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DIMENSION OF BESICOVITCH-EGGLESTON
SETS IN COUNTABLE SYMBOLIC SPACE

AIHUA FAN, LINGMIN LIAO, JIHUA MA, AND BAOWEI WANG

Abstract. This paper is mainly concerned with Hausdorff dimensions of

Besicovitch-Eggleston subsets in countable symbolic space. A notable point
is that, the dimension values posses a universal lower bound depending only

on the underlying metric. As a consequence of the main results, we obtain

Hausdorff dimension formulas for sets of real numbers with prescribed digit
frequencies in their Lüroth expansions.

Keywords: Lüroth expansion, Countable symbolic space, Digit frequency
Hausdorff dimension, Convergence exponent, Bernoulli dimension
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1. Introduction

Consider the piecewise linear mapping T : [0, 1) 7→ [0, 1) defined by

T (0) = 0 and T (x) = n(n + 1)x− n, x ∈ [1/(n + 1), 1/n).

Let φ(x) = n for x ∈ [1/(n + 1), 1/n), and xk = φ(T k−1x) for k ≥ 1 . In this way,
one obtains a finite or infinite sequence {x1, x2, · · · } called the Lüroth digits of x.
Let Qc denote the set of irrational numbers. Each x ∈ [0, 1)∩Qc can be represented
as an infinite Lüroth series

x =
∞∑

n=1

xn∏n
k=1 xk

(
xk + 1

) ,

where xk ∈ N := {1, 2, 3, · · · } for each k ≥ 1 (see [6] p.36-41 and [14]).
Throughout this paper, we write

τj(x, n) := Card{k : xk = j, 1 ≤ k ≤ n}
for the number of occurrences of “j” among the first n digits {x1, x2 · · · , xn}.

Let ~p = (p1, p2, . . . ) be a probability vector, namely, pj ≥ 0 for all j ∈ N and∑∞
j=1 pj = 1, which will be referred to as a frequency vector hereafter. Define the

associated Besicovitch-Eggleston set by

E~p :=
{

x ∈ [0, 1) ∩Qc : lim
n→∞

τj(x, n)
n

= pj , ∀j ≥ 1
}

.

Let dimH stand for the Hausdorff dimension. Our first result is the following

Theorem 1.1. Given a frequency vector ~p, we have

dimH(E~p) = max

{
1
2
, lim inf

n→∞
−∑n

j=1 pj log pj∑n
j=1 pj log(j(j + 1))

}
.

Date: February 1, 2010.

1



2 AIHUA FAN, LINGMIN LIAO, JIHUA MA, AND BAOWEI WANG

Apparently, this dimension formula differs significantly from those in the m-ary
expansion cases studied by Besicovitch [3] and Eggleston [7]. Let us briefly explain
where the “universal” lower bound 1/2 comes from. Roughly speaking, it depends
on the “geometric structure” of the transformation T which generates the Lüroth se-
ries. More precisely, we have a countable partition {[1/(n + 1), 1/n) : n = 1, 2, · · · }
on [0, 1) and the transformation is piecewise linear on each partition element. The
number 1/2 is nothing but the convergent exponent of the sequence of interval
lengths {1/n(n + 1) : n = 1, 2, · · · } , namely

1
2

= inf

{
t ≥ 0 :

∞∑
n=1

1
(n(n + 1))t

< ∞
}

.

In the case of m-ary expansion, the partition associated to the transformation
x 7→ mx (mod 1) is finite, and the corresponding convergent exponent is zero.

The above result may be extended to the generalized Lüroth expansions(see [6]),
as well as to other expansions generated by piecewise linear interval transformations.
However, for convenience of presentation, we choose to work in the setting of the
countable symbolic space NN := {x = (xk)k≥1 : xk ∈ N}. The transference from
the symbolic space to the interval will be illustrated in the last section.

