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Abstract This paper is concerned with a relative perturbation theory and its
entrywise relatively accurate numerical solutions of an M-matrix Sylvester equation
AX + X B = C by which we mean both A and B have positive diagonal entries and
nonpositive off-diagonal entries and P = Im ⊗ A+BT⊗ In is a nonsingular M-matrix,
and C is entrywise nonnegative. It is proved that small relative perturbations to the
entries of A, B, and C introduce small relative errors to the entries of the solution
X . Thus the smaller entries of X do not suffer bigger relative errors than its larger
entries, unlikely the existing perturbation theory for (general) Sylvester equations. We
then discuss some minor but crucial implementation changes to three existing numer-
ical methods so that they can be used to compute X as accurately as the input data
deserve.
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640 J. Xue et al.

1 Introduction

An n-by-n real matrix A is called an M-matrix if it can be written as A = γ In −E such
that γ ≥ ρ(E), where E is n-by-n and entrywise nonnegative, In is the n × n identity
matrix, and ρ(·) is the spectral radius of a matrix. It is called a nonsingular M-matrix
if γ > ρ(E) and a singular M-matrix if γ = ρ(E). Necessarily, an M-matrix A has
nonpositive off-diagonal entries and nonnegative diagonal entries. For a nonsingular
or irreducible M-matrix A, its diagonal entries are positive.

In this paper, we are concerned with the following Sylvester equation

AX + X B = C, (1.1)

where both A ∈ R
n×n and B ∈ R

m×m have positive diagonal entries and nonpositive
off-diagonal entries and

P = Im ⊗ A + BT ⊗ In (1.2)

is a nonsingular M-matrix, and C ∈ R
n×m is entrywise nonnegative. Here and in what

follows, ⊗ is the usual Kronecker product of matrices (or vectors regarded as matri-
ces). We call this type of Sylvester equation (1.1) an M-Matrix Sylvester Equation
(MSE).

MSEs appear frequently in iterative methods for M-matrix Algebraic Riccati equa-
tions. See [13–16,19,20,23] and the references therein. M-matrix Lyapunov equations,
i.e., B = AT, arise in positive systems [27].

An MSE always has a unique solution. Our first goal in this paper is to present an
entrywise relative perturbation analysis for MSE (1.1). Specifically, we seek bounds
on the entrywise relative errors in the solution caused by small entrywise relative per-
turbations to the coefficient matrices A, B, and C . Our results suggest each and every
entry of the solution, no matter how tiny it may be, is determined to a relative accu-
racy that is comparable to the entrywise relative accuracy residing in these coefficient
matrices.

Existing perturbation theory for Sylvester equations [17] is a general theory for all
Sylvester equations with nonsingular P and with arbitrary additive perturbations that
are tiny, by which we mean, for example,‖˜A−A‖/‖A‖ is tiny, where‖·‖ is some matrix
norm and ˜A is a perturbed A. The conclusion is that, roughly speaking, the change to
the solution X measured in the norm is about ‖P−1‖(‖˜A− A‖+‖˜B − B‖+‖˜C −C‖),
modulo some constant factor. Such a result may not work well in our case because
it fails to tell the actual accuracies of the tiny entries in X . Our analysis, taking full
advantage of the special structure in an MSE, suggests that all entries of X , regardless
of their magnitudes, are determined to comparable relative accuracy as the input data.

Our second goal is to provide algorithms that are able to deliver computed solu-
tions of an MSE as accurate as the data deserve. These include the Smith algorithm
(with a suitable shift) [24] and the classical fixed point iteration methods based
on the so-called regular splitting [26], both however with some minor but crucial
implementation changes, and the GTH-like algorithm [1]. This contrasts favorably to
other existing methods, including the Bartels–Stewart algorithm [5] and the Golub–
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M-matrix Sylvester equations 641

Nash–Van Loan algorithm [11] that use the Schur forms and/or Hessenberg reduction
forms of A and B via orthogonal similarity transformations and including ADI meth-
ods [6,28] whose shifts may not always be larger or equal to the largest diagonal entries
in A and B. Both the Bartels–Stewart algorithm and the Golub–Nash–Van Loan algo-
rithm are backward stable in the normwise sense but cannot produce solutions with
deserving entrywise relative accuracy.

The MSE is closely related to the so-called M-Matrix Algebraic Riccati Equation1

(MARE)

X DX − AX − X B + C = 0, (1.3)

where A, B, C , and D are matrices whose sizes are determined by the partitioning

W =
(

m n

m B −D
n −C A

)

, (1.4)

and W is a nonsingular or an irreducible singular M-matrix. Setting D = 0 in (1.3)
leads to an MSE (1.1). But according to our definition of an MSE, not all MSEs
can arise this way, i.e., those MSEs for which one of A and B is not an M-matrix.
It is known [14,15] that MARE (1.3) has a unique minimal nonnegative solution.
One important application of MARE (1.3) is in stochastic fluid models [22,23] where
each entry of the solution has a physical meaning and it is desirable and important to
compute even very tiny entries accurately. To guarantee this, it needs to solve MSE
equations arising in certain iterative methods such as the Newton method with high
entrywise relative accuracy.

It turns out that if W is entrywise accurate, then the minimal nonnegative solution
too is determined and can be computed to a comparable entrywise accuracy. All these
will be the subject of study in our paper [31], where the perturbation analysis in this
article lays the foundation.

Throughout this article, A, B, and C are reserved for the coefficient matrices of
MSE (1.1), and their perturbed ones are denoted, respectively, by the same letters with
tildes. For example, the perturbed (1.1) is written as

˜A˜X + ˜X ˜B = ˜C . (1.5)

Both A and B have positive diagonal entries and nonpositive off-diagonal entries.
The rest of this paper is organized as follows. Section 2 discusses the relative per-

turbation theory for the inverse of an M-matrix and how to compute the inverse with
the guaranteed accuracy suggested by the theory. Using the results in Sect. 2, Sect. 3
establishes a relative perturbation theory for an MSE as well as examples to illus-
trate the theory including how it compares to the existing (general) theory. Section 4

1 Previously it was called a Nonsymmetric Algebraic Riccati Equation, a name that is too broad to be
descriptive.
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642 J. Xue et al.

explains that three types of methods—the GTH-like method, classical fixed point iter-
ations, and the Smith algorithm—after small implementation changes can be used to
solve an MSE with the predicted relative accuracy by our theory. Numerical examples
are given in Sect. 5 to demonstrate our theory and the effectiveness of the algorithms.
Finally, we give our concluding remarks in Sect. 6.

Notation R
n×m is the set of all n × m real matrices, R

n = R
n×1, and R = R

1. In (or
simply I if its dimension is clear from the context) is the n × n identity matrix and
e j is its j th column. 1n ∈ R

n is the vector of all ones. The superscript “·T” takes the
transpose of a matrix or a vector. For Z ∈ R

n×m ,

1. Z(i, j) refers to its (i, j)th entry;
2. |Z | is the matrix with its (i, j)th entry |Z(i, j)|;
3. vec(Z) ∈ R

nm is obtained by packing Z ’s 1st column followed by its 2nd column
and so on;

4. When m = n, diag(Z) is the diagonal matrix with the same diagonal entries as
Z ’s, and

�(Z) = ρ([diag(Z)]−1[diag(Z) − Z ]).

Inequality X ≤ Y means X(i, j) ≤ Y(i, j) for all (i, j), and similarly for X < Y, X ≥ Y ,
and X > Y . In particular, X ≥ 0 means that X is entrywise nonnegative. With the
indeterminant 0/0 regarded as 0, X �Y denotes the matrix (or vector) entrywise divi-
sion, i.e., (X �Y )(i, j) = X(i, j)/Y(i, j). We use fl(·) to denote the numerically computed
result of an expression, and u the unit machine roundoff.

2 Inverse of an M-matrix

In this section, we present some results on the inverse of a nonsingular M-matrix.
These results will be cited frequently later in the sections for our entrywise per-
turbation analysis and numerical algorithms for MSE (1.1). The following result is
well-known [7].

Theorem 2.1 Let A ∈ R
n×n have nonpositive off-diagonal entries. The following

statements are equivalent:

(a) A is a nonsingular M-matrix;
(b) A−1 ≥ 0;
(c) Au > 0 for some u > 0;
(d) All eigenvalues of A have positive real parts.

A matrix A ∈ R
n×n is reducible if there is a permutation matrix Π ∈ R

n×n such that

ΠT AΠ =
(

A11 A12
A22

)

,

where both A11 and A22 are square matrices; it is irreducible if it is not reducible.
Throughout the rest of this section, A ∈ R

n×n is a nonsingular M-matrix which is
perturbed to ˜A ∈ R

n×n , and

123



M-matrix Sylvester equations 643

A = D − N , D = diag(A), �(A)
def= ρ(D−1 N ) < 1. (2.1)

2.1 Perturbation theory

The following theorem is essentially [2, Theorem 2.5], except u = 1n there, but a
minor modification to its proof works for any u > 0.

Theorem 2.2 [2] If there exist ε ∈ R and u ∈ R
n such that 0 ≤ ε < 1, u > 0, and

|(˜A − A) � A|(i, j) ≤ ε for i �= j, and |Au − ˜Au| ≤ ε Au, (2.2)

then ˜A is a nonsingular M-matrix, and

(1 − ε)n−1

(1 + ε)n
A−1 ≤ ˜A−1 ≤ (1 + ε)n−1

(1 − ε)n
A−1. (2.3)

Remark 2.1 We make a few comments here.

1. Necessarily Au ≥ 0 in (2.2).
2. The inequalities in (2.3) are sharp. This is evident for the scalar case n = 1. In

general, consider A ∈ R
n×n given by

A(i,i) = 1, A(i,i+1) = −1, A(n,1) = −θ, all other A(i, j) = 0,

where 0 < θ < 1, sufficiently small, such that ζ
def= ε 1+θ1/n

1−θ1/n < 1. First perturb A

to ˜A as

˜A(i,i) = 1 − ε, and ˜A(i, j) = (1 + ε)A(i, j) for i �= j.

Take u = (1, θ1/n, θ2/n, . . . , θ (n−1)/n)T. Then Au = (1−θ1/n)u, 0 < Au− ˜Au =
ζ Au. Now apply Theorem 2.2 to get

˜A−1 ≤ (1 + ζ )n−1

(1 − ζ )n
A−1. (2.4)

As θ → 0+, it can be seen that ζ → ε, and

(A−1)(1,n) → 1, (˜A−1)(1,n) → (1 + ε)n−1

(1 − ε)n
;

so both sides of (2.4) approach the same value, meaning the right inequality in
(2.3) is in general sharp. Similarly perturb A to ˜A as

˜A(i,i) = 1 + ε, and ˜A(i, j) = (1 − ε)A(i, j) for i �= j

to conclude that the left inequality in (2.3) is in general sharp as well.
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644 J. Xue et al.

3. If |Au − ˜Au| ≤ ε Au in (2.2) is replaced by |uT A−uT
˜A| ≤ ε uT A, the conclusions

of the theorem are still valid.

Both inequalities in (2.2) together imply that the diagonal entries of A are deter-
mined with comparable entrywise relative accuracy because

diag(A)u = Nu + v ⇒ A(i,i) = v(i) + ∑n
j=1 N(i, j)u( j)

u(i)
, (2.5)

where v = Au. That is to say that (2.2) is stronger than simply requiring |A−˜A| ≤ ε|A|
under which we have a weaker result.

Theorem 2.3 Suppose |A − ˜A| ≤ ε|A|. If δ
def= 1+�(A)

1−�(A)
ε < 1, then ˜A is a nonsingular

M-matrix, and

(1 − δ)n−1

(1 + δ)n
A−1 ≤ ˜A−1 ≤ (1 + δ)n−1

(1 − δ)n
A−1. (2.6)

Proof Suppose for the moment that A = D − N as in (2.1) is irreducible; so is
D−1 N . Let u be the Perron eigenvector of D−1 N , i.e., D−1 Nu = ρ(D−1 N )u =
�(A)u. We know that u > 0 [7, p.27]. It can be seen that ˜A− ≤ ˜A ≤ ˜A+, where
˜A± = (1 ± ε)D − (1 ∓ ε)N . Now

Au = [1 − �(A)]Du,

˜A±u = [(1 ± ε) − (1 ∓ ε)�(A)]Du

= (1 ± δ)Au.

Since 0 ≤ δ < 1, by Theorem 2.2 both ˜A± are nonsingular M-matrices and so is ˜A,
and

(1 − δ)n−1

(1 + δ)n
A−1 ≤ ˜A−1+ ≤ ˜A−1 ≤ ˜A−1− ≤ (1 + δ)n−1

(1 − δ)n
A−1,

as was to be shown.
Now consider the case in which A is reducible. For sufficiently small ξ > 0, A −

ξ 1n1T
n is an irreducible M-matrