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This paper presents a robust saturation control approach for active vibration attenua-

tion of building structures involving parameter uncertainties and input time delay. The

parameter uncertainties are described in both polytopic and norm-bounded forms and

represent the variations of floor masses, stiffnesses and damping coefficients. The input

certain delay-dependent linear matrix inequalities (LMIs), a state feedback controller

can be designed to guarantee the robust stability and performance of the closed-loop

system in the presence of parameter uncertainties, actuator saturation, and input time

delay. The effectiveness of the proposed approach is investigated by numerical

simulations on the vibration control of a three-storey building structure subject to

seismic excitation. It is validated that the designed robust saturation controller can

effectively suppress the structural vibration and keep the system stability when there

are parameter uncertainties and input time delay.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Vibration control of building structures subject to seismic excitation has been an active topic for decades, and a lot of
research effort has been devoted to the development of advanced control algorithms and devices. When designing a
controller for active vibration control of structures, besides the control performance that must be considered, some
practical issues should be considered in the controller design process as well.

One of the important issues is the actuator saturation problem because any actuation mechanisms are subject to
inherent physical limitations. The saturation on actuator capacity takes on added importance in structural applications,
and in earthquake design in particular [1]. Vibration control of nominal structures subject to actuator saturation has been
studied by some researchers, see for example [1–3], and the references therein. Another one of the most critical issues is
the parameter uncertainty problem as it can affect both the performance and the stability of the control system. Parameter
uncertainties may come from modelling errors, variations in material properties, and changing load environments, which
make system description for the structural models inevitably containing uncertainties [4]. For uncertain structural
systems, robust controller design considering both parameter uncertainties and actuator saturation was recently studied
by, for example, [5–7]. However, in these studies, only the variations of floor stiffnesses and damping coefficients can be
dealt with due to the use of affine quadratic stability. The changes on floor masses is not able to be analytically addressed
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using the proposed approach. The third important issue is time delay. As indicated in [5], time delay is one of the inevitable
problems in actual engineering applications. Considering time delay in the controller design process will be very important
to the system stability and performance. For structural control systems, particularly with the digital controllers, the sum of
input time delay is due to online data acquisition from sensors at different points of the structure, filtering, processing of
data, calculating control forces and transmitting the control force signals from computer to the actuator. When using
actuators, like electrohydraulic actuators, as the control force devices, the time delays will be generally taken by the
actuators to build up the required control forces. In recent years, the efforts on the stability criterion analysis of the
mechanical and structural systems with time delays have been made through characteristic equation analysis [8–10];
however, the controller synthesis problems have not been fully addressed in these works. On the other hand, several
compensation strategies to deal with the time delay effect in vibration control of civil engineering structures have been
presented in [11], where the compensator is designed to compensate a specified delay and the system will be stable in a
region where the actual delay is varied around this specified delay. An optimal control method was studied in [12] to deal
with the time delay effect on linear time delay systems, and an energy-to-peak control of a building structure with an
input delay was studied in [13]. It has been shown from the above-mentioned studies that controller design for vibration
control of building structures with considering more practical issues, such as parameter uncertainties, actuator saturation,
and control input time delay, etc., is becoming more and more important.

In recent years, stability analysis, stabilisation, and control synthesis for linear time-delay systems subject to actuator
saturation have been addressed by many authors (see, for example, [14–23] and the references therein). Cao et al. [15] and
Zuo et al. [17] studied the stability analysis problem of linear time delays subject to actuator saturation, in which they
considered the state time delay and used the approach proposed by [24] to deal with the actuator saturation problem. The
stabilisation problem of time-delay systems with saturating actuators was studied by Su et al. [14], Trabouriech et al. [19],
Zhou et al. [18], Zhou et al. [21] and Liu [22], where the input delay was considered by [14,18,21] and the external
disturbance was considered by [19]. Oucheriah [16], Zhang et al. [20], and Zhao et al. [23] studied the controller synthesis
problem for time-delay systems with actuator saturation. The state time delay was considered by [16,20] and the input
delay was considered for seat suspensions in [23]. An auxiliary feedback matrix method [25] was used by [20,23] to handle
the actuator saturation problem. The auxiliary feedback matrix method is shown less conservative in estimating the
domain of attraction than other existing methods which are based on circle criterion or the vertex analysis [25]. However,
this method may lead to a low-gain controller design, which, on the contrary, is not suitable to structural vibration control
because a high-gain controller is able to take advantage of the available control and utilise the capacity of an actuator
sufficiently [2,26].