Let us describe the general framework. Fixing a vector ~q = (q1, q2, . . . ) such that
qk > 0 for all k ≥ 1 and

∑∞
k=1 qk = 1, called a metric vector, we define a metric on

NN(called the ~q-metric) by

ρ~q(x, y) :=
n∏

k=1

qxk
, where n = min{k ≥ 0 : xk+1 6= yk+1} ∀x, y ∈ NN,

with the convention that ρ~q(x, y) = 1 if n = 0 in the above.
For a frequency vector ~p, we define a Besicovitch-Eggleston set by

E~p :=
{

x ∈ NN : lim
n→∞

τj(x, n)
n

= pj ∀j ∈ N
}

.(1.1)

Our purpose is to determine the Hausdorff dimension of E~p with respect to the
metric ρ~q. Let us recall the definition. Denote by | · |~q the diameter of a set under
the metric ρ~q. For E ⊂ NN and s ≥ 0, set

Hs(E) := lim
δ→0

inf
{∑

|Ui|s~q : Ui ∈ C, |Ui|~q < δ
}

,

where the infimum is taken over C which is a collection of cylinders with diameter
smaller than δ such that E ⊂ ⋃

U∈C U . The Hausdorff dimension with respect to
the metric ρ~q of E is defined by

dimH(E) = inf{s ≥ 0 : Hs(E) = 0} = sup{s ≥ 0 : Hs(E) = +∞}.
Now we introduce two exponents. We define the convergence exponent of ~q by

α(~q) := inf
{

t ≥ 0 :
∞∑

j=1

qt
j < ∞

}

and the Bernoulli dimension of ~p relative to the ~q-metric by

β(~p, ~q) := lim inf
n→∞

−∑n
j=1 pj log pj

−∑n
j=1 pj log qj

.
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Our main result is the following

Theorem 1.2. Given ~q and ~p as above, we have

dimH(E~p) = max
{
α(~q), β(~p, ~q)

}
.

The following are some remarks concerning this dimension formula.
(1) Since

∑∞
j=1 qj = 1, we have α(~q) ≤ 1. In Lemma 2.3 below, we will see that

β(~p, ~q) ≤ 1. If ~p = ~q, then β(~p, ~q) = 1. The Hausdorff dimension of the whole space
is equal to 1.

(2) In the special case that qk ∼ 1/k(log k)1+ε for some ε > 0, we have α(~q) = 1.
Then dimH E~q = 1 for all ~q.

(3) Look at the case where qk = 1/k(k + 1) for all k ≥ 1, which corresponds to
the Lüroth expansion. Then α(~q) = 1/2.

(4) Our results can be extended to the case that ~p is a sub-probability vector,
namely,

∑∞
j=1 pj < 1. In particular, one has dimH(E~p) = 1/2 when p1 = p2 =

· · · = 0. This would not happen in the m-ary expansion case.
The study of the Hausdorff dimensions of sets of numbers defined in terms of

the frequencies of the digits in their m-ary expansions has experienced a revival
in the mathematics literature (see for example [2, 10, 18]). The solution of such a
problem or of general problems of such kind is provided by a so-called variational
principle (see [12] for the most general setting of a compact topological system,
see also [17, 21]), which can be obtained in many cases by the thermodynamical
formalism. Here we consider a similar question for the Lüroth expansion (Theorem
1.1.) through a more general symbolic setting of infinite symbols (Theorem 1.2.).
The difference with earlier works is the (countable) infinity of the alphabet, from
which comes a particular phenomenon that the formal variational principle does
not hold as in the case of compact dynamics and the thermodynamical formalism
does not work verbatim. The case of Gauss dynamics related to continued fractions
is worked out in [11]. Another example showing the difference between finite and
infinite alphabet can be found in [13].

