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a b s t r a c t

Surflex-Dock is employed to investigate interactions between neuraminidase inhibitors (NIs) and
neuraminidase (NA), which illuminate that carboxyl group, amino (guanidino) group, amide group,
hydroxy group are crucial. Hydrogen bonds and hydrophobic interactions impact on activities of NIs.
There is a strong correlation between binding affinity and pIC50, with r¼ 0.813. We have developed
three-dimensional holographic vector of atomic interaction field analysis (HoVAIFA) as a new method of
3D-QSAR to understand chemical–biological interactions. Good results, R2¼ 0.789 and R2cv¼ 0.732,
show that HoVAIFA can be applicable to molecular structural characterization and bioactivity prediction.
Electrostatic, steric and hydrophobic interactions affect activities of NIs. HoVAIFA and docking results are
corresponding, which illustrates that HoVAIFA is an effective methodology for characterization of
complex interactions of drug molecules.

Crown Copyright � 2009 Published by Elsevier Masson SAS. All rights reserved.
1. Introduction

Influenza is a serious danger to human health acute toxicity of
a fast-spreaded respiratory infection, which is one of the main
causes of death [1]. Given the lack of effective drugs for prevention
and treatment of influenza, the development of a novel anti-
influenza virus drug is of great significance. Influenza is an RNA
virus that contains two major surface glycoproteins, namely,
neuraminidase (NA) and hemagglutinin (HA). NA can cleave the
a-ketosidic connections of sialic acid and nearby residues of sugar
[2]. It also destroys HA on the virus surface allowing the emergence
of progeny virus units from infected cells. So, NA is a potential target
to control influenza virus. Chemicals that inhibit NA can protect the
host from viral infection. Based on the NA crystal structures eluci-
dated, many high selective neuraminidase inhibitors (NIs) are
reasonably designed. At present, both zanamivir and oseltamivir are
effective inhibitors for both A and B forms of neuraminidase [3,4].
Zanamivir is administered by oral inhalation due to high polar
compounds, and oseltamivir is a prodrug that is converted after oral
intake to its active form, the carboxylic acid (GS 4071).
ring, Chongqing University,
.
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Quantitative structure activity relationship (QSAR) is an
important method for designing drug, so, construction of quanti-
tative correlation between the molecular structure and biological
activity for these compounds has an important significance to
research and development of high efficiency anti-influenza drug.
For example, 17 QSAR models for different series of compounds
including benzoic acids [2,5–7], carbocyclic derivatives [8,9],
cyclopentanes [9,10], isoquinolines [11–14], and pyrrolidines [15]
were developed using MLR (multiple linear regressions) to under-
stand chemical–biological interactions governing activities of NIs,
by reporting Verma et al. [16].

However, an efficient approach for investigating protein–ligand
interactions, molecular docking plays a key role in rational drug
design [17]. So, protein–ligand interactions were investigated using
Surflex-Dock in the present paper. QSAR studies of above-mentioned
compounds were carried out utilizing three-dimensional holo-
graphic vector of atomic interaction field (3D-HoVAIF), and the
influence of molecular structure on neuraminidase inhibiting activ-
ities were also discussed in detail. 3D-HoVAIF is proposed based
upon a 2D structural descriptor developed by Liu et al. [18] in our
laboratory. Proceeding from two spatial invariants, namely atom
relative distance and atomic properties on the bases of three
common non-bonded (electrostatic, van der Waals and hydrophobic)
interactions which are directly associated with bioactivities,
3D-HoVAIF method derives multidimensional vectors to represent
molecular steric structural characteristics.
SAS. All rights reserved.
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Table 1
All 10 subtypes of atoms and the resulting 55 types of interactions in HoVAIFA.

