SLS and M SRS, we let s change from
1 to min(e, f). We conduct experiments on RAND, ORL and
FERET, and report results in the second row of Fig. 4. We

can observe that,

e On RAND, when s = 1, MSLS = 0.0758 and
MSRS = 0.0836 are very small, i.e., the first left (and
right) singular vectors of the matrices A;’s differ greatly,

and therefore ]1\\,[ %ﬁé = 0.0105 is quite small, which

leads to that NM SE is quite larger than NM LB. When

s = 92, MSRS touches 1 since the V;° are 92 x 92

orthonormal matrices, but M SLS does not since the

112 x 92 matrices U;’s do not span the same subspace.

Finally, it is easy to get that, M SLS and M SRS consis-

tently increase with increasing s, and ]va ]{%% consistently
increases when M SLS and M SRS increase.

e On ORL, when s =1, MSLS = 0.9707 and M SRS =
0.9844 are very large, which are quite different from
those on RAND. Moreover, benefited by the large M .SLS

and M SRS values, ﬁj‘ﬂ}é = 0.9544 is quite close to 1,
which leads to that NMSE = 0.0456+0.9544x NM LB
is quite close to NMLB. Similar observation can be
obtained from FERET. It should be noted that, although
NMSE is close to NM LB when s =1, NM LB is not
small enough yet, and thus the s we choose is larger than
1 in practice.

o On ORL and FERET, it is interesting to note that, when
s increases from 1 to about 10, MSLS and MSRS
generally decrease; and when s increases from 11 to
min(e, f), MSLS and M SRS consistently increase. For
fVV ]]\\4/[[1}]13, it achieves the minimum when s = 2, and
increases with increasing s when s > 2. The reason that

NMRI ]
NMUB does not decrease when s increases from 2 to

about 10 might be that, the large values of MSLS and
MSRS at s = 1 benefit the compression performance at
s > 1. Finally, J]VV ]I\‘fgé increases as M SLS and M SRS
increase when s > 10.

o Comparing the curves on RAND with those on ORL and
FERET, we can find that, the curve of ]]\\,7 ]\Afgé is generally
below those of MSLS and MSRS on RAND, but is
generally above those of M SLS and MSRS on ORL
and FERET. Moreover, the values of MSLS and M SRS
are always relatively large (over 0.7) on FERET and
ORL, which attributes to the fact that the matrices share
a common characteristic, i.e., face image. In contrast,
MSLS and M SRS are quite low when s is below 20,
since the matrices are random and thus do not share much
common characteristics.

Summarizing the results from the above experiments, we
can say that, 1) when NM LB does not decrease sharply with
increasing s, N M LB can not be low at small s, and therefore
GLRAM can not perform well in terms of compression
performance; 2) when NM LB is low at small s, but M SLS
and MSRS are very low, GLRAM can not work well in
terms of compression; and 3) when NM LB is low at small s
and meanwhile M SLS and M SRS are large (say, > 0.7 as
on ORL and FERET), GLRAM can obtain good compression
performance.

VII. CONCLUSION

In this paper, we revisit GLRAM to reveal its properties,
answer an open problem raised by [6], and explore when and
why GLRAM can perform well in terms of compression. Our
main contributions are that:

1) We reveal the close relationship between GLRAM and
SVD that GLRAM optimizes the same objective function as
SVD except the imposed constraints. Based on the revealed re-
lationship, we can theoretically answer why GLRAM achieves
higher reconstruction error than SVD under the same number
of reduced dimension. Moreover, we show that the information
preserving abilities of the projection vectors p? fram-g are not
in a non-increasing order as those of SVD.

2) We offer a lower-bound of GLRAM’s objective function,
based on which we answer an open problem raised by [6], i.e.,
giving a theoretical justification of m = n from the viewpoint
of minimizing the lower-bound of Jyiyqm (L, R) in Theorem
2.

3) We explore a fundamental problem with the usability of
GLRAM, and argue that, when N M LB is low at small s and
meanwhile M SLS and M SRS are large, GLRAM can obtain
good compression performance.

The arguments made in this paper are verified by theoretical
proofs and empirical evaluations on one synthetic and two
real-world face datasets. In our viewpoint, the following four
aspects are worthy of future study:

1) Since the information preserving abilities of GLRAM
projection vectors are not in a non-increasing order as SVD,
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with M SLS and M SRS. Please refer to Table I for explanation of the notations.

we can generalize the GLRAM objective function Eq. (8) to

N
min J(L,R,G) = G- (4; — A)|%, 40
L ( ) ;H ( )N (40)
RTR=1I;, o
IGlI%=k

where A; = LLTA;RR"™, G an e x f binary matrix, and - is
the element-by-element matrix multiplication. The underlying
motivation is to employ the k& projection vectors that have
the strongest abilities in preserving information. We can also
extend the study in this paper to benefit the extensions of
GLRAM, the two-dimensional discriminant methods [27], the
tensor based methods [24], [23], etc.

2) It is worthwhile to give some probabilistic interpretations
for the two-dimensional and tensor based methods (one related
work is [28]). It is also meaningful to derive some simplified
rules for testing when and why GLRAM can obtain good
compression performance, and explore whether there exists
a nice empirical model with which GLRAM outperforms the
SVD, and m = n is the optimal choice.

3) Based on the revealed relationship between GLRAM and
SVD, it is meaningful to explore whether and how the two-
dimensional and tensor-based representation can incorporate
the prior (spatial) information of the data for image classifi-
cation, and a similar study can be carried out on the MatPCA
and MatFLDA methods [29], which convert one-dimensional
data to two-dimensional ones for dimensionality reduction.

4) Since the optimization problem in Eq. (8) is non-convex,
we can not assure that the solution to GLRAM is globally
optimal. Therefore, it is worthwhile to further consider this
open problem raised in [6], i.e., when GLRAM can have the
global convergence property.
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