In the present paper, we have the will to give a simple and self-contained ex-
position on the Lüroth expansion and its generalization via the introduction of a
metric, that avoids at most as possible the language of dynamical systems and the
thermodynamic formalism. Actually, as we pointed out above, the thermodynamic
formalism does not work as we wish and we do not know if there always exists a
Gibbs measure, to be suitably defined, on the set in question, which has the dimen-
sion of the set. We also point out that in the similar case of continued fractions,
Kifer, Peres and Weiss [15] showed that Bernoulli measures can not be maximizing,
contrary to the case of m-ary expansion.

We should say that the lower bound β(p, q) defined by the liminf in Theorem 1.1.
is due to Kinney and Pitcher (see Theorem 6.1. [16] p. 307). This lower estimate is
also obtained in [1]. One of our contribution is the observation that 1/2 is always
a lower bound. This characterizes the particular phenomenon.

The paper is organized as follows. In Section 2, we prove the existence of some
points whose digit sequence satisfying certain growth conditions, and discuss some
properties of the exponents α(~q) and β(~p, ~q). Section 3 is devoted to the proof of
Theorem 1.2. In Section 4, by comparing dimensions of sets on [0, 1) with respect
to different covering classes, we shall derive Theorem 1.1 from Theorem 1.2.
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2. Preliminary

In this section, we focus on the symbolic space NN. First, we verify the existence
of some special points in the Besicovitch-Eggleston set E~p, which will be called
seeds. In Section 3, we will use such seeds to construct a Cantor set and show that
the Hausdorff dimension of the Besicovitch-Eggleston set is always bounded from
below by the convergent exponent α(~q). Then we discuss certain properties of the
convergence exponent α(~q) and the Bernoulli dimension β(~p, ~q).

2.1. Existence of seeds.

Lemma 2.1. Given a sequence of positive integers {an}n≥1 tending to the infinity,
there exist points z = (z1, z2, . . . ) ∈ E~p such that zn ≤ an for all n ≥ 1.

Proof. For any n ≥ 1, we construct a probability vector

(p(n)
1 , p

(n)
2 , . . . , p

(n)
k , . . . )

such that p
(n)
k > 0 for all 1 ≤ k ≤ an and p

(n)
k = 0 for all k > an, and that

lim
n→∞

p
(n)
k = pk for each k ≥ 1.(2.1)

This sequence of probability vectors determine a product probability measure P on
NN, which is supported by

∏∞
n=1{1, . . . , an}.

For each k ≥ 1. Consider the sequence of random variables {Xi(x) = 1{k}(xi)}∞i=1.
By Kolmogorov’s strong law of large numbers (see [20] p.388), we have

lim
n→∞

1
n

(
n∑

i=1

Xi −
n∑

i=1

E(Xi)

)
= 0 P− a.s.,

which implies

lim
n→∞

1
n

n∑

i=1

1{k}(xi) = lim
n→∞

1
n

n∑

i=1

p
(i)
k = pk P− a.s..(2.2)

Namely, for almost all z ∈ ∏∞
n=1{1, . . . , an}, each digit k has the required frequency

pk, this completes the proof. ¤

2.2. Convergence exponent α(~q) and Bernoulli dimension β(~p, ~q).

We first prove a lemma about the convergence exponent α := α(~q).

Lemma 2.2. Let α = α(~q) be the convergence exponent of a metric vector ~q =
(q1, q2, . . . ) which is not necessarily decreasing. Consider a permutation π : N →
N such that qπ(1) ≥ qπ(2) ≥ · · · . Then, there exists an increasing subsequence
{mk}k≥1 ⊂ N such that

n∑

k=1

log mk À n2,(2.3)

and for any ε > 0 and 0 < δ < 1, there exists an integer N = N(ε, δ) such that for
k ≥ N , we have

mk −mδ
k > m1−ε

k ,(2.4)

and for π−1(n) ∈ (mk −mδ
k,mk] (k ≥ N), we have

(π−1(n))1−ε < q−α
n < (π−1(n))

1+ε
1−ε .(2.5)
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Proof. We rearrange the elements qk’s in a decreasing order. That is to say, we
take a bijection π : N → N such that qπ(1) ≥ qπ(2) ≥ · · · . Since the convergence
exponent of ~q is invariant under the permutation π, we have (see [19], p.26)

