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Abstract For the fully nonlinear uniformly elliptic equation F (D2u) = 0, it is well known that the viscosity

solutions are C2,α if the nonlinear operator F is convex (or concave). In this paper, we study the classical solu-

tions for the fully nonlinear elliptic equation where the nonlinear operators F is locally C1,β almost everywhere

for any 0 < β < 1. We will prove that the classical solutions u are C2,α, moreover, the C2,α norm of u depends

on n, F and the continuous modulus of D2u.
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1 Introduction

In this paper, we consider the following fully non-linear uniformly elliptic equations:

F (D2u) = 0. (1)

Let now Sn denote the space of n×n symmetric matrices. Equation (1) is uniformly elliptic if there exist
two constants 0 < λ 6 Λ < ∞ such that

λ||N || 6 F (M + N)− F (M) 6 Λ||N ||, (2)

for any M, N ∈ Sn with N > 0, where N > 0 means N is positive semi-definite.
Under the assumption that F is convex (or concave), it is well known that the viscosity solutions of

(1) are C2,α. This result was proved by Evans and later Caffarelli simplified the proof(see [1-7]). In the
proof of above result, the convex (or concave) hypothesis for F is essential since all the existing proofs
depend on ∂2u

∂e∂e , the second derivative of u along any direction e, is a sub-solution of Pucci’s extremal
operator M+ (see [1] for the definition of M+).

Without the convex (or concave) hypothesis on F , Caffarelli and Yuan Yu proved that the viscosity
solutions of (1) are C2,α if the level set

∑
= {M : F (M) = 0} satisfies:(i)

∑⋂{M : tr(M) = t is strictly
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convex for all constants t; (ii) the angle between the identity matrix I and the normal Fij to
∑

is strictly
positive on the non-convex part of

∑
(see [8]).

In this paper, we prove the interior C2,α regularity of classical solutions for (1). Our hypothesis is
that F is locally C1,β almost everywhere for 0 < β < 1. Precisely, F is differentiable almost everywhere
and for any bounded domain D ⊂ Sn, there exists a constant K such that for any M, N ∈ D, if F is
differentiable at N , then

|F (M)− F (N)− tr(F ′(N)(M −N))| 6 K|M −N |1+β . (3)

(Recall that tr(A) denotes the trace of the matrix A.) We point out that if F is convex (or concave),
then according to Alexandroff-Buselman-Feller theorem ([1][9]), F is locally C1,1 almost everywhere. Our
main theorem is as following.

Theorem 1.1. Suppose F is locally C1,β almost everywhere for 0 < β < 1 and u ∈ C2(B1) is a
solution of (1). If ρ is a non-decreasing function defined on R+ such that lim

δ→0
ρ(δ) = 0, and

|D2u(x)−D2u(y)| 6 ρ(|x− y|) ∀x, y ∈ B1, (4)

then there exist uniform constants 0 < α < 1 depending only on λ, Λ, n and C depending only on λ, Λ, n, ρ

such that
‖u‖C2,α(B1/2)

6 C‖u‖C2(B3/4)
. (5)

Theorem 1.1 will be proven in Section 3 by an iteration. Before this, in Section 2, we demonstrate that
the Hölder continuity can be measured by Lp norm.

Throughout this paper, we will use the following notations. Br(x) denotes the open ball in Rn centered
at x with radius r; Br := Br(0), Dr(x) := B1 ∩ Br(x); Br denotes the open ball in Sn centered at the
origin with radius r; |E| denotes the Lebesgue measure of any measurable set E; uD denotes the average
of the function u over the set D; oscDu denotes the oscillation of the function u in the set D ⊂ Rn,

exactly,
oscDu := sup

x,y∈D
|u(x)− u(y)|.

2 Hölder continuity

A function u defined on B1 is Cα(B1) (or Hölder continuous with exponent α) if there exists a constant
C such that

[u]α,B1
:= sup

x,y∈B1,x 6=y

|u(x)− u(y)|
|x− y|α 6 C,

where 0 < α < 1. This is the usual definition of Hölder continuity of u, where the continuity is measured
by L∞ norm. The following theorem claims that it can also be measured by Lp norm for any p > 1.