In this paper, the robust controller design approach for the uncertain structural systems considering parameter
uncertainties, actuator saturation, and input time delay will be presented. The main objective is to design a state feedback
controller such that the closed-loop system is asymptotically stable with the optimal energy-to-peak disturbance
attenuation performance subject to parameter uncertainties (variations of floor masses, stiffnesses, and damping
coefficients), actuator saturation, and input time delay. Sufficient conditions for designing such a controller are given in
terms of delay-dependent linear matrix inequalities (LMIs), which can be efficiently solved using available software Matlab
LMI Toobox. To validate the effectiveness of the approach, the designed controller is applied to reduce the vibration of a
seismic-excited building structure. Simulation results show that the designed controller can achieve good vibration
attenuation performance and keep the system robust stability in spite of the presence of parameter uncertainties, actuator
saturation, and input time delay.

The rest of this paper is organised as follows. Section 2 presents the description of saturation control of uncertain
structure with input time delay. Section 3 gives the controller design approach. Section 4 provides an application
example to validate the effectiveness of the approach developed in this paper. Finally, we conclude our findings in
Section 5.

Notation: Rn denotes the n-dimensional Euclidean space and Rn�m the set of all n�m real matrices. For a real
symmetric matrix W, the notation of W40 (Wo0) is used to denote its positive- (negative-) definiteness. I is used to
denote the identity matrix of appropriate dimension. When a matrix is equal to 0, in such case, 0 is used to denote the zero
matrix of appropriate dimension. To simplify notation, n is used to represent a block matrix which is readily inferred by
symmetry.

2. Saturation control of uncertain structure with input delay

The first-order model of uncertain structure with actuator saturation constraint and input delay can be expressed as

xðtÞ ¼ AxxðtÞþBwwðtÞþðBþDBÞSATðuðt�tðtÞÞÞ,

xðtÞ ¼fðtÞ, t 2 ½�t,0�, (1)

where xðtÞ 2 Rn is the state vector, wðtÞ 2 R and uðtÞ 2 Rr are the external disturbance and the control input, respectively.

tðtÞ is the time-varying input delay satisfying 0otðtÞrt, t is the maximum time delay. fðtÞ is a continuous vector-valued

initial function on ½�t,0�. Matrix Ax 2 R
n�n represents uncertain system matrix belonging to a given convex polytope Y
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described by k vertices in the following form:

Ax 2 Y9 AxjAx ¼
Xk
i ¼ 1

xiðAiþDAiÞ ¼
Xk
i ¼ 1

xiAi; xiZ0;
Xk
i ¼ 1

xi ¼ 1

( )
, (2)

where x is used to characterise the parameter uncertainty and is assumed to be varied in a polytope of vertices

x1,x2, . . . ,xk, i.e., x 2 Y9Cofx1,x2, . . . ,xkg, where the symbol Co denotes the convex hull and Y denotes a given convex

bounded polyhedral domain. DAi and DB are uncertainties in system and control matrices and they are in the norm-
bounded form of

½DAi,DB� ¼MFðtÞ½Ei,Eb�, (3)

where M, Ei, and Eb are known constant matrices, and F(t) is an unknown matrix function with the property FTðtÞFðtÞr I. It
is noted from (2) and (3) that the parameter uncertainties are described in both polytopic and norm-bounded forms. These
two uncertainty forms can fully represent the parameter uncertainties that are induced by the variations of floor masses,
stiffnesses, and damping coefficients. The actuator saturation expression SAT(u) is in the decentralised saturation form,
that is, [SAT(u)]i¼sat(ui), where i¼1,2,y,r, and sat(ui) is the standard saturation function with the limit of ulimi

for the ith

actuator, that is,

satðuiÞ ¼
ui, juijrulimi

,

signðuiÞulimi
, juij4ulimi

(
(4)

Using the following transform [26–28]:

SATðuÞ ¼CZu, (5)

where CZ ¼ diagfZ1, . . . ,Zi, . . . ,Zrg, Zi9satðuiÞ=ui with Zi ¼ 1 if ui¼0, Eq. (1) can now be written as