α = lim sup
n→∞

log n

log q−1
π(n)

.(2.6)

Therefore, one may choose an increasing sequence {mk}k≥1 satisfying (2.3) and for
any 0 < ε, δ < 1, there exists an integer N1 = N1(ε, δ) such that for all k ≥ N1,
(2.4) is satisfied and

m1−ε
k < q−α

π(mk) < m1+ε
k .(2.7)

By (2.6), there exists an integer N2 such that for all n ≥ N2

q−α
π(n) > n1−ε.(2.8)

Thus if we take N = max{N1, N2} then by (2.8), (2.7) and (2.4), for all n ∈
(mk −mδ

k,mk] (k ≥ N), we have

n1−ε < q−α
π(n) ≤ q−α

π(mk) < m1+ε
k < (mk −mδ

k)
1+ε
1−ε < n

1+ε
1−ε .

In other words, for π−1(n) ∈ (mk −mδ
k,mk] (k ≥ N), we have (2.5). ¤

Then we prove three lemmas about the Bernoulli dimension β(~p, ~q).

Lemma 2.3. For a metric vector ~q = (q1, q2, . . . ) and a frequency vector ~p =
(p1, p2, . . . ), we have

−
∞∑

j=1

pj log pj ≤ −
∞∑

j=1

pj log qj(2.9)

Proof. Let us assume that −∑∞
j=1 pj log qj < ∞. Then (2.9) is equivalent to

∞∑

j=1

pj log
qj

pj
≤ 0,

which follows from the concavity of the log function. ¤

Lemma 2.4. If −∑∞
j=1 pj log qj = ∞, then

β(~p, ~q) ≤ lim sup
n→∞

−∑n
j=1 pj log pj

−∑n
j=1 pj log qj

≤ α(~q).

P roof. The left-hand side inequality follows immediately from the definition of
the Bernoulli dimension β(~p, ~q). To prove the right-hand side inequality, we shall
use the following result (see [22], p.217): Let t1, · · · , tm be given real numbers. If
sj ≥ 0 and

∑m
j=1 sj = 1 then

m∑

j=1

sj(tj − log sj) ≤ log
( m∑

j=1

etj

)
.(2.10)

Now by the definition of the convergence exponent, for any ξ > α(~q) we have∑∞
j=1 qξ

j < ∞. Applying (2.10) to m = n + 1, sj = pj for 1 ≤ j ≤ n and
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sn+1 =
∑∞

j=n+1 pj , and tj = ξ log qj for 1 ≤ j ≤ n and tn+1 = 0, we get

ξ
n∑

j=1

pj log qj −
n∑

j=1

pj log pj −
( ∞∑

j=n+1

pj

)
log

( ∞∑

j=n+1

pj

)
≤ log

(
1 +

n∑

j=1

qξ
j

)
.

Therefore,

−∑n
j=1 pj log pj

−∑n
j=1 pj log qj

≤ ξ +
(
∑∞

j=n+1 pj) log(
∑∞

j=n+1 pj)
−∑n

j=1 pj log qj
+

log(1 +
∑n

j=1 qξ
j )

−∑n
j=1 pj log qj

.

Recalling that −∑∞
j=1 pj log qj = ∞, we finish the proof by letting n →∞. ¤

For a1, · · · , an ∈ N, we call the set

I(a1, . . . , an) := {x ∈ NN : x1 = a1, · · · , xn = an}
an n-cylinder. The n-cylinder containing x will be denoted by In(x).

Given a frequency vector ~p, we define the Bernoulli measure µ~p on NN by

µ~p(I(a1, . . . , an)) =
n∏

j=1

paj
.

Under the condition −∑∞
j=1 pj log qj < ∞, we can calculate the Hausdorff di-

mension of this Bernoulli measure (see [9] for the definition of the dimension of a
measure).