Theorem 2.1. Suppose u ∈ Lp(B1) with p > 1. If there exist constants 0 < α < 1 and A > 0 such
that for any x ∈ B1 and any r > 0,

1
|Dr(x)|

∫

Dr(x)

|u− uDr(x)|p 6 Arαp, (6)

then
[u]α,B1

6 C0A
1
p , (7)

where C0 is a constant depending only on n and α. (see [p70 of 10,Theorem 1.2]

Corollary 2.1. Suppose u ∈ Lp(B1) with p > 1. If there exist constants 0 < α < 1, 0 < r1 6 1
2 and

A1 > 0 such that for any x ∈ B 1
2

and any m = 1, 2, · · · , there exists a constant ax,m satisfying

1
|Brm

1
(x)|

∫

Brm
1

(x)

|u− ax,m|p 6 A1r
αmp
1 , (8)
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then
[u]α,B1/2

6 C1r
−n

p−α

1

(
A

1
p

1 + ‖u‖Lp(B1)

)
, (9)

where C1 is a constant depending only on n, α and ||u||Lp(B1).

Proof. Let A = max{ 2p+1||u||p
Lp(B1)

|Br1 |rpα
1

, 2pA1r
−n−pα
1 }, then we only need to show (6) holds for any x ∈ B 1

2

and any r > 0. Since (6) holds clearly for r > r1, we only need to show the case of r 6 r1. If r 6 r1, then
Dr(x) = Br(x) since r1 6 1

2 and x ∈ B 1
2
. Let m satisfy rm+1

1 < r 6 rm
1 , from

|uBr(x) − ax,m| 6 1
|Br(x)|

∫

Br(x)

|u− ax,m| 6
( 1
|Br(x)|

∫

Br(x)

|u− ax,m|p
) 1

p

,

we have
(

1
|Br(x)|

∫
Br(x)

|u− uBr(x)|p
) 1

p 6
(

1
|Br(x)|

∫
Br(x)

|u− ax,m|p
) 1

p

+ |uBr(x) − ax,m|

6 2
(

1
|Br(x)|

∫
Br(x)

|u− ax,m|p
) 1

p

.
(10)

By
|B

rk
1
(x)|

|B
r

k+1
1

(x)| = 1
rn
1

and (8), we deduce

(
1

|Br(x)|
∫

Br(x)
|u− ax,m|p

) 1
p 6

(
1

|Br(x)|
∫

Brm
1

(x)
|u− ax,m|p

) 1
p 6

6
(
A1r

αmp
1

|Brm
1

(x)|
|Br(x)|

) 1
p 6

(
A1r

αmp
1 r−n

1

) 1
p 6 A

1
p

1 r
−n

p−α

1 rα.

Combining with (10), we have (6) holds with A > 2pA1r
−n−pα
1 .

3 The Proof of Theorem 1.1

Lemma 3.1. Let u be a harmonic function defined in B1 and ϕ be a continuous function defined on
∂B1. If u = ϕ on ∂B1, then

sup
x∈B 1

2

|Dku(x)| 6 C‖ϕ‖L2(∂B1), (11)

where C is a constant depending only on n and k.

Proof. Let v be the harmonic function satisfying v = |ϕ| on ∂B1, the maximum principle now imply
that v(x) > 0 and −v(x) 6 u(x) 6 v(x) in B1. By Mean Value equalities and Hölder inequality, we have
that

v(0) =
1

|∂B1|
∫

∂B1

|ϕ|ds 6 1
|∂B1|

( ∫

∂B1

|ϕ|2ds
)1/2

|∂B1|1/2 6 C‖ϕ‖L2(∂B1); (12)

where C is a constant depending only on n. On the other hand, we have that

sup
x∈B 1

2

|Dku(x)| 6 C1 sup
x∈B 3

4

|u(x)| 6 C1 sup
x∈B 3

4

v(x) 6 C1v(0); (13)

The last inequality is the Harnack inequality. Here we have used the same letter C1 to denote constants
depending only on n and k. By (12) and (13), it is easy to see (11) holds.

Remark 3.1. Suppose that u(x) is the solution of the following problem
{
−aijDiju = 0 in B1,

u = ϕ on ∂B1,

where (aij)n×n is a constant matrix satisfying λI 6 (aij)n×n 6 ΛI, then the conclusion of lemma 3.1 will
be still true.
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We prove Theorem 1.1 through the following key lemma.