_xðtÞ ¼ AxxðtÞþBwwðtÞþBCZuðt�tðtÞÞ, (6)

where B ¼ BþDB.
To obtain a high-gain controller as that done in [26], the command to the ith actuator is allowed to be diulimi

for an
arbitrary scalar di41. Therefore, the resulting Zi will be bounded by 1 and 1=di, that is,

Z 2 P9 Z : 1

di
rZir1, i¼ 1,2, . . . ,r

� �
: (7)

Accordingly, the vertex set associated with (7) is denoted as

Pvex9 Z : Zi ¼
1

di
or Zi ¼ 1, i¼ 1,2, . . . ,r

� �
, (8)

and CZ can be expressed as CZ ¼
P2r

i ¼ 1 ziCZi
¼
P2r

i ¼ 1 ziCi, where ziZ0 and
P2r

i ¼ 1 zi ¼ 1.

In this paper, the disturbance signal w(t) is assumed to be bounded and with finite energy, that is,

JwJ29

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1
0

wTðtÞwðtÞ dt

s
o1, (9)

i.e., wðtÞ 2 L2½0,1Þ. This is one possible specification for a class of design loads that the engineering structures are designed
to resist, for example, a class of design earthquakes whose total energy is specified as Richter scale [29]. And for system (6),
we define the control output as

zðtÞ ¼ CxðtÞ, (10)

where C is constant matrix. Then, for the uncertain system (6), we are interested in designing a state feedback control
law

uðtÞ ¼ KcxðtÞ, (11)

where Kc 2 R
r�n is the control gain matrix to be designed, such that the closed-loop system given by

_xðtÞ ¼ AxxðtÞþBwwðtÞþBCZKcxðt�tðtÞÞ (12)

is asymptotically stable for all admissible parameter uncertainties, and the closed-loop system guarantees, under zero
initial condition, JzJ1ogJwJ2, i.e., energy-to-peak performance, where g40 is a prescribed constant, for any non-zero
w 2 L2½0,1Þ.

3. Controller design

The following lemma will be used to derive the main results.
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Lemma 1 (Zhou and Khargonekar [30]). For real matrices of appropriate dimensions, M, E, and F(t), and F(t) satisfying

FTðtÞFðtÞr I, the following inequality holds for any scalar e40

MFðtÞEþETFTðtÞMTreMMT
þe�1ETE:

The following theorem will be used to design the controller (11).

Theorem 1. For given scalars r40, g40, d40, and t40, if there exist matrices L40, R40, X i, Y i, i¼ 1,2, . . . ,k, and K c ,
scalars eij40, i¼ 1,2, . . . ,k, and j¼1,2,y,2r, satisfying LMIs (13)–(15), then the closed-loop system (12) is asymptotically

stable and JzJ1ogJwJ2.

AiLþLAT
i

þX iþX
T

i þeijMMT

BCjK c

�X iþY
T

i

�X i Bw

LAT
i

þeijMMT ðEiLÞ
T

� �Y
T

i �Y i �Y i 0 K
T

cC
T
j BT ðEbCjK cÞ

T

� � �t�1
ðR�2LÞ 0 0 0

� � � �I BT
w 0

� � � � �t�1RþeijMMT 0

� � � � � �eijI

2
666666666666664

3
777777777777775

o0, i 2 ½1,k�, j 2 ½1,2r�: (13)

L LCT

CL g2I

" #
40, (14)

ðdiulimiÞ
2I K ci

K
T

ci

L
r

2
4

3
5Z0: (15)

Furthermore, the controller gain matrix is obtained as Kc ¼ K cL�1. If the performance index g is minimised subject to the LMIs

(13)–(15), the optimal controller will be obtained.

Proof. Choose a Lyapunov–Krasovskii functional candidate for system (12) as

VðtÞ ¼ xTðtÞPxðtÞþ

Z 0

�t

Z t

tþb
_xT
ðaÞQ _xðaÞ da db, (16)

where P¼ PT, P40, Q ¼QT, Q 40. Then, the time derivative of V(t) along the solution of system (12) gives