Lemma 2.5. If −∑∞
j=1 pj log qj < ∞, then dimH µ~p = β(~p, ~q) and

β(~p, ~q) =
−∑∞

j=1 pj log pj

−∑∞
j=1 pj log qj

.

P roof. Consider the sequence of random variables
{
log qxj

}∞
j=1

, which are in-
dependent and identically distributed with respect to the Bernoulli measure µ~p.
Direct computation yields

E(− log px1) = −
∞∑

j=1

pj log pj ≤ −
∞∑

j=1

pj log qj = E(− log qx1) < ∞.

For any x = (x1, x2, . . . ) ∈ NN, we have

log µ~p(In(x)) =
n∑

j=1

log pxj , log |In(x)|~q =
n∑

j=1

log qxj .

Hence, by the law of large numbers, we obtain

lim
n→∞

log µ~p(In(x))
log |In(x)|~q =

−∑∞
j=1 pj log pj

−∑∞
j=1 pj log qj

µ~p − a.e..

By a result in [9], we obtain

dimH µ~p =
−∑∞

j=1 pj log pj

−∑∞
j=1 pj log qj

.

¤

3. Proof of Theorem 1.2

For ease of notation, we shall write α and β instead of α(~p) and β(~p, ~q).



7

3.1. Lower bound. We first prove that dimH(E~p) ≥ α for any ~p.
For any 0 < ε, δ < 1, let N, {mk}k≥1 be the same as in Lemma 2.2. By Lemma

2.1 and (2.3), we can choose a “seed” z = (z1, z2, · · · ) ∈ E~p such that

(n+1)2∑

k=1

log q−1
zk
¿

n∑

k=1

log mk.(3.1)

We will use this “seed” to sprout a large enough Cantor set in E~p.
We say x ∈ NN is a “bud” of z if xn = zn for non square integer n. By collecting

some buds of the given seed z, we define

Fz(ε, δ) :=

{
x ∈ NN : x is a bud of z; xk2

{ = zk2 if k < N

∈ π((mk −mδ
k,mk]) if k ≥ N

}
.

By the definition, each x ∈ Fz(ε, δ) has the same digit frequency as that of z,
so Fz(ε, δ) ⊂ E~p for any ε > 0 and δ > 0. The following proposition immediately
implies dimH(E~p) ≥ α.

Proposition 3.1. For any 0 < ε < 1 and 0 < δ < 1,

dimH(Fz(ε, δ)) ≥ αδ(1− ε)
1 + ε

.

By Billinsley’s theorem (see [4] and [23]), in order to prove Proposition 3.1 we
need only to prove the following lemma.

Lemma 3.2. For any 0 < ε < 1 and 0 < δ < 1, there exists a measure µ supported
by Fz(ε, δ) such that for any x ∈ Fz(ε, δ),

lim inf
m→∞

log µ(Im(x))
log |Im(x)|~q ≥ αδ(1− ε)

1 + ε
.

Proof. We construct a measure µ on Cantor set Fz(ε, δ). For x ∈ Fz(ε, δ) and
for n2 ≤ m < (n + 1)2 (n ≥ N), set

µ(Im(x)) =
n∏

k=N

1
mδ

k

.

This measure is well defined on Fz(ε, δ). Notice that

∣∣Im(x)
∣∣
~q

=
m∏

k=1

qxk
=

∏∗m

k=1
qxk

n∏

k=N

qxk2 =
∏∗m

k=1
qzk

n∏

k=N

qxk2 ,(3.2)

where ∗ signifies the absence of the square numbers in [N, m] in the product. Then

log µ(Im(x))
log |Im(x)|~q =

δ
∑n

k=N log mk∑∗m

k=1 log q−1
zk +

∑n
k=N log q−1

xk2

,

where ∗ signifies the absence of the square numbers in [N, m] in the summation.
Since for x ∈ Fz(ε, δ), xk2 ∈ π((mk−mδ

k,mk]), we get π−1(xk2) ∈ (mk−mδ
k,mk].