No Atomic Types 1 2 3 4 5 6 7 8 9 10

1 H 1–1 1–2 1–3 1–4 1–5 1–6 1–7 1–8 1–9 1–10
2 C(sp3) 2–2 2–3 2–4 2–5 2–6 2–7 2–8 2–9 2–10
3 C(sp2) 3–3 3–4 3–5 3–6 3–7 3–8 3–9 3–10
4 C(sp) 4–4 4–5 4–6 4–7 4–8 4–9 4–10
5 N(sp3) 5–5 5–6 5–7 5–8 5–9 5–10
6 N(sp2) 6–6 6–7 6–8 6–9 6–10
7 N(sp) 7–7 7–8 7–9 7–10
8 O(sp3), S(sp3) 8–8 8–9 8–10
9 O(sp2), S(sp2) 9–9 9–10
10 F, Cl, Br, I 10–10
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2. Experiment

2.1. Methods and materials

2.1.1. Docking
Surflex-Dock was applied to study molecular docking. Crystal

structure of NA was retrieved from RCSB Protein Data Bank (PDB
entry code: 2ht7) [19]. This is a particular structure with oseltamivir
(GS4701). Surflex-Dock uses an empirical scoring function and
a patented search engine to dock ligands into a protein’s binding site
[20]. Protomol is used to guide molecular docking. Protomol is
a computational representation of the intended binding site to which
putative ligands are aligned. Production of protomol supplies three
manners [21]: (1) Automatic: Surflex-Dock finds the largest cavity in
the receptor protein; (2) Ligand: A ligand in the same coordinate
space as the receptor; (3) Residues: Specified residues in the
receptor. Surflex-Dock scores are expressed in �log10(Kd) units to
represent binding affinities. Surflex-Dock scores are evaluated by
CScore (Consensus Score) [22]. CScore integrates a number of
popular scoring functions for ranking the affinity of ligands bound to
the active site of a receptor. The strengths of individual scoring
functions combine to produce a consensus that is more robust and
accurate than any single function for evaluating ligand–receptor
interactions. CScore provides several functions: D Score [23], PMF
(Potential of Mean Force) Score [24], G Score [25] and CHEM Score
[26]. The consensus scores range from 1 to 5. The best CScore is 5. The
protein structure was utilized in subsequent docking experiments
without energy minimization. All ligands and water molecules have
been removed at first and the polar hydrogen atoms were added.
Automatic docking is employed. Other parameters are established by
default in software. All NIs are minimized using default parameter.

2.1.2. QSAR
Ordinary atoms of organic molecules with pharmaceutical

interests including H, C, N, P, O, S, Cl, Br, I, which are partitioned into
5 types in the Element Periodic Table. According to their hybrid-
ization state, the atoms are furthermore divided into 10 subtypes.
Thus, there are 55 interactions in a molecule (Table 1). In this paper,
three kinds of potential energy fields, electrostatic, steric and
hydrophobic, are employed in the representation of different
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interactions, producing 3� 55¼165 interaction items for organic
molecules of various drugs.

There are three atomic interaction potential energies:
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Electrostatic interaction is an important non-bonded interaction
obeying Coulomb’s law. In Eq. (1), rij denotes interatomic Euclid
distance, with the unit of meter (m); e is the elementary charge
(1.602 189 2�10�19 C); 30 represents dielectric constant 8.854 187
82�10�12 C2/(J$m) in vacuum; Z is the amounts of net electric
charges; m and n are atomic types. Electrostatic interactions among
all atoms included in a molecule could be given out by this equa-
tion, and then accumulating them together into each of the 55
interaction items according to their atom-pair attributes.

Steric interaction is described by Lennard–Jones formula (Eq.
(2)). Amongst, 3ij¼ (3ii$3jj)

1/2 is potential well of atomic pairs, with
its value taken from reference [27,28]; Rij

3¼ (Ch$Rii
3þ Ch$Rjj

3)/2
[29,30], is van der Waals’ radius for modified atom-pair, with cor-
rected factor Ch of 1.00 in case of sp3 hybridization, 0.95 sp2

hybridization and 0.90 sp hybridization [31].
Hydrophobic interaction is defined as interatomic hydrophobic

interaction through force field in ‘‘hint’’ proposed by Kellogg et al.
[32]. Amongst, S is the solvent accessible surface area (SASA) for
atoms [33], indicating information on surface area when water-
molecule probe roiling its sphere at the atomic surface; A is atomic
hydrophobic constant, taken the value from reference [34]; T is sign
function, indicating entropy change resulting from different types
of atomic interaction [35–38].