_V ðtÞ ¼ _xT
ðtÞPxðtÞþxTðtÞP _xðtÞþt _xT

ðtÞQ _xðtÞ�

Z t

t�t
_xT
ðaÞQ _xðaÞ da

r _xT
ðtÞPxðtÞþxTðtÞP _xðtÞþt _xT

ðtÞQ _xðtÞ�

Z t

t�tðtÞ
_xT
ðaÞQ _xðaÞ da¼ 1

tðtÞ

Z t

t�t
Sðt,aÞ da, (17)

where

Sðt,aÞ ¼ _xT
ðtÞPxðtÞþxTðtÞP _xðtÞþt _xT

ðtÞQ _xðtÞ�tðtÞ _xT
ðaÞQ _xðaÞ ¼ 2xTðtÞPðAxxðtÞþBwwðtÞþBCZKcxðt�tðtÞÞ

þðAxxðtÞþBwwðtÞþBCZKcxðt�tðtÞÞTtQ ðAxxðtÞþBwwðtÞþBCZKcxðt�tðtÞÞ�tðtÞ _xT
ðaÞQ _xðaÞ:

By the Newton–Leibniz formula, we have Z t

t�tðtÞ
_xðaÞ da¼ xðtÞ�xðt�tðtÞÞ: (18)

Then, for any appropriately dimensioned matrices

Xx ¼
Xk
i ¼ 1

xiXi, Yx ¼
Xk
i ¼ 1

xiYi, (19)

we have

L¼
1

tðtÞ

Z t

t�tðtÞ
xTðtÞ xTðt�tðtÞÞ
h i Xx

Yx

" #
½xðtÞ�xðt�tðtÞÞ�tðtÞ _xðaÞ� da¼ 0: (20)

Adding 2L to the right hand of (17), we have

_V ðtÞ�wTðtÞwðtÞr
1

tðtÞ

Z t

t�tðtÞ
WT
ðt,aÞPWðt,aÞ da, (21)



H. Du et al. / Journal of Sound and Vibration 330 (2011) 4399–4412 4403
where WT
ðt,aÞ ¼ ½xTðtÞ xTðt�tðtÞÞ _xT

ðaÞ wTðtÞ� and

P¼

PAxþAT
xP

þtAT
xQAxþXxþXT

x

PBCZKc

þtAT
xQBCZKc

�XxþYT
x

�tðtÞXx PBwþtAT
xQBw

�
tKT

c C
T
ZB

T
QBCZKc

�YT
x�Yx

�tðtÞYx tKT
c C

T
ZB

T
QBw

� � �tðtÞQ 0

� � � tBT
wQBw�I

2
6666666666666664

3
7777777777777775

: (22)

When assuming the zero-disturbance input, i.e., wðtÞ � 0, if Po0, then from (21), _V ðtÞo0 is established and the
asymptotic stability of the closed-loop system (12) is guaranteed.

Assume zero initial condition, i.e., xðtÞ ¼fðtÞ ¼ 0, 8t 2 ½�t,0�, then, we have VðtÞjt ¼ 0 ¼ 0. And for any non-zero
disturbance w 2 L2½0,1Þ and tZ0, if Po0, there holds,

VðtÞ�VðtÞjt ¼ 0�

Z t

0
wTðsÞwðsÞ dso0, (23)

and VðtÞo
R t

0 wTðsÞwðsÞ ds.
By the Schur complement, Po0 is equivalent to

PAxþAT
xPþXxþXT

x PBCZKc�XxþYT
x �Xx PBw AT

x

� �YT
x�Yx �Yx 0 KT

c C
T
ZB

T

� � �t�1ðtÞQ 0 0

� � � �I BT
w

� � � � �t�1Q�1

2
666666664

3
777777775
o0: (24)

Define L9P�1, and pre- and post-multiplying (24) by diagðL L L I IÞT and its transpose, respectively, we obtain

AxLþLAT
x

þLXxLþLXT
xL

BCZKcL�LXxLþLYT
xL �LXxL Bw LAT

x

� �LYT
xL�LYxL �LYxL 0 LKT

cC
T
ðZÞBT

� � �t�1ðtÞLQL 0 0

� � � �I BT
w

� � � � �t�1Q�1

2
666666666664

3
777777777775
o0: (25)

By defining Xx ¼ LXxL, Y x ¼ LYxL, K c ¼ KcL, and R¼Q�1 in (25), we obtain

AxLþLAT
xþXxþX

T

x BCZK c�XxþY
T

x �Xx Bw LAT
x

� �Y
T

x�Y x �Y x 0 K
T

cC
T
ZB

T

� � �t�1ðtÞLR�1L 0 0

� � � �I BT
w

� � � � �t�1R

2
666666664

3
777777775
o0: (26)