Thus by (2.5), we have

(π−1(xk2))1−ε < q−α
xk2

< (π−1(xk2))
1+ε
1−ε .

Hence
1
α

(1− ε) log(mk −mδ
k) < log q−1

xk2
<

1
α

1 + ε

1− ε
log mk.(3.3)
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Therefore by the right hand inequality of (3.3),

log µ(Im(x))
log |Im(x)|~q >

δ
∑n

k=N log mk∑(n+1)2

k=1 log q−1
zk + 1

α
1+ε
1−ε

∑n
k=N log mk

.

Letting m →∞ and by (3.1), we get, for any x ∈ Fz(ε, δ),

lim inf
m→∞

log µ(Im(x))
log |Im(x)|~q ≥ αδ(1− ε)

1 + ε
.

¤
Now we prove that dimH(E~p) ≥ β. We shall distinguish two cases according to

the convergence or divergence of the series −∑∞
j=1 pj log qj .

In the case of −∑∞
j=1 pj log qj = ∞, we have proved that dimH(E~p) ≥ α. Using

α ≥ β by Lemma 2.4, we get dimH(E~p) ≥ β.
For the case of −∑∞

j=1 pj log qj < ∞, we consider the Bernoulli measure µ~p on
E~p. By Lemma 2.5, we have

dimH(E~p) ≥ dimH µ~p ≥ β.

3.2. Upper bound. We will distinguish two cases: β ≤ α and β > α.

Case β ≤ α. We want to show that dimH(E~p) ≤ γ := α + 3δ, for any δ > 0.
For any fixed integer N and any real number ε > 0, we have

E~p ⊂
∞⋃

k=1

∞⋂

m=k

Hm(ε,N),

where

Hm(ε,N) :=
{

x ∈ NN :
∣∣∣∣
τj(x,m)

m
− pj

∣∣∣∣ < ε, 1 ≤ j ≤ N

}
.

For any integer k ∈ N and n ≥ k, we have

Hγ
( ∞⋂

m=k

Hm(ε,N)
) ≤ Hγ(Hn(ε,N))

≤
∑

| τj(x,n)
n −pj |<ε,1≤j≤N

|In(x)|γ~q

=
∑

n(pj−ε)<mj<n(pj+ε),1≤j≤N

∑

τj(x,n)=mj ,1≤j≤N

|In(x)|γ~q

≤
∑

n(pj−ε)<mj<n(pj+ε),1≤j≤N

n!
m1!m2! · · ·mN !mN+1!

N∏

j=1

q
mjγ
j

( ∞∑

j=N+1

qγ
j

)mN+1

,

where mN+1 = n−m1 − · · · −mN .
Let φ(t) := −t log t for t ∈ [0, 1] with φ(0) = 0. We have the following elementary

inequality whose proof is postponed to the end of this section.

Lemma 3.3. Let N ≥ 1 and ε > 0. Then, for n sufficiently large, one has

n!
m1!m2! · · ·mN !mN+1!

N∏

j=1

q
mjγ
j

( ∞∑

j=N+1

qγ
j

)mN+1 ≤ exp{(A + B)n},
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where

A :=
N∑

j=1

φ(pj) + φ
( ∞∑

j=N+1

pj

)
+ Aε,N + O

( log n

n

)
,

and

B := γ
N∑

j=1

pj log qj +
( ∞∑

j=N+1

pj

)
log

( ∞∑

j=N+1

qγ
j

)
+ Bε,N ,

with
lim
ε→0

Aε,N = 0 and lim
ε→0

Bε,N = 0.