Three-dimensional molecular structures of the 124 compounds
are automatically generated by software Chemoffice8.0, and then
semi-empirical quantum chemistry software MOPAC6.0 contained
in Chem3D is used to obtain final optimized molecular structures at
AM1 levels (cut-off value of 0.001 kJ/mol). Simultaneously, atomic
partial charges are calculated by Mulliken Method in the form of
single-point. Spatial positions for all atoms in a molecule and the
atomic charges are put into C program Super-3D.EXE, giving rise to
HoVAIFA descriptors by taking forms of Cartesian coordinates and
partial charges, respectively. For any molecule contain 10 subtypes
of atoms, all 165 descriptors are obtained, namely V1 w V55,
V56 w V110 and V111 w V165 correspond to electrostatic, steric and
hydrophobic interactions, respectively.

Genetic algorithm (GA) is implemented by matlab software
(version 7.0). GA variable screening parameter establishment:
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Table 2
Experiment, calculation, errors values of pEC50 and total scores for all samples.

ID X Y Z Exp. (M) CalEST. (M) CalLOO (M) ErrEST. (M) ErrLOO (M) Total Scores CScore

1 NHC(]NH)NH2 H H 3.60 4.094 4.329 0.494 0.729 4.68 3
2 NHC(]NH)NH2 H CH2OH 4.70 3.915 3.592 �0.785 �1.108 5.96 4
a3 NHC(]NH)NH2 H CH2NH 2.59 3.529 – 0.939 – 3.86 4
4 H CH2OH CH2OH 3.12 5.508 5.629 2.388 2.509 4.73 3
5 NHC(]NH)NH2 CH2OH CH2OH 5.30 4.389 4.027 �0.911 �1.273 5.99 4
6 NHCH(C2H5)2 H H 3.65 4.078 4.141 0.428 0.491 4.64 4
7 NHCH(C2H5)2 CH2OH CH2OH 7.32 5.737 5.490 �1.583 �1.830 6.83 4
8 CH(C2H5)C2H5 – – 9.00 6.967 6.891 �2.033 �2.109 7.67 5
9 CH2CH2CH3 – – 6.89 6.624 6.612 �0.266 �0.278 7.44 5
10 CH2OCH3 – – 5.70 6.085 6.115 0.385 0.415 5.92 3
11 CH2CH2CF3 – – 6.65 6.314 6.294 �0.336 �0.356 6.39 4
12 CH2CH]CH2 – – 5.66 6.476 6.550 0.816 0.890 5.79 3
13 Cyclopentyl – – 7.66 6.797 6.753 �0.863 �0.907 7.51 4
a14 Cyclohexyl – – 7.22 7.015 – �0.205 – 6.68 4
a15 Phenyl – – 6.28 7.476 – 1.196 – 7.02 5
16 H – – 5.20 6.068 6.097 0.868 0.897 4.40 5
17 Me – – 5.43 6.333 6.356 0.903 0.926 5.02 4
18 C2H5 – – 5.70 6.562 6.581 0.862 0.881 5.85 3
a19 C3H7 – – 6.74 6.726 – �0.014 – 7.44 5
20 C4H9 – – 6.52 6.863 6.871 0.343 0.351 6.15 5
21 C5H11 – – 6.70 6.979 6.986 0.279 0.286 7.67 3
22 C6H13 – – 6.82 7.081 7.088 0.261 0.268 7.81 4
23 C7H15 – – 6.57 7.170 7.189 0.600 0.619 7.77 4
24 C8H17 – – 6.74 7.250 7.269 0.510 0.529 7.02 3
25 C9H17 – – 6.68 7.323 7.349 0.643 0.669 7.8 5
26 C10H21 – – 6.22 7.390 7.442 1.170 1.222 5.93 5
a27 CH2CHMe2 – – 6.70 7.011 – 0.311 – 6.08 3
28 CH(Me)C2H5(R) – – 8.00 7.077 7.052 �0.923 �0.948 6.81 3
