• ARTICLES •

Feb. 2010 Vol.53 No.1: 1–10 doi: 10.1007/s11425-009-0044-4

A priori estimates for classical solutions of fully nonlinear elliptic equations

CAO Yi^{1,*}, LI DongSheng¹ & WANG LiHe^{1,2}

¹College of Science, Xi'an Jiaotong University, Xi'an 710049, China ²Department of Mathematics, The University of Iowa, Iowa City IA 52242-1419, USA

 $Email:\ signal 717 @gmail.com,\ lids @mail.xjtu.edu.cn,\ lwang.iowa @gmail.com$

Received November 4, 2009; accepted June 29, 2010

Abstract For the fully nonlinear uniformly elliptic equation $F(D^2u) = 0$, it is well known that the viscosity solutions are $C^{2,\alpha}$ if the nonlinear operator F is convex (or concave). In this paper, we study the classical solutions for the fully nonlinear elliptic equation where the nonlinear operators F is locally $C^{1,\beta}$ almost everywhere for any $0 < \beta < 1$. We will prove that the classical solutions u are $C^{2,\alpha}$, moreover, the $C^{2,\alpha}$ norm of u depends on n, F and the continuous modulus of D^2u .

Keywords fully nonlinear, classical solutions, $C^{2,\alpha}$ estimates

MSC(2000): 20M31, 33Q21

Citation: CAO Yi, et al. Science China: Mathematics Journal Sample. Sci China Math, 2010, 53, doi: 10.1007/s11425-009-0044-4

1 Introduction

In this paper, we consider the following fully non-linear uniformly elliptic equations:

$$F(D^2u) = 0. (1)$$

Let now S_n denote the space of $n \times n$ symmetric matrices. Equation (1) is uniformly elliptic if there exist two constants $0 < \lambda \leq \Lambda < \infty$ such that

$$\lambda ||N|| \leqslant F(M+N) - F(M) \leqslant \Lambda ||N||, \tag{2}$$

for any $M, N \in S_n$ with $N \ge 0$, where $N \ge 0$ means N is positive semi-definite.

Under the assumption that F is convex (or concave), it is well known that the viscosity solutions of (1) are $C^{2,\alpha}$. This result was proved by Evans and later Caffarelli simplified the proof(see [1-7]). In the proof of above result, the convex (or concave) hypothesis for F is essential since all the existing proofs depend on $\frac{\partial^2 u}{\partial e \partial e}$, the second derivative of u along any direction e, is a sub-solution of Pucci's extremal operator \mathcal{M}^+ (see [1] for the definition of \mathcal{M}^+).

Without the convex (or concave) hypothesis on F, Caffarelli and Yuan Yu proved that the viscosity solutions of (1) are $C^{2,\alpha}$ if the level set $\sum = \{M : F(M) = 0\}$ satisfies:(i) $\sum \bigcap \{M : tr(M) = t \text{ is strictly} \}$

^{*}Corresponding author

convex for all constants t; (ii) the angle between the identity matrix I and the normal F_{ij} to \sum is strictly positive on the non-convex part of \sum (see [8]).

In this paper, we prove the interior $C^{2,\alpha}$ regularity of classical solutions for (1). Our hypothesis is that F is locally $C^{1,\beta}$ almost everywhere for $0 < \beta < 1$. Precisely, F is differentiable almost everywhere and for any bounded domain $\mathcal{D} \subset S_n$, there exists a constant K such that for any $M, N \in \mathcal{D}$, if F is differentiable at N, then

$$|F(M) - F(N) - tr(F'(N)(M - N))| \leq K|M - N|^{1+\beta}.$$
(3)

(Recall that tr(A) denotes the trace of the matrix A.) We point out that if F is convex (or concave), then according to Alexandroff-Buselman-Feller theorem ([1][9]), F is locally $C^{1,1}$ almost everywhere. Our main theorem is as following.