Since β ≤ α < γ = α + 3δ , by the definition of β, there exist infinite many
integers N such that

N∑

j=1

φ(pj) < −(α + δ)
N∑

j=1

pj log qj .(3.4)

Since
∑∞

j=1 pj =
∑∞

j=1 qj = 1 and
∑∞

j=1 qγ
j < ∞ for γ > α, the infinite many N ’s

can be chosen to satisfy

φ
( ∞∑

j=N+1

pj

)
+

( ∞∑

j=N+1

pj

)
log

( ∞∑

j=N+1

qγ
j

)
≤ −δ

N∑

j=1

pj log qj .(3.5)

We fix N and let ε be small enough such that

Aε,N + Bε,N ≤ −δ
N∑

j=1

pj log qj .

Then by (3.4) and (3.5), we get

A + B < −(α + δ)
N∑

j=1

pj log qj + γ
N∑

j=1

pj log qj − 2δ
N∑

j=1

pj log qj + O

(
log n

n

)

= (γ − α− 3δ)
N∑

j=1

pj log qj + O

(
log n

n

)
= O

(
log n

n

)
.

Letting n →∞, we have

Hγ(
∞⋂

n=k

Hn(ε,N)) = 0.

Thus we obtain dimH(E~p) ≤ γ.
Case β > α. We want to show dimH(E~p) ≤ γ := β + 3δ, for any δ > 0. By the

definition of β, there exist infinite many N ’s such that

N∑

j=1

φ(pj) < −(β + δ)
N∑

j=1

pj log qj .

Using this in place of (3.4), we can complete the proof in the same way as in the
case of β ≤ α.
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3.3. Proof of Lemma 3.3.

First, by the Stirling formula, we have

1
n

log
n!

m1!m2! · · ·mN+1!
=

N+1∑

j=1

φ
(mj

n

)
+ O

( log n

n

)
.(3.6)

Recall that |mj

n | < ε for 1 ≤ j ≤ N and mN+1 = n−m1−· · ·−mN , by the uniform
continuity of the function φ(t) = −t log t on [0, 1], we have

1
n

log
n!

m1!m2! · · ·mN !mN+1!

≤
N∑

j=1

φ(pj) + φ
( ∞∑

j=N+1

pj

)
+ Cε,N + O

(
log n

n

)
,

where limε→0 Cε,N = 0.
On the other hand,

1
n

log
N∏

j=1

q
mjγ
j

( ∞∑

j=N+1

qγ
j

)mN+1

= γ
N∑

j=1

mj

n
log qj +

mN+1

n
log

( ∞∑

j=N+1

qγ
j

)

≤ γ
N∑

j=1

pj log qj − εγ
N∑

j=1

log qj +
( ∞∑

j=N+1

pj

)
log

( ∞∑

j=N+1

qγ
j

)

+Nε
∣∣∣ log

( ∞∑

j=N+1

qγ
j

)∣∣∣.

Combing the last two inequalities, the proof is completed.

4. Dimension of sets determined by the Lüroth expansion

Theorem 1.1 can be proved directly in a similar way. However, we prefer to derive
it from Theorem 1.2. This approach also serves to illustrate a general method of
transferring dimensional result from the symbolic space to the unit interval (0, 1),
which is of independent interest.

For each x ∈ (0, 1), let (x1, x2 . . . ) denote the sequence of Lüroth digits. Let

4(a1, a2, . . . , an) := {x ∈ [0, 1) : x1 = a1, x2 = a2, . . . , xn = an}
which is called a rank-n basic interval.

Let A ⊂ (0, 1). Recall that, in the definition of the Hausdorff measure of A, if
we use coverings by arbitrary intervals, the dimension index is the usual Hausdorff
dimension dimH(A); if we use coverings by the basic intervals, then we get another
dimension index, which will be denoted by dim∆(A).

It is clear that dimH(A) ≤ dim∆(A). By a result of Wegmann([23], see also [5]
pp.36), the equality holds in the following situation.

Proposition 4.1. One has dimH(A) = dim∆(A) for A ⊂ (0, 1) if

(4.1) lim
n→∞

log |4n(x)|
log |4n+1(x)| = 1 ∀x ∈ A,
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where 4n(x) := 4(x1, x2, . . . , xn) is the rank-n basic interval containing x.