Lemma 3.2. Suppose u ∈ C2(B1) is a solution of (1) with D2u(x) ∈ B1 for any x ∈ B1, F satisfies
(3) for any M ∈ B2 and almost every N ∈ B2. There exist positive constants 0 < ε0 < 1 depending only
on λ, Λ, n, β,K and 0 < δ0 6 1

2 depending only on λ, Λ, n such that if

oscB1D
2u 6 ε0 (14)

and there exists M1 ∈ B2 satisfying

( 1
|B1|

∫

B1

|D2u−M1|2
) 1

2
= 2ε 6 2ε0, (15)

then there exists M2 ∈ B2 satisfying

( 1
|Bδ0 |

∫

Bδ0

|D2u−M2|2
) 1

2 6 ε. (16)

Proof. By (15) and F is differentiable in B2 a.e., we can and we do choose M̃ = (m̃ij)n×n ∈ B2 such
that ( 1

|B1|
∫

B1

|D2u− M̃ |2
) 1

2 6 3ε (17)

and that F is differentiable at M̃ with F ′(M̃) = (aij)n×n ∈ Sn. (2) implies

λI 6 (aij)n×n 6 ΛI (18)

in the sense of positive semi-definite. We claim that

||D2u− M̃ ||L∞(B1) 6 3ε0 (19)

In fact, if (19) is false, then by (14), |D2u(x)− M̃ | > 2ε0 for any x ∈ B1. This contradicts with (17).
Set P1(x) = 1

2xT M̃x for any x ∈ Rn. According to Poincare’s inequality, there exists a constant C

depending only on n such that

||(u− P1)−D(u− P1)B1
· x− (u− P1)B1

||L2(B1) 6 C||D(u− P1)−D(u− P1)B1
||L2(B1)

and
||D(u− P1)−D(u− P1)B1

||L2(B1) 6 C||D2(u− P1)||L2(B1).

It follows that

||(u− P1)−D(u− P1)B1
· x− (u− P1)B1

||W 1,2(B1) 6 C||D2(u− P1)||L2(B1).

By trace theorem and (17), we conclude

||u− P1 −D(u− P1)B1
· x− (u− P1)B1

||L2(∂B1)

6 C||u− P1 −D(u− P1)B1
· x− (u− P1)B1

||W 1,2(B1)

6 C||D2u− M̃ ||L2(B1) 6 Cε,

(20)

where C depends only on n.

Let h(x) be the solution of the following problem

{
−aijDijh = 0 in B1;

h = u− P1 −D(u− P1)B1
· x− (u− P1)B1

on ∂B1.
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It is clear that (aij)n×n is a constant matrix satisfying (18) (Recall (aij)n×n = F ′(M̃)). By remark 3.1
we have that for any x ∈ B 1

2
,

|D3h(x)| 6 C||u− P1 −D(u− P1)B1
· x− (u− P1)B1

||L2(∂B1); (21)

where C is a constant depending only on λ, Λ and n. In view of (20), then for any x ∈ B1/2,

|D3h(x)| 6 Ĉε,

where Ĉ depends on λ, Λ and n. Let

δ0 = min{1
2
,

1
2Ĉ

}. (22)

Therefore for any x ∈ Bδ0 ,

|D2h(x)−D2h(0)| 6 ||D3h||L∞(Bδ0 )δ0 6 Ĉδ0ε 6 1
2
ε. (23)

Set
f(x) = −F (M̃)− aij(Diju(x)− m̃ij) (24)

and from (3), it follows that |f(x)| 6 K|D2u(x)− M̃ |1+β for any x ∈ B1. Then by (17) and (19),

||f ||L2(B1) 6 K
( ∫

B1
|D2u− M̃ |2(1+β)

) 1
2

6 K(3ε0)β
( ∫

B1
|D2u− M̃ |2

) 1
2 6 K

√
|B1|(3ε0)β2ε.

(25)

Let v ∈ W 2,2(B1) be the solution of the following problem
{
−aijDijv = f in B1,

v = 0 on ∂B1,

then there exists a constant C depending only on λ, Λ and n such that

||v||W 2,2(B1) 6 C||f ||L2(B1) 6
√
|B1|CK(3ε0)β2ε.

Therefore we can and we do choose 0 < ε0 < 1 such that
( 1
|Bδ0 |

∫

Bδ0

|D2v|2
) 1

2 6 1
2
ε, (26)

where δ0 is given by (22).
Let P2 be the solution of the following problem

{
−aijDijP2 = F (M̃) in B1,

P2 = 0 on ∂B1,

Since (aij)n×n is a constant matrix, we have P2 is a second order polynomial .
Set w = P1 + P2 + v + h + D(u− P1)B1

· x + (u− P1)B1
and then by (24),

−aijDijw = −aijm̃ij + F (M̃) + f = −aijDiju in B1.

Since w|∂B1 = u|∂B1 , we have w = u in B1 and then

D2u = D2w = M̃ + D2P2 + D2v + D2h in B1.