Theorem 1.1. Suppose F is locally $C^{1,\beta}$ almost everywhere for $0 < \beta < 1$ and $u \in C^2(B_1)$ is a solution of (1). If ρ is a non-decreasing function defined on R^+ such that $\lim_{\delta \to 0} \rho(\delta) = 0$, and

$$|D^2 u(x) - D^2 u(y)| \leqslant \rho(|x - y|) \qquad \forall x, y \in B_1,$$
(4)

then there exist uniform constants $0 < \alpha < 1$ depending only on λ, Λ, n and C depending only on $\lambda, \Lambda, n, \rho$ such that

$$\|u\|_{C^{2,\alpha}(\overline{B_{1/2}})} \leqslant C \|u\|_{C^{2}(\overline{B_{3/4}})}.$$
(5)

Theorem 1.1 will be proven in Section 3 by an iteration. Before this, in Section 2, we demonstrate that the Hölder continuity can be measured by L^p norm.

Throughout this paper, we will use the following notations. $B_r(x)$ denotes the open ball in \mathbb{R}^n centered at x with radius r; $B_r := B_r(0), D_r(x) := B_1 \cap B_r(x)$; \mathcal{B}_r denotes the open ball in \mathcal{S}_n centered at the origin with radius r; |E| denotes the Lebesgue measure of any measurable set E; $\overline{u_D}$ denotes the average of the function u over the set D; $osc_D u$ denotes the oscillation of the function u in the set $D \subset \mathbb{R}^n$, exactly,

$$osc_D u := \sup_{x,y \in D} |u(x) - u(y)|.$$

2 Hölder continuity

A function u defined on \overline{B}_1 is $C^{\alpha}(\overline{B}_1)$ (or Hölder continuous with exponent α) if there exists a constant C such that

$$[u]_{\alpha,\overline{B}_1} := \sup_{x,y\in\overline{B}_1, x\neq y} \frac{|u(x) - u(y)|}{|x - y|^{\alpha}} \leqslant C,$$

where $0 < \alpha < 1$. This is the usual definition of Hölder continuity of u, where the continuity is measured by L^{∞} norm. The following theorem claims that it can also be measured by L^p norm for any $p \ge 1$.

Theorem 2.1. Suppose $u \in L^p(B_1)$ with $p \ge 1$. If there exist constants $0 < \alpha < 1$ and A > 0 such that for any $x \in \overline{B}_1$ and any r > 0,

$$\frac{1}{|D_r(x)|} \int_{D_r(x)} |u - \overline{u_{D_r(x)}}|^p \leqslant Ar^{\alpha p},\tag{6}$$

then

$$[u]_{\alpha,\overline{B}_1} \leqslant C_0 A^{\frac{1}{p}},\tag{7}$$

where C_0 is a constant depending only on n and α . (see [p70 of 10, Theorem 1.2]

Corollary 2.1. Suppose $u \in L^p(B_1)$ with $p \ge 1$. If there exist constants $0 < \alpha < 1, 0 < r_1 \le \frac{1}{2}$ and $A_1 > 0$ such that for any $x \in \overline{B_{\frac{1}{2}}}$ and any $m = 1, 2, \cdots$, there exists a constant $a_{x,m}$ satisfying

$$\frac{1}{|B_{r_1^m}(x)|} \int_{B_{r_1^m}(x)} |u - a_{x,m}|^p \leqslant A_1 r_1^{\alpha m p},\tag{8}$$

then

$$[u]_{\alpha,\overline{B}_{1/2}} \leqslant C_1 r_1^{-\frac{n}{p}-\alpha} \left(A_1^{\frac{1}{p}} + \|u\|_{L^p(B_1)} \right), \tag{9}$$

where C_1 is a constant depending only on n, α and $||u||_{L^p(B_1)}$.

Proof. Let $A = \max\{\frac{2^{p+1}||u||_{L^p(B_1)}^p}{|B_{r_1}|r_1^{p\alpha}}, 2^p A_1 r_1^{-n-p\alpha}\}$, then we only need to show (6) holds for any $x \in \overline{B_{\frac{1}{2}}}$ and any r > 0. Since (6) holds clearly for $r > r_1$, we only need to show the case of $r \leq r_1$. If $r \leq r_1$, then $D_r(x) = B_r(x)$ since $r_1 \leq \frac{1}{2}$ and $x \in \overline{B_{\frac{1}{2}}}$. Let m satisfy $r_1^{m+1} < r \leq r_1^m$, from