It is noticed that ðR�LÞR�1ðR�LÞZ0 when R40, which is equivalent to

LR�1LrR�2L: (27)

Therefore, from (27) and tðtÞrt, if

AxLþLAT
xþXxþX

T

x BCZK c�XxþY
T

x �Xx Bw LAT
x

� �Y
T

x�Y x �Y x 0 K
T

cC
T
ZB

T

� � �t�1
ðR�2LÞ 0 0

� � � �I BT
w

� � � � �t�1R

2
666666664

3
777777775
o0, (28)
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then, inequality (26) can be established. Substituting Ax ¼
Pk

i ¼ 1 xiAi, Xx ¼
Pk

i ¼ 1 xiX i, Y x ¼
Pk

i ¼ 1 xiY i, and CZ ¼
P2r

i ¼ 1 Ci

into (28), we readily obtain the equivalent condition for inequality (28) as

S¼

AiLþLA
T

i þX iþX
T

i BCjK c�X iþY
T

i �X i Bw LA
T

i

� �Y
T

i �Y i �Y i 0 K
T

cC
T
j B

T

� � �t�1
ðR�2LÞ 0 0

� � � �I BT
w

� � � � �t�1R

2
666666664

3
777777775
o0,

i 2 ½1,k�, j 2 ½1,2r�: (29)

By the definition of (3), it is noticed that

S¼S0þDS,

where

S0 ¼

AiLþLAT
i þX iþX

T

i BCjK c�X iþY
T

i �X i Bw LAT
i

� �Y
T

i �Y i �Y i 0 K
T

cC
T
j BT

� � �t�1
ðR�2LÞ 0 0

� � � �I BT
w

� � � � �t�1R

2
666666664

3
777777775

and by Lemma 1,

DS¼

MFðtÞEiLþLðMFðtÞEiÞ
T MFðtÞEbCjK c 0 0 LðMFðtÞEiÞ

T

� 0 0 0 K
T

cC
T
j ðMFðtÞEbÞ

T

� � 0 0 0

� � � �I 0

� � � � 0

2
66666664

3
77777775

¼

M

0

0

0

M

2
6666664

3
7777775

FðtÞ½EiL EbCjK c 0 0 0�þ½EiL EbCjK c 0 0 0�TFTðtÞ

M

0

0

0

M

2
6666664

3
7777775

T

reij

MMT 0 0 0 MMT

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

MMT 0 0 0 MMT

2
6666664

3
7777775
þe�1

ij

ðEiLÞ
T

ðEbCjK cÞ
T

0

0

0

2
6666664

3
7777775
½EiL EbCjK c 0 0 0�:

Therefore, it can be inferred that if the inequality (13) holds, then So0 can be established.
Furthermore, using the Schur complement, the feasibility of the following inequality:

P CT

C g2I

" #
40 (30)

guarantees CTCog2P. At the same time, it can be derived from (23) that xTðtÞPxðtÞog2
R t

0 wTðsÞwðsÞ ds if Po0 is
guaranteed. Then, it can be easily established from (10) that for all tZ0,

zTðtÞzðtÞ ¼ xTðtÞCTCxðtÞog2xTðtÞPxðtÞog2

Z t

0
wTðsÞwðsÞ dsrg2

Z 1
0

wTðsÞwðsÞ ds: (31)

Taking the supremum over tZ0 yields JzJ1ogJwJ2 for all w 2 L2½0,1Þ, that is, the energy-to-peak performance is
established. Similarly, condition (30) can be transformed to (14) by pre- and post-multiplying (30) by diagðL IÞT and its
transpose, respectively.

On the other hand, from (11), the constraint juijrdiulimi can be expressed as

jKcixðtÞjrdiulimi, (32)
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where Kci is the ith row of Kc. Let OðKcÞ ¼ fxðtÞjjxTðtÞKT
ciKcixðtÞjr ðdiulimiÞ

2
g, the equivalent condition for an ellipsoid

OðP,rÞ ¼ fxðtÞjxTðtÞPxðtÞrrg being a subset of OðKcÞ is [31]

Kci
P

r

� ��1

KT
cir ðdiulimiÞ

2: (33)

By the Schur complement, inequality (33) can be written as

ðdiulimiÞ
2I Kci

KT
ci

P
r

2
4

3
5Z0: (34)

Using the definitions L¼ P�1 and K c ¼ KcP�1, and pre- and post-multiplying (34) by diagðI LÞT and its transpose,
respectively, inequality (34) can be transformed to inequality (15). This completes the proof. &
4. Numerical example

In this section, a practical numerical example is presented to verify the effectiveness and applicability of the proposed
robust saturation controller to a seismic-excited building with parameter uncertainties and input time delay.