In the present context, sets in the symbolic space NN are related to sets in the
interval (0, 1) via the mapping Γ : NN → (0, 1) defined by

Γ(x1, x2, · · · ) =
∞∑

n=1

xn∏n
k=1 xk

(
xk + 1

) .

Let I(a1, . . . , an) ⊂ NN be an n-cylinder, then

Γ(I(a1, . . . , an)) = 4(a1, a2, . . . , an).

This establishes a one-to-one correspondence between the cylinders in NN and the
basic intervals in (0, 1).

Recall that, the Hausdorff dimension in NN is defined by using cylinder-coverings,
and the dimension index dim∆ in (0, 1) is defined by using basic interval coverings.
Now we specify the metric vector ~q by letting qk = 1/k(k + 1) for all k ≥ 1. Then
the diameter of the cylinder I(a1, . . . , an) under the ~q-metric is

|I(a1, . . . , an)|~q =
n∏

j=1

qaj
= |4(a1, a2, . . . , an)|.

Therefore, we have the following ”transferring” result.

Proposition 4.2. Let E ⊂ NN, then

dim∆(Γ(E)) = dimH(E).

Now we are in a position to prove Theorem 1.1. Let ~p be a frequency vector,
and E~p the associated Besicovitch-Eggleston set in the symbolic space. Since the
convergent exponent is equal to 1/2, Theorem 1.2 asserts that

dimH(E~p) = max

{
1
2
, lim inf

n→∞
−∑n

j=1 pj log pj∑n
j=1 pj log(j(j + 1))

}
.

Let E~p = Γ(E~p) ⊂ (0, 1) be the corresponding Besicovitch-Eggleston set in Theorem
1.1, we shall prove that dimH(E~p) = dimH(E~p).

Since dim∆(E~p) = dimH(E~p) by Proposition 4.2, that dimH(E~p) ≤ dimH(E~p) is
clear. It remains to show the converse inequality.

Recall that, we have used two subsets for the lower bound estimation of dimH(E~p).
Firstly, by Lemma 2.1, there exists z = (zn)n≥1 ∈ E~p such that

zn ≤ n, for all n ≥ 1.(4.2)

For a positive number a > 1, set

F :=
{

x ∈ NN : xk2 ∈ (ak2
, 2ak2

]; xk = zk if k is nonsquare
}

.

It is clear that F ⊂ E~p, and dimH(F ) ≥ 1/2 by the proof of Proposition 3.1.
Let x ∈ Γ(F ) ⊂ E~p, then one can show that

lim
n→∞

log |4n(x)|
n3/2

= −2
3

log a

which implies (4.1), so by Proposition 4.1 and 4.2, we have

dimH(E~p) ≥ dimH(Γ(F )) = dim∆(Γ(F )) = dimH(F ) ≥ 1/2.
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Secondly, in the case of −∑∞
j=1 pj log qj < ∞, let

E =



x ∈ E~p : lim

n→∞

∑n
j=1 log qxj

n
=

∞∑

j=1

pj log qj



 ,

then Lemma 2.5 implies that dimH(E) ≥ −∑∞
j=1 pj log pj

−∑∞
j=1 pj log qj

.

Let x ∈ Γ(E) ⊂ E~p, since |4n(x)| = ∏n
j=1 qxj

, we have

lim
n→∞

log |4n(x)|
n

=
∞∑

j=1

pj log qj < ∞,

which implies (4.1), so by Proposition 4.1 and 4.2, we have

dimH(E~p) ≥ dimH(Γ(E)) = dim∆(Γ(E)) = dimH(E) ≥ −∑∞
j=1 pj log pj

−∑∞
j=1 pj log qj

.

Combining these two lower bounds, we have shown that dimH(E~p) ≥ dimH(E~p).
The proof of Theorem 1.1 is completed now.
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