$$\left|\overline{u_{B_r(x)}} - a_{x,m}\right| \leqslant \frac{1}{|B_r(x)|} \int_{B_r(x)} |u - a_{x,m}| \leqslant \left(\frac{1}{|B_r(x)|} \int_{B_r(x)} |u - a_{x,m}|^p\right)^{\frac{1}{p}},$$

we have

$$\left(\frac{1}{|B_r(x)|} \int_{B_r(x)} |u - \overline{u}_{B_r(x)}|^p \right)^{\frac{1}{p}} \leq \left(\frac{1}{|B_r(x)|} \int_{B_r(x)} |u - a_{x,m}|^p \right)^{\frac{1}{p}} + |\overline{u}_{B_r(x)} - a_{x,m}|$$

$$\leq 2 \left(\frac{1}{|B_r(x)|} \int_{B_r(x)} |u - a_{x,m}|^p \right)^{\frac{1}{p}}.$$

$$(10)$$

By $\frac{|B_{r_1^k}(x)|}{|B_{r_1^k+1}(x)|} = \frac{1}{r_1^n}$ and (8), we deduce

$$\begin{aligned} \left(\frac{1}{|B_r(x)|} \int_{B_r(x)} |u - a_{x,m}|^p\right)^{\frac{1}{p}} &\leqslant \left(\frac{1}{|B_r(x)|} \int_{B_{r_1^m}(x)} |u - a_{x,m}|^p\right)^{\frac{1}{p}} \leqslant \\ &\leqslant \left(A_1 r_1^{\alpha m p} \frac{|B_{r_1^m}(x)|}{|B_r(x)|}\right)^{\frac{1}{p}} \leqslant \left(A_1 r_1^{\alpha m p} r_1^{-n}\right)^{\frac{1}{p}} \leqslant A_1^{\frac{1}{p}} r_1^{-\frac{n}{p}-\alpha} r^{\alpha}. \end{aligned}$$

Combining with (10), we have (6) holds with $A \ge 2^p A_1 r_1^{-n-p\alpha}$.

3 The Proof of Theorem 1.1

Lemma 3.1. Let u be a harmonic function defined in B_1 and φ be a continuous function defined on ∂B_1 . If $u = \varphi$ on ∂B_1 , then

$$\sup_{x \in B_{\frac{1}{2}}} |D^k u(x)| \leqslant C \|\varphi\|_{L^2(\partial B_1)},\tag{11}$$

where C is a constant depending only on n and k.

Proof. Let v be the harmonic function satisfying $v = |\varphi|$ on ∂B_1 , the maximum principle now imply that $v(x) \ge 0$ and $-v(x) \le u(x) \le v(x)$ in B_1 . By Mean Value equalities and Hölder inequality, we have that

$$v(0) = \frac{1}{|\partial B_1|} \int_{\partial B_1} |\varphi| ds \leqslant \frac{1}{|\partial B_1|} \Big(\int_{\partial B_1} |\varphi|^2 ds \Big)^{1/2} |\partial B_1|^{1/2} \leqslant C \|\varphi\|_{L^2(\partial B_1)};$$
(12)

where C is a constant depending only on n. On the other hand, we have that

$$\sup_{x \in B_{\frac{1}{2}}} |D^k u(x)| \leqslant C_1 \sup_{x \in B_{\frac{3}{4}}} |u(x)| \leqslant C_1 \sup_{x \in B_{\frac{3}{4}}} v(x) \leqslant C_1 v(0);$$
(13)

The last inequality is the Harnack inequality. Here we have used the same letter C_1 to denote constants depending only on n and k. By (12) and (13), it is easy to see (11) holds.

Remark 3.1. Suppose that u(x) is the solution of the following problem

$$\begin{cases} -a_{ij}D_{ij}u = 0 \quad \text{in} \quad B_1, \\ u = \varphi \quad \text{on} \quad \partial B_1, \end{cases}$$

where $(a_{ij})_{n \times n}$ is a constant matrix satisfying $\lambda I \leq (a_{ij})_{n \times n} \leq \Lambda I$, then the conclusion of lemma 3.1 will be still true.

We prove Theorem 1.1 through the following key lemma.