Set M2 = M̃ + D2P2 + D2h(0). It follows that for any x ∈ Bδ0 ,

|D2u(x)−M2| = |D2v(x) + D2h(x)−D2h(0)| 6 |D2v(x)|+ |D2h(x)−D2h(0)|.
By (23) and (26), we have (16) holds.
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Corollary 3.1. Assume that all the hypotheses of Lemma 3.2 hold, and ε0 and δ0 are given by it. If
there exists M1 ∈ B2 satisfying

( 1
|B1|

∫

B1

|D2u−M1|2
) 1

2 6
√
|Bδ0 |
|B1| ε0δ

ln(1/2)
ln δ0

0 , (27)

then u ∈ C2,α(B1/2) with α = ln(1/2)
ln δ0

, moreover,

[D2u]α,B1/2
6 2C1δ

−n
2

0 ε0, (28)

where C1 is the constant given by Corollary 2.1.

Proof. We only need to show that for any x0 ∈ B1/2 and any k = 1, 2 · · · , there exists Mx0,k ∈ B2 such
that ( 1

|Bδk
0
(x0)|

∫

B
δk
0
(x0)

|D2u−Mx0,k|2
) 1

2 6 ε0δ
k

ln(1/2)
ln δ0

0 . (29)

Then we infer (28) by Corollary 2.1 since δ
ln(1/2)
ln δ0

0 = 1/2.

In order to prove (29), we use the mathematical induction method. First, for k = 1, since Bδ0(x0) ⊂ B1,
(27) implies (29) clearly for Mx0,1 = M1. Suppose that there exists a matrix Mx0,k ∈ B2 such that (29)
holds for k = m. Then for k = m + 1, set y = x−x0

δm
0

and v(y) = u(x0+δm
0 y)

δ2m
0

for any x ∈ Bδm
0

(x0) and

y ∈ B1. Since D2
xu(x) = D2

yv(y) as y = x−x0
δm
0

, we have (14) still holds with u replaced by v and

F (D2v(y)) = 0 in B1.

By the induction hypothesis, there exists Mx0,m ∈ B2 such that

(
1
|B1|

∫
B1
|D2v −Mx0,m|2

) 1
2

=
(

1
|Bδm

0
(x0)|

∫
Bδm

0
(x0)

|D2u−Mx0,m|2
) 1

2

6 ε0δ
m

ln(1/2)
ln δ0

0 6 ε0.

According to Lemma 3.2, there exists Mx0,m+1 ∈ B2 such that

( 1
|Bδ0 |

∫

Bδ0

|D2v −Mx0,m+1|2
) 1

2 6 1
2
ε0δ

m
ln(1/2)
ln δ0

0 ,

that is, ( 1
|Bδm+1

0
(x0)|

∫

B
δ

m+1
0

(x0)

|D2u−Mx0,m+1|2
) 1

2 6 ε0δ
(m+1)

ln(1/2)
ln δ0

0 .

Then, (29) holds for k = m + 1.

proof of Theorem 1.1
Let D = D2u(B3/4), then D is bounded in Sn since D2u is continuous. By F is locally C1,β almost

everywhere, there exists K such that (3) holds for any M ∈ D and any N ∈ D where F is differentiable.
Let ε0 and δ0 be given by Lemma 3.2. (Recall ε0 and δ0 depend only on λ, Λ, n, β and K.) By (4), there
exists a uniform constant 0 < r0 < 1/4 depending only on ρ such that, for any x0 ∈ B1/2,

sup
x∈Br0 (x0)

|D2u(x)−D2u(x0)| 6 1
2
ε0δ

n
2
0 6 ε0,

then we have
( 1
|Br0(x0)|

∫

Br0 (x0)

|D2u−D2u(x0)|2
) 1

2 6
√
|Bδ0 |
|B1| ε0δ

ln(1/2)
ln δ0

0 .
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Set y = x−x0
r0

and v(y) = u(x0+r0y)
r2
0

for any x ∈ Br0(x0), then D2v(y) = D2u(x) for y ∈ B1. It follows

that all the hypotheses of Lemma 3.2 hold for v ∈ C2(B1). According to corollary 3.1, for α = ln δ0
ln(1/2) , we

have
[D2v]α,B1/2

6 C2δ
−n

2
0 ‖v‖C2(B1)

,

where C2 is a constant depending only on n, α since ‖D2v‖L2(B1) 6 ε0. Then we derive

[D2u]α,Br0/2(x0)
6 C2δ

−n
2

0 r−α
0 ‖u‖C2(B3/4)

.

By the standard covering method, we have (5) holds.
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