29 CH(Me)C2H5(S) – – 8.05 7.108 7.081 �0.942 �0.969 6.81 3
30 CH(C2H5)2 – – 9.00 7.315 7.254 �1.685 �1.746 7.67 4
31 CH(C2H5)CH2CH]CH2(R) – – 9.00 7.356 7.298 �1.644 �1.702 7.27 4
32 CH(C2H5)CH2CH]CH2(S) – – 8.52 7.356 7.315 �1.164 �1.205 7.27 4
33 CH(C2H5)C7H15 – – 9.00 7.935 7.845 �1.065 �1.155 8.25 4
a34 Cy-C6H11 – – 7.22 7.233 – 0.013 – 6.68 5
a35 CH(C2H5)CH2-Cy-C6H11 – – 7.80 7.972 – 0.172 – 7.61 5
36 CH(C2H5)CH2CH2- Cy-C6H11 – – 9.00 8.047 7.955 �0.953 �1.045 7.67 3
37 C6H5 – – 6.28 5.629 5.606 �0.651 �0.674 7.02 3
38 CH2C6H5 – – 6.21 5.629 5.609 �0.581 �0.601 7.19 5
a39 CH(C2H5)CH2CH2C6H5(R) – – 9.52 7.790 – �1.730 – 7.84 3
a40 CH(C2H5)CH2CH2C6H5(S) – – 7.92 7.512 – �0.408 – 7.84 3
41 CH2CH2CH2-C6H4(4-C6H5) – – 7.05 7.181 7.187 0.131 0.137 7.22 5
42 Me (CH2)2CH3 – 7.19 6.365 6.333 �0.825 �0.857 6.71 4
43 Me (CH2)3CH3 – 6.74 7.241 7.260 0.501 0.520 6.73 3
a44 Me CH(CH2CH3)2 – 8.22 6.873 – �1.347 – 5.78 5
45 Me (CH2)2-C6H5 – 7.00 6.578 6.557 �0.422 �0.443 7.50 5
46 Me Cy-C6H5 – 6.70 6.980 6.989 0.280 0.289 7.18 4
47 CH2CH3 (CH2)2CH3 – 7.05 6.980 6.978 �0.070 �0.072 5.62 5
48 CH2CH3 (CH2)3CH3 – 7.07 7.249 7.261 0.179 0.191 6.12 3
49 (CH2)2CH3 (CH2)2CH3 – 7.92 7.117 7.090 �0.803 �0.830 6.86 4
a50 H (CH2)3CH3 – 6.70 7.049 – 0.349 – 7.03 3
a51 H CH(CH2CH3)2 – 7.96 6.640 – �1.320 – 8.39 3
52 H COCH2CH3 – 5.57 5.745 5.753 0.175 0.183 5.29 4
53 H COCHMe2 – 5.19 5.907 5.935 0.717 0.745 5.75 4
54 H COCH(CH2CH3)2 – 5.40 6.168 6.193 0.768 0.793 6.04 5
55 H – – 5.20 6.068 6.097 0.868 0.897 4.4 5
56 Me – – 5.43 6.333 6.356 0.903 0.926 5.02 3
57 C2H5 – – 5.70 6.562 6.581 0.862 0.881 5.85 5
58 C3H7 – – 6.74 6.803 6.804 0.063 0.064 7.44 4
59 C4H9 – – 6.52 6.962 6.973 0.442 0.453 6.15 3
60 CH2CHMe2 – – 6.70 6.952 6.958 0.252 0.258 6.08 4
61 CH(Me)CH2CH3(R) – – 8.00 7.077 7.052 �0.923 �0.948 6.81 4
62 CH(Me)CH2CH3(S) – – 8.05 7.077 7.051 �0.973 �0.999 6.81 3
a63 CH(C2H5)2 – – 9.00 7.749 – �1.251 – 7.67 3
64 CH(C3H7)2 – – 7.80 7.749 7.745 �0.051 �0.055 7.31 4
65 CH2CH3 – – 6.48 5.408 5.348 �1.072 �1.132 6.71 5
66 CH(CH3)2 – – 5.87 5.556 5.540 �0.314 �0.330 7.19 4
67 CH2CH]CH2 – – 6.14 5.277 5.229 �0.863 �0.911 5.97 3
a68 (CH2)3CH3 – – 5.00 5.877 – 0.877 – 6.94 5
a69 CH(CH3)CH2CH3 – – 6.39 5.620 – �0.770 – 7.43 5
a70 CH(CH2CH3)2 – – 7.10 5.728 – �1.372 – 6.78 4
71 CH(CH3)(CH2)2CH3 – – 5.49 5.718 5.747 0.228 0.238 5.40 4
a72 CH(CH3)CH2CH(CH3)2 – – 5.08 5.733 – 0.653 – 5.77 4
73 CH(CH3)(CH2)3CH3 – – 5.06 5.718 5.850 0.658 0.687 6.82 5
74 CH(CH2CH3)(CH2)3CH3 – – 5.74 5.846 6.062 0.106 0.110 6.03 4
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Table 2 (continued )