Lemma 3.2. Suppose $u \in C^2(B_1)$ is a solution of (1) with $D^2u(x) \in \mathcal{B}_1$ for any $x \in B_1$, F satisfies (3) for any $M \in \mathcal{B}_2$ and almost every $N \in \mathcal{B}_2$. There exist positive constants $0 < \epsilon_0 < 1$ depending only on $\lambda, \Lambda, n, \beta, K$ and $0 < \delta_0 \leq \frac{1}{2}$ depending only on λ, Λ, n such that if

$$osc_{B_1}D^2u \leqslant \epsilon_0 \tag{14}$$

and there exists $M_1 \in \mathcal{B}_2$ satisfying

$$\left(\frac{1}{|B_1|} \int_{B_1} |D^2 u - M_1|^2\right)^{\frac{1}{2}} = 2\epsilon \leqslant 2\epsilon_0,\tag{15}$$

then there exists $M_2 \in \mathcal{B}_2$ satisfying

$$\left(\frac{1}{|B_{\delta_0}|}\int_{B_{\delta_0}}|D^2u - M_2|^2\right)^{\frac{1}{2}} \leqslant \epsilon.$$

$$\tag{16}$$

Proof. By (15) and F is differentiable in \mathcal{B}_2 a.e., we can and we do choose $\tilde{M} = (\tilde{m}_{ij})_{n \times n} \in \mathcal{B}_2$ such that

$$\left(\frac{1}{|B_1|} \int_{B_1} |D^2 u - \tilde{M}|^2\right)^{\frac{1}{2}} \leqslant 3\epsilon \tag{17}$$

and that F is differentiable at \tilde{M} with $F'(\tilde{M}) = (a_{ij})_{n \times n} \in \mathcal{S}_n$. (2) implies

$$\lambda I \leqslant (a_{ij})_{n \times n} \leqslant \Lambda I \tag{18}$$

in the sense of positive semi-definite. We claim that

$$||D^2u - \tilde{M}||_{L^{\infty}(B_1)} \leqslant 3\epsilon_0 \tag{19}$$

In fact, if (19) is false, then by (14), $|D^2u(x) - \tilde{M}| > 2\epsilon_0$ for any $x \in B_1$. This contradicts with (17).

Set $P_1(x) = \frac{1}{2}x^T \tilde{M}x$ for any $x \in \mathbb{R}^n$. According to Poincare's inequality, there exists a constant C depending only on n such that

$$||(u - P_1) - \overline{D(u - P_1)}_{B_1} \cdot x - \overline{(u - P_1)}_{B_1}||_{L^2(B_1)} \leq C||D(u - P_1) - \overline{D(u - P_1)}_{B_1}||_{L^2(B_1)}$$

and

$$||D(u - P_1) - \overline{D(u - P_1)}_{B_1}||_{L^2(B_1)} \leq C||D^2(u - P_1)||_{L^2(B_1)}.$$

It follows that

$$||(u - P_1) - \overline{D(u - P_1)}_{B_1} \cdot x - \overline{(u - P_1)}_{B_1}||_{W^{1,2}(B_1)} \leq C||D^2(u - P_1)||_{L^2(B_1)}.$$

By trace theorem and (17), we conclude

$$\begin{aligned} ||u - P_{1} - \overline{D(u - P_{1})}_{B_{1}} \cdot x - \overline{(u - P_{1})}_{B_{1}}||_{L^{2}(\partial B_{1})} \\ \leqslant C||u - P_{1} - \overline{D(u - P_{1})}_{B_{1}} \cdot x - \overline{(u - P_{1})}_{B_{1}}||_{W^{1,2}(B_{1})} \\ \leqslant C||D^{2}u - \tilde{M}||_{L^{2}(B_{1})} \leqslant C\epsilon, \end{aligned}$$
(20)

where C depends only on n.

Let h(x) be the solution of the following problem

$$\begin{cases} -a_{ij}D_{ij}h = 0 \quad \text{in} \quad B_1;\\ h = u - P_1 - \overline{D(u - P_1)}_{B_1} \cdot x - \overline{(u - P_1)}_{B_1} \quad \text{on} \quad \partial B_1. \end{cases}$$

It is clear that $(a_{ij})_{n \times n}$ is a constant matrix satisfying (18) (Recall $(a_{ij})_{n \times n} = F'(\tilde{M})$). By remark 3.1 we have that for any $x \in B_{\frac{1}{2}}$,

$$|D^{3}h(x)| \leq C||u - P_{1} - \overline{D(u - P_{1})}_{B_{1}} \cdot x - \overline{(u - P_{1})}_{B_{1}}||_{L^{2}(\partial B_{1})};$$
(21)

where C is a constant depending only on λ , Λ and n. In view of (20), then for any $x \in B_{1/2}$,

$$|D^3h(x)| \leqslant \hat{C}\epsilon$$

where \hat{C} depends on λ, Λ and n. Let

$$\delta_0 = \min\{\frac{1}{2}, \frac{1}{2\hat{C}}\}.$$
(22)

Therefore for any $x \in B_{\delta_0}$,

$$|D^{2}h(x) - D^{2}h(0)| \leq ||D^{3}h||_{L^{\infty}(B_{\delta_{0}})} \delta_{0} \leq \hat{C}\delta_{0}\epsilon \leq \frac{1}{2}\epsilon.$$
(23)

 Set

$$f(x) = -F(\tilde{M}) - a_{ij}(D_{ij}u(x) - \tilde{m}_{ij})$$

$$\tag{24}$$

and from (3), it follows that $|f(x)| \leq K |D^2 u(x) - \tilde{M}|^{1+\beta}$ for any $x \in B_1$. Then by (17) and (19),

$$||f||_{L^{2}(B_{1})} \leq K \Big(\int_{B_{1}} |D^{2}u - \tilde{M}|^{2(1+\beta)} \Big)^{\frac{1}{2}} \leq K (3\epsilon_{0})^{\beta} \Big(\int_{B_{1}} |D^{2}u - \tilde{M}|^{2} \Big)^{\frac{1}{2}} \leq K \sqrt{|B_{1}|} (3\epsilon_{0})^{\beta} 2\epsilon.$$
(25)

Let $v \in W^{2,2}(B_1)$ be the solution of the following problem

$$\begin{cases} -a_{ij}D_{ij}v = f & \text{in} \quad B_1\\ v = 0 & \text{on} \quad \partial B_1, \end{cases}$$

then there exists a constant C depending only on λ, Λ and n such that

$$||v||_{W^{2,2}(B_1)} \leqslant C||f||_{L^2(B_1)} \leqslant \sqrt{|B_1|}CK(3\epsilon_0)^{\beta}2\epsilon.$$

Therefore we can and we do choose $0 < \epsilon_0 < 1$ such that

$$\left(\frac{1}{|B_{\delta_0}|} \int_{B_{\delta_0}} |D^2 v|^2\right)^{\frac{1}{2}} \leqslant \frac{1}{2}\epsilon,\tag{26}$$

where δ_0 is given by (22).

Let P_2 be the solution of the following problem

$$\left\{ \begin{array}{ll} -a_{ij}D_{ij}P_2=F(\tilde{M}) & \mbox{in} \quad B_1, \\ P_2=0 & \mbox{on} \quad \partial B_1, \end{array} \right.$$

Since $(a_{ij})_{n \times n}$ is a constant matrix, we have P_2 is a second order polynomial.

Set $w = P_1 + P_2 + v + h + \overline{D(u - P_1)}_{B_1} \cdot x + \overline{(u - P_1)}_{B_1}$ and then by (24),

$$-a_{ij}D_{ij}w = -a_{ij}\tilde{m}_{ij} + F(\tilde{M}) + f = -a_{ij}D_{ij}u \quad \text{in} \quad B_1.$$

Since $w|_{\partial B_1} = u|_{\partial B_1}$, we have w = u in B_1 and then

$$D^2 u = D^2 w = \tilde{M} + D^2 P_2 + D^2 v + D^2 h$$
 in B_1 .

Set $M_2 = \tilde{M} + D^2 P_2 + D^2 h(0)$. It follows that for any $x \in B_{\delta_0}$,

$$|D^{2}u(x) - M_{2}| = |D^{2}v(x) + D^{2}h(x) - D^{2}h(0)| \le |D^{2}v(x)| + |D^{2}h(x) - D^{2}h(0)|.$$

By (23) and (26), we have (16) holds.

Corollary 3.1. Assume that all the hypotheses of Lemma 3.2 hold, and ϵ_0 and δ_0 are given by it. If there exists $M_1 \in \mathcal{B}_2$ satisfying

$$\left(\frac{1}{|B_1|} \int_{B_1} |D^2 u - M_1|^2\right)^{\frac{1}{2}} \leqslant \sqrt{\frac{|B_{\delta_0}|}{|B_1|}} \epsilon_0 \delta_0^{\frac{\ln(1/2)}{\ln\delta_0}},\tag{27}$$

then $u \in C^{2,\alpha}(\overline{B_{1/2}})$ with $\alpha = \frac{\ln(1/2)}{\ln \delta_0}$, moreover,

$$[D^2 u]_{\alpha,\overline{B}_{1/2}} \leqslant 2C_1 \delta_0^{-\frac{n}{2}} \epsilon_0, \tag{28}$$

where C_1 is the constant given by Corollary 2.1.

Proof. We only need to show that for any $x_0 \in \overline{B_{1/2}}$ and any $k = 1, 2 \cdots$, there exists $M_{x_0,k} \in \mathcal{B}_2$ such that

$$\left(\frac{1}{|B_{\delta_0^k}(x_0)|} \int_{B_{\delta_0^k}(x_0)} |D^2 u - M_{x_0,k}|^2\right)^{\frac{1}{2}} \leqslant \epsilon_0 \delta_0^{k \frac{\ln(1/2)}{\ln \delta_0}}.$$
(29)

Then we infer (28) by Corollary 2.1 since $\delta_0^{\frac{\ln(1/2)}{\ln \delta_0}} = 1/2$.

In order to prove (29), we use the mathematical induction method. First, for k = 1, since $B_{\delta_0}(x_0) \subset B_1$, (27) implies (29) clearly for $M_{x_0,1} = M_1$. Suppose that there exists a matrix $M_{x_0,k} \in \mathcal{B}_2$ such that (29) holds for k = m. Then for k = m + 1, set $y = \frac{x - x_0}{\delta_0^m}$ and $v(y) = \frac{u(x_0 + \delta_0^m y)}{\delta_0^{2m}}$ for any $x \in B_{\delta_0^m}(x_0)$ and $y \in B_1$. Since $D_x^2 u(x) = D_y^2 v(y)$ as $y = \frac{x - x_0}{\delta_0^m}$, we have (14) still holds with u replaced by v and

$$F(D^2v(y)) = 0 \quad \text{in} \quad B_1.$$

By the induction hypothesis, there exists $M_{x_0,m} \in \mathcal{B}_2$ such that

$$\left(\frac{1}{|B_1|} \int_{B_1} |D^2 v - M_{x_0,m}|^2 \right)^{\frac{1}{2}} = \left(\frac{1}{|B_{\delta_0^m}(x_0)|} \int_{B_{\delta_0^m}(x_0)} |D^2 u - M_{x_0,m}|^2 \right)^{\frac{1}{2}} \\ \leqslant \epsilon_0 \delta_0^{m \frac{\ln(1/2)}{\ln \delta_0}} \leqslant \epsilon_0.$$

According to Lemma 3.2, there exists $M_{x_0,m+1} \in \mathcal{B}_2$ such that

л

$$\left(\frac{1}{|B_{\delta_0}|}\int_{B_{\delta_0}}|D^2v-M_{x_0,m+1}|^2\right)^{\frac{1}{2}} \leqslant \frac{1}{2}\epsilon_0 \delta_0^{m\frac{\ln(1/2)}{\ln\delta_0}},$$

that is,

$$\left(\frac{1}{|B_{\delta_0^{m+1}}(x_0)|}\int_{B_{\delta_0^{m+1}}(x_0)}|D^2u - M_{x_0,m+1}|^2\right)^{\frac{1}{2}} \leqslant \epsilon_0 \delta_0^{(m+1)\frac{\ln(1/2)}{\ln\delta_0}}$$

Then, (29) holds for k = m + 1.

proof of Theorem 1.1

Let $\mathcal{D} = D^2 u(B_{3/4})$, then \mathcal{D} is bounded in \mathcal{S}_n since $D^2 u$ is continuous. By F is locally $C^{1,\beta}$ almost everywhere, there exists K such that (3) holds for any $M \in \mathcal{D}$ and any $N \in \mathcal{D}$ where F is differentiable. Let ϵ_0 and δ_0 be given by Lemma 3.2. (Recall ϵ_0 and δ_0 depend only on $\lambda, \Lambda, n, \beta$ and K.) By (4), there exists a uniform constant $0 < r_0 < 1/4$ depending only on ρ such that, for any $x_0 \in B_{1/2}$,

$$\sup_{x \in B_{r_0}(x_0)} |D^2 u(x) - D^2 u(x_0)| \leqslant \frac{1}{2} \epsilon_0 \delta_0^{\frac{n}{2}} \leqslant \epsilon_0,$$

then we have

$$\left(\frac{1}{|B_{r_0}(x_0)|}\int_{B_{r_0}(x_0)}|D^2u - D^2u(x_0)|^2\right)^{\frac{1}{2}} \leqslant \sqrt{\frac{|B_{\delta_0}|}{|B_1|}}\epsilon_0\delta_0^{\frac{\ln(1/2)}{\ln\delta_0}}$$

Set $y = \frac{x-x_0}{r_0}$ and $v(y) = \frac{u(x_0+r_0y)}{r_0^2}$ for any $x \in B_{r_0}(x_0)$, then $D^2v(y) = D^2u(x)$ for $y \in B_1$. It follows that all the hypotheses of Lemma 3.2 hold for $v \in C^2(B_1)$. According to corollary 3.1, for $\alpha = \frac{\ln \delta_0}{\ln(1/2)}$, we have

$$[D^2 v]_{\alpha,\overline{B_{1/2}}} \leqslant C_2 \delta_0^{-\frac{n}{2}} \|v\|_{C^2(\overline{B_1})}$$

where C_2 is a constant depending only on n, α since $\|D^2v\|_{L^2(B_1)} \leq \epsilon_0$. Then we derive

$$[D^2 u]_{\alpha,\overline{B}_{r_0/2}(x_0)} \leqslant C_2 \delta_0^{-\frac{n}{2}} r_0^{-\alpha} \|u\|_{C^2(\overline{B_{3/4}})}.$$

By the standard covering method, we have (5) holds.

Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 10771166). The authors cordially thank the referees for their careful reading and helpful comments.

References

- 1 Caffarelli L A, Cabre X. Fully nonlinear elliptic equations. RI: AMS 43, Providence, 1995.
- 2 Caffarelli L A. Interior a priori estimates for solutions of fully nonlinear equations. Ann. of Math., 1989, 130(2): 189-213.
- 3 Caffarelli L A. Interior $W^{2,p}$ estimates for solutions of Monge-Ampere equations. Ann. of Math., 1990, 131(2): 135-150.
- 4 Evans L C. Classical solutions of fully nonlinear, convex, second-order elliptic equations. Comm. Pure Appl. Math., 1982, XXV: 333-363.
- 5 Krylov N V. Boundedly nonhomogeneous elliptic and parabolic equations. Izv.Akad.Nak.SSSR Ser.Mat. 1982, 46: 487-523; English transl. in Math. USSR Izv. 1983, 20: 459-492.
- 6 Krylov N V. Boundedly nonhomogeneous elliptic and parabolic equations in a domain. Izv.Akad.Nak.SSSR Ser.Mat. 1983, 47: 75-108; English transl. in Math. USSR Izv. 1984, 22: 67-97.
- 7 Gilbarg D, Trudinger N S. Elliptic partial differential equations of second order, 2nd ed. Springer-Verlag, 1983.
- 8 Caffarelli L A, Yuan Yu. A priori estimates for solutions of fully nonlinear equations with convex level set. Ann. I. H. Poincare-an. 2001, 18(2): 261-270.
- 9 Evans L C, Gariepy, R F. Measure theory and fine properties of functions. New York: Studies in Advanced Mathematics, CRC Press, 1992.
- 10 Giaquinta M. Multiple integrals in the calculus of variations and nonlinear elliptic systems. Princeton: Princeton University Press, 1983.