A three-storey shear-beam building model is considered [32], where the active bracing system (ABS) is installed at the
first floor to control the vibration of the structure as shown in Fig. 1. It is assumed that all the masses, stiffnesses, and
damping coefficients for each floor are identical, and the nominal structural parameters are given as mi¼1000 kg,
ci¼1.407 kN s/m, and ki¼980 kN/m, where i¼1,2,3, respectively. The state space equation of the three-storey shear-beam
building model is obtained similar to Eq. (1), in which

Ax ¼

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

�ðk1þk2Þ=m1 k2=m1 0 �ðc1þc2Þ=m1 c2=m1 0

k2=m2 �ðk2þk3Þ=m2 k3=m2 c2=m2 �ðc2þc3Þ=m2 c3=m2

0 k3=m3 �k3=m3 0 c3=m3 �c3=m3

2
6666666664

3
7777777775

,

B¼ ½0 0 0 1=m1 0 0�T,

and

Bw ¼ ½0 0 0 �1 �1 �1�T:

Consider the uncertainties of stiffnesses and damping coefficients are 40 percent of their nominal values, respectively,
we can obtain the matrices Ai as the following. Define the maximum and minimum values for the uncertain parameters as
kmin¼0.6�980 kN/m, kmax¼1.4�980 kN/m, cmin¼0.6�1.407, and cmax¼1.4�1.407 kN s/m, then the vertices yiði¼ 1, . . . ,4Þ
of the polynomial set for matrix Ax can be defined as

y1 ¼ ½kmin cmin�, y2 ¼ ½kmax cmin�, y3 ¼ ½kmin cmax�, y4 ¼ ½kmax cmax�:
m1

m2

m3

k , c

k , c

k , c

x

x

x

x

Fig. 1. Three DOF building model with ABS.
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After substituting yiði¼ 1, . . . ,4Þ into Ax, respectively, the matrices Ai ði¼ 1, . . . ,4Þ can be obtained. In fact, by defining the
coefficients as

x1 ¼ mn, x2 ¼ ð1�mÞn, x3 ¼ mð1�nÞ, x4 ¼ ð1�mÞð1�nÞ,

where m¼ ðkmax�kiÞ=ðkmax�kminÞ, n¼ ðcmax�ciÞ=ðcmax�cminÞ, the uncertain matrix Ax can be expressed as
Ax ¼

P4
i ¼ 1 xiðAiþMFðtÞEiÞ, where xiZ0 and

P4
i ¼ 1 xi ¼ 1. In addition, consider the variation of the first floor mass, the

uncertain matrices can be defined as

M¼ ½0 0 0 0:2=m1 0 0�T,

E1 ¼ ½�ðkminþkminÞ kmin 0 �ðcminþcminÞ cmin 0�,

E2 ¼ ½�ðkmaxþkmaxÞ kmax 0 �ðcminþcminÞ cmin 0�,

E3 ¼ ½�ðkminþkminÞ kmin 0 �ðcmaxþcmaxÞ cmax 0�,

E4 ¼ ½�ðkmaxþkmaxÞ kmax 0 �ðcmaxþcmaxÞ cmax 0�,

Eb ¼ 1:

In this study, the control output, z(t), is defined as the relative displacement of the first floor, that is,

zðtÞ ¼ ½1 0 0 0 0 0�xðtÞ:

In order to study the structural responses under seismic excitations, the El Centro 1940 earthquake excitation of which
peak ground acceleration is scaled to 0.112 g is used in this study. Assume all the relative displacements and the relative
velocities of the three floors can be measured for feedback, the state feedback control can be realised. Since there are few
cases where the time delay is larger than the one sample rate if the time delay is mainly from the computation of control
laws [33] and the sampling frequencies of most vibration control systems are on the order of 100–500 Hz [34], the
maximum time delay t allowed is selected as 20 ms. Consider the maximum actuator output force limit ulim as 700 N
(about 2.3 percent building weight), and define d¼ 10, r¼ 0:01, and t ¼ 20 ms, then use the approach presented in Section
3, we obtain the controller gain as