ID X Y Z Exp. (M) CalEST. (M) CalLOO (M) ErrEST. (M) ErrLOO (M) Total Scores CScore
a75 (CH2)2C6H5 – – 5.19 5.741 – 0.551 – 5.43 4
76 CH(CH3)(CH2)2C6H5 – – 6.64 6.081 6.118 �0.559 �0.578 5.82 4
77 CH(CH3)CH2OCH3 – – 5.36 6.085 6.817 0.725 0.758 5.48 5
a78 CH(CH2CH3)CH2OCH3 – – 5.66 6.284 – 0.624 – 6.06 4
79 CH3 (CH2)2CH3 – 6.03 6.752 6.500 0.722 0.787 6.88 4
a80 CH3 CH(CH3)2 – 5.49 6.516 – 1.026 – 6.48 5
81 CH3 CH2CH]CH2 – 6.19 6.463 6.771 0.273 0.310 7.03 3
82 CH3 (CH2)3CH3 – 5.62 6.696 6.964 1.076 1.151 6.14 4
83 CH3 (CH2)5CH3 – 4.91 6.817 6.138 1.907 2.054 5.68 5
84 CH3 (CH2)2C6H5 – 5.10 5.831 6.194 0.731 1.038 6.16 5
a85 CH2CH3 CH2CH3 – 7.82 5.983 – �1.837 – 8.61 4
86 CH2CH3 (CH2)2CH3 – 6.89 6.228 6.317 �0.662 �0.696 7.20 3
87 CH2CH3 (CH2)3CH3 – 6.37 6.319 5.092 �0.051 �0.053 6.55 5
88 CH2CH3 CH2C6H5 – 6.17 5.285 7.363 �0.885 �1.078 6.86 5
a89 CH2CH3 CH2CH2OH – 6.14 8.486 – 2.346 – 6.25 4
90 CH2CH2CH3 CH2CH(CH3)2 – 6.70 7.296 6.876 0.596 0.663 6.74 4
91 CH2CH2CH3 CH2CH2CH3 – 7.22 6.900 2.915 �0.320 �0.344 8.47 3
92 4-NO2 – – 2.90 2.914 2.325 0.014 0.015 5.93 3
a93 4-Br – – 2.77 2.362 – �0.408 – 4.44 4
a94 4-CN – – 2.84 2.363 – –0.477 – 4.76 3
95 4-Cl – – 2.81 2.361 2.340 �0.449 �0.485 4.54 5
96 4-F – – 2.63 2.362 2.344 �0.268 �0.290 4.54 5
97 H – – 2.58 2.362 2.791 �0.218 �0.236 4.32 4
98 4-CH3 – – 2.68 2.782 2.836 0.102 0.111 4.69 4
99 4-OCH3 – – 2.62 2.820 2.480 0.200 0.216 4.96 3
100 4-OH – – 2.24 2.462 3.052 0.222 0.240 4.84 3
101 4-OC2H5 – – 2.65 3.021 3.175 0.371 0.402 5.08 4
102 4-OC3H7 – – 2.79 3.145 3.149 0.355 0.385 5.11 5
103 4-OC4H9 – – 2.78 3.119 3.430 0.339 0.369 5.50 4
104 4-C(CH3)3 – – 3.15 3.402 2.766 0.252 0.280 5.20 5
105 3-CH3 – – 2.78 2.767 2.336 �0.013 �0.014 4.50 5
106 3-F – – 2.67 2.361 2.324 �0.309 �0.334 4.45 3
107 3-Cl – – 2.82 2.361 4.832 �0.459 �0.496 4.12 4
108 OCH(Et)2 – – 4.66 4.768 4.742 0.108 0.172 5.78 4
109 CON(Et)2 – – 4.60 4.733 2.340 0.133 0.142 5.65 3
a110 CON(n-Pr)2 – – 4.49 4.843 – 0.353 – 4.96 4
a111 CON(Et)CH(Me)2 – – 5.80 4.838 – �0.962 – 4.41 4
a112 CON[CH(Me)2]2 – – 5.40 5.131 – �0.269 – 5.64 4
113 CON(CH2CH2OH)CH(Me)2 – – 4.68 3.979 3.664 �0.701 �1.016 5.77 5
114 CON[(CH2)3OH]CH(Me)2 – – 5.68 5.558 5.553 �0.122 �0.127 6.02 3
115 CON[(CH2)5OH]CH(Me)2 – – 5.70 6.241 6.279 0.541 0.579 6.67 4
116 CON[(CH2)3COOH]CH(Me)2 – – 4.72 5.861 6.753 1.141 2.033 6.18 5
117 CON[(CH2)4COOH]CH(Me)2 – – 5.89 6.242 6.253 0.352 0.363 6.20 3
118 CON[(CH2)3NH2]CH(CH3)2 – – 4.34 5.007 5.038 0.667 0.698 5.51 5
119 CON[(CH2)2-2-Pyridyl]CH(Me)2 – – 5.89 5.758 3.929 �0.132 �1.961 7.21 4
a120 COCH3 – – 5.12 4.552 – �0.568 – 4.82 4
121 COCH2CH3 – – 4.80 4.722 4.715 �0.078 �0.085 4.72 3
122 COCH]CH2 – – 4.02 4.065 4.069 0.045 0.049 4.75 4
123 COCF3 – – 6.55 4.365 4.196 �2.185 �2.354 6.30 4
124 SO2CH3 – – 3.89 5.101 5.158 1.211 1.268 5.36 3

a Samples in test set. Total Sores: Surflex-Dock scores are expressed in �log10(Kd) units to represent binding affinities.
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initial populations are 200, genetic generations are 100, crossover
probability is 0.5 and mutation probability is 0.01, the evaluation
function is cross-validation correlation coefficient Q2. Statistical
model was obtained by multiple linear regressions (MLR). External
predictive ability of model was evaluated by Q2

ext [39].

Q2
ext ¼ 1�

Xtest

i¼1

�
yi � byi

�2
,Xtest

i¼1

�
yi � bytr

�2
(4)

2.2. Dataset and structural characterization

Here 124 NIs are studied (Scheme 1 and Table 1 for their skel-
etons and structures), whose molecular structures and biological
values (pEC50, effective concentration of the compound required to
achieve 50% protection of MT-4 cells against the cytopathic effect of
virus, listed in Table 2, taken from reference [16]). With the
exclusion of various outliers, some different 2D-QSAR models are
already obtained by respective use of molecular molar volume,
instruction variables, calculated molar refractive index, calculated
substituent hydrophobic parameters, octanol and water partition-
ing coefficient. However, the exclusion of the outliers must be taken
carefully. So taking all samples in Tables 1–10 [16], into full
consideration, we use the developed descriptors (HoVAIFA) to
obtain 3D-QSAR models with totally good prediction results which
are quite comparative to that obtained in paper [16]. 124 samples
were randomly divided into training set (including 96 samples) and
test set (comprised 28 samples which were outliers deleted in
reference [16]).
3. Results and discussions

3.1. Docking

Fig. 1 illuminated hydrogen bonding interactions between
amino acid residues (consisting of basic residue ARG118, ARG152,
ARG292, acidic residue GLU119 and neutral residue TYR406) and ID



Fig. 1. Hydrogen bonding interactions between GS4701 (ID 8) and key amino acid
residues.

Fig. 3. Correlation of the predicted binding affinities (total scores) of 124 NIs with NA
to experimental pEC50.
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8 (GS4071). 6 hydrogen bonds (dashed line) are produced. More-
over, types of hydrogen bonds included C]O/H–N, H–N/H–N,
C–O/H–N, H–O/H–N, and C]O/H–O. From Fig. 1, hydrophobic
interactions can form between alkyl groups, carbocyclic ring in NIs
(ID 8) and hydrophobic residues including LEU134, ALA180,
ALA177, TRP178, and LEU223. It is thus evident that hydrogen
bonding interactions and hydrophobic interactions affect activity of
NIs. Furthermore, CScore is 5. It is thus evident that docking was
reasonable. Total scores (the predicted binding affinities) and
CScore of all NIs are provided in Table 2. CScores of all samples are
good.

Fig. 2 elucidated comparison of ID 8 (GS4701) and that observed
in the crystal structure. RMSD (root mean squared deviation) was
0.66 Å, and similarity (a measure of similarity between solution
coordinates and reference coordinates) was 0.72.

Moreover, A linear regression analysis reveals a fair correlation
between experimental pEC50 and binding affinities, with correla-
tion coefficient r¼ 0.813 Eq. (5) and Fig. 3.
Fig. 2. Comparison of the position of GS4701 (ID 8) and that observed in the crystal
structure.
Y ¼ 3:24461ðError : 0:20129Þ

þ0:51027ðError : 0:03305Þ*X

ðn ¼ 124; R ¼ 0:813; SD ¼ 0:642; p < 0:0001Þ
(5)

3.2. QSAR

7 descriptors (including V17, V56, V70, V78, V122, V132 and V148)
were obtained by GA variable screening. The 3D-QSAR regression
model with 7 variables has good estimation capacity (R2¼ 0.789,
SD¼ 0.832) and the best predictive ability (R2

CV¼ 0.732,
SDCV¼ 0.936), which is given below:

Y ¼ 5:815þ 0:715*V17 þ 0:399*V56 � 1:842*V70

þ0:577*V78 � 0:489*V122 þ 1:369*V132 þ 0:400*V148

n ¼ 96; R2 ¼ 0:789; SD ¼ 0:832; F ¼ 46:901;

R2
CV ¼ 0:732; SDCV ¼ 0:936; FCV ¼ 34:338 (6)

According to commonly recognition statistical standard, reliable
model about QSAR is q2� 0.5 [40]. Therefore, the present model is
indeed excellent with a predictive ability of 73.2%. Moreover, Q2

ext

of the QSAR model were 0.705. Above results elucidated that the
QSAR model was strong and had good external predictive ability.

In Eq. (6) V17 is the electrostatic interaction between the second
type of atoms (Csp3) and the eighth type of atoms (Osp3), V56 is the
steric interaction between first type of atoms (Hs1) and the first
type of atoms (Hs1), V70 indicates the steric interaction between the
second type of atoms (Csp3) and the sixth type of atoms (Nsp2), V78 is
the steric interaction between the third type of atoms (Csp2) and the
sixth type of atoms (Nsp2), V122 is the hydrophobic interaction
between the second type of atoms (Csp3) and the third type of
atoms (Csp2), V132 is the hydrophobic interaction between the third
type of atoms (Csp2) and the fifth type of atoms (Nsp3), V148 is the
hydrophobic interaction between the fifth type of atoms (Nsp3) and
the eighth type of atoms (Osp3). From QASR model, it can be
concluded that the steric effect and hydrophobic interactions are
the most important interactions, and the next is electrostatic
interaction. Moreover, it can be seen that activity of NIs is high
negatively correlated with the steric interaction between sp3-
hybridized C atoms (Csp3) and sp2-hybridized N atoms (Nsp2).
Activity of NIs is high positively correlated with the hydrophobic



Fig. 4. Plot of calculated pEC50est vs. experimental pEC50 of NIs in training set and
test set.
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interaction between the third type of atoms (Csp2) and the fifth type
of atoms (Nsp3). In addition, the addition of alkyl group X is helpful
to improve activity, but alkyl chain should not be too long, because
the steric interaction between unhybridized H atoms and unhy-
bridized H atoms has a positive influence on the activity.

Fig. 4 showed plots of estimated activity value (pEC50est) against
observed pEC50 values of samples in training set and test set. From
Fig. 4, it can be seen that almost all samples are uniformly
distributed around diagonal, not obviously exceptional point has
selected. Furthermore, equation through origin was given below:

Yðcalculated pEC50Þ ¼ 0:97725ðerror : 0:01229Þ
*Xðexperimental pEC50Þ ðn ¼ 124;

R ¼ 0:876; SD ¼ 0:833;

p < 0:0001Þ ð7Þ

It elucidates that 3D-HoVAIF can appropriately illustrate struc-
tural feature of compounds, and make the correct reflection in the
statistical model. In addition, the estimated activity value (pEC50-

est), leave-one-out (LOO) predicted value (pEC50loo) and respective
error between the experimental and calculated values of 124 NIs
are given in Table 2.

3.3. Comparison between QSAR and docking

From above results, it can be seen that the electrostatic inter-
action between the second type of atoms (Csp3) and the eighth type
of atoms (Osp3) correspond to electrostatic interaction between ID 8
and residues ARG 224, ARG292 and TYR406. The hydrophobic
interaction between the second type of atoms (Csp3) and the third
type of atoms (Csp2) is conformity to hydrophobic interaction
between ID 8 and residues LEU223 and ALA180; the hydrophobic
interaction between the third type of atoms (Csp2) and the fifth type
of atoms (Nsp3) conforms to hydrophobic interaction between alkyl
groups, carbocyclic ring in ID 8 and residue residues LEU134,
ALA177, TRP178, and ALA180; the hydrophobic interaction between
the fifth type of atoms (Nsp3) and the eighth type of atoms (Osp3)
consistent with hydrophobic interaction between alkyl groups in ID
8 and residue TRP178. In addition, from the docking, it can be
concluded that the steric interactions including between first type
of atoms (Hs1) and the first type of atoms (Hs1), between the second
type of atoms (Csp3) and the sixth type of atoms (Nsp2), between the
third type of atoms (Csp2) and the sixth type of atoms (Nsp2) can
decide molecular shape. Therefore, QSAR and docking results illu-
minate that electrostatic, hydrophobic and steric interactions have
an effect on activity of NIs in some degree. It is thus clear that QSAR
results accord with docking results.
4. Conclusions

In this paper, the docking results elucidate that hydrogen bonds
and hydrophobic interactions mainly affect bioactivity of NIs. More-
over, carboxyl group, amino (guanidino) group, amide group,
hydroxy group are crucial to form hydrogen bonds interactions
between NIs and key residues in active site. In addition, there is
a strong correlation between binding affinity and experimental pIC50

with significant correlation coefficient r¼ 0.813 and p< 0.0001.
The QSAR results elucidate that the steric effect, hydrophobic

and electrostatic interactions affect activities of NIs. R2 and R2
CV of

the QSAR model are 0.789 and 0.732, respectively. Moreover, Q2
ext

of 0.705 is obtained. The results show that the QSAR model is robust
and has good predictive ability. The QSAR results coincide with
docking results, which illustrates that HoVAIFA is an effective
description methodology for characterization of the complex
interactions of drug molecules. HoVAIFA parameters, having clear
physicochemical meaning and not considering the superposition of
conformation, are of easy interpretation and can be calculated
directly with more advantages in modeling stability and predictive
ability than traditional methods of molecular characterization.
Therefore, HoVAIFA is worth further study and is expected to be
widely used in the bioactivity prediction of various theoretical
drugs and other diverse substances. QSAR and docking can
supplement each other. Therefore, QSAR combination with docking
is useful to drug design and optimation of lead compounds.
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