Kc ¼ 105
� ½0:7829 �3:6796 2:4813 �0:5351 �0:0472 0:0427�:

To evaluate the control system performance, three evaluation criteria are used. The first evaluation criterion is a
measure of the normalised maximum floor displacement relative to the ground, given as

J1 ¼max
t,i

jxiðtÞj

xmax

� �
, (35)

where xi(t) is the relative displacement of the ith floor over entire response, xmax denotes the uncontrolled maximum
displacement. The second evaluation criterion is a measure of the reduction in the interstorey drift. The maximum of the
normalised interstorey drift is

J2 ¼max
t,i

jdiðtÞj

dmax

� �
, (36)

where di(t) is the interstorey drift of the above ground floors over response history, and dmax denotes the peak interstorey
drift in the uncontrolled response. The third evaluation criterion is a measure of the peak floor accelerations, given by

J3 ¼max
t,i

j €xaiðtÞj
€xamax

� �
, (37)

where €xaiðtÞ is the absolute acceleration of the ith floor, and €xamax is the peak uncontrolled absolute acceleration.
Now, the control performance of the proposed controller for the nominal system will be checked. When there is no time

delay on input, i.e., t¼ 0, the responses of the open-loop system (u(t)¼0) and the closed-loop system are compared in
Fig. 2, where only the interstorey drift of the first floor and the absolute acceleration of the third floor, and control force are
shown for clarity. It can be seen from Fig. 2 that better responses are obtained for the closed-loop system when t¼ 0. It is
also verified that using energy-to-peak performance guarantees good response quantities.

When the time delay t¼ 20 ms is introduced at the control input, under the same earthquake excitation, the responses
of the first floor interstorey drift, the third floor absolute acceleration, and control force for the nominal system are plotted
in Fig. 3. It is noted that using our algorithm presented in Section 3, the controller is feasible for the given maximum time
delay t ¼ 20 ms. This means that the controller can stabilise the system (6) with good energy-to-peak performance under
parameter uncertainties and actuator saturation described above for any time delay satisfying 0rtr20 ms. It can be seen
from Fig. 3 that the closed-loop system is stable and the closed-loop performance is similar to that of no time delay in
input case as shown in Fig. 2.

For detailed comparison, the values for J2 and J3 are summarised in Table 1, where the results obtained by some other
methods are also listed for comparison (note that J1 is not listed as it cannot be obtained from [5] for the other methods to
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Fig. 3. Responses of interstorey drift of the first floor and absolute acceleration of the third floor, and control force for the nominal system when

t¼ 20 ms.
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Fig. 2. Responses of interstorey drift of the first floor and absolute acceleration of the third floor, and control force for the nominal system when t¼ 0 ms.
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Fig. 4. Performance index versus time delay for nominal system.

Table 1
Normalised maximum response values for nominal system.

Control strategy LQR [5] MBBC [5] SSMC [5] Lim et al. [5] Proposed

Time delay t (ms) 0 0 0 0 0 20

J2 0.66 0.38 0.39 0.40 0.41 0.40

J3 0.58 0.55 0.56 0.54 0.53 0.48
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compare the results). It can be seen that the proposed controller produces better performance than all of the other
methods in terms of maximum absolute acceleration reduction under the same maximum control force and the good peak
response quantities are not affected even when time delay t¼ 20 ms exists in the control input.

To further validate the effectiveness of the designed controller in dealing with the time delay problem, the effect of time
delay on the responses of the structure is studied by calculating the values of J1, J2, and J3 versus the time delay t, as shown
in Fig. 4. It can be seen from this figure that the closed-loop performances are all better than the corresponding open-loop
system performances and these good performances can be kept up to the maximum time delay (20 ms) with no more
degradation in peak response quantities.

For uncertain system, the proposed controller guarantees robust stability and performance within all the ranges of
parameter uncertainties considered in controller design. Robust stability and performance of the proposed controller are
verified through numerical simulations for the cases with various parameter uncertainties. For brevity, the responses of
the interstorey drift and the absolute acceleration of the uncertain system considering six cases when time delay t¼ 0 and
20, respectively, are studied. Firstly, we only consider four-vertex cases where the system stiffnesses and damping
coefficients are given as their vertex values, respectively. In the following, Case 1 corresponds to ki¼1.4�980 kN/m and
ci¼1.4�1.407 kN s/m, Case 2 corresponds to ki¼0.6�980 kN/m and ci¼0.6�1.407 kN s/m, Case 3 corresponds to
ki¼1.4�980 kN/m and ci¼0.6�1.407 kN s/m, and Case 4 corresponds to ki¼0.6�980 kN/m and ci¼1.4�1.407 kN s/m.
Then, we consider another two cases where the system stiffnesses and damping coefficients are kept as their nominal
values but the first floor mass changes. In such cases, Case 5 corresponds to m1¼1200 kg, Case 6 corresponds to
m1¼850 kg.

Among them, the interstorey drift of the first floor and the absolute acceleration of the third floor, and control force for
Case 3 are shown in Fig. 5 when t¼ 0 ms and plotted in Fig. 6 when t¼ 20 ms. It can be seen from Fig. 5 that in spite of the
changes on floor stiffness and damping coefficients, the closed-loop systems can achieve the good peak responses.
Compared with Fig. 5, it can be seen from Fig. 6 that the peak responses of the closed-loop system are similar in spite of the
presence of input time delay. It verifies that the designed controller can robustly stabilise the system no matter of the
parameter uncertainties and input time delay. The values of J1, J2, and J3 versus time delay t for Case 3 are shown in Fig. 7.
It is seen from this figure that the closed-loop performances are all better than the corresponding open-loop performances
and these good performances can be kept up to the maximum time delay (20 ms) with a few degradation in peak response
quantities. Similarly, for Case 5, the interstorey drift of the first floor and the absolute acceleration of the third floor, and
control force are plotted in Fig. 8 when t¼ 0 ms and Fig. 9 when t¼ 20 ms. From Figs. 8 and 9, it is observed that the
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Fig. 6. Responses of interstorey drift of the first floor and absolute acceleration of the third floor, and control force for Case 3 when t¼ 20 ms.
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Fig. 5. Responses of interstorey drift of the first floor and absolute acceleration of the third floor, and control force for Case 3 when t¼ 0 ms.
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Fig. 8. Responses of interstorey drift of the first floor and absolute acceleration of the third floor, and control force for Case 5 when t¼ 0 ms.
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closed-loop system keeps the good peak responses regardless of the floor mass variation and the presence of input time
delay. The values of J1, J2, and J3 versus time delay t are shown in Fig. 10, where good closed-loop performances are
achieved and kept even after the input time delay exceed 20 ms. Through extensive numerical simulations, it is checked
within considered bounds of parameter uncertainties that the proposed controller achieves almost the same effectiveness
in maximum responses reduction in comparison with some methods presented in [5]. For brevity, the detailed structural
responses for all these cases are not shown here. But for the above-mentioned six cases, the values for J2 and J3 are
summarised in Table 2. Besides the robust stability, it is observed that the proposed controller can achieve good
performance no matter the presence of input time delay or not.
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Fig. 10. Performance index versus time delay for Case 5.
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Fig. 9. Responses of interstorey drift of the first floor and absolute acceleration of the third floor, and control force for Case 5 when t¼ 20 ms.

Table 2
Normalised maximum response values for uncertain system.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

SSMC [5] Proposed SSMC [5] Proposed Proposed Proposed Proposed Proposed

t 0 0 0 20 0 0 0 20 0 20 0 20 0 20 0 20

J2 0.44 0.44 0.44 0.47 0.64 0.65 0.68 0.71 0.41 0.45 0.71 0.73 0.42 0.42 0.43 0.42

J3 0.58 0.57 0.55 0.61 0.78 0.78 0.78 0.80 0.51 0.57 0.86 0.88 0.54 0.49 0.54 0.48
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5. Conclusions

This paper presents an approach for designing robust saturation controller to attenuate the vibration occurred in
uncertain structures with input time delay. The required feedback control gain matrix can be determined by solving a set
of LMIs. Simulation example shows that the saturation controller designed using the presented approach can effectively
achieve the attenuation objective even when the system has parameter uncertainties and input time delay. Considering
parameter uncertainties, actuator saturation, and input time delay into the controller design process provides more
realistic implementation for the vibration control of building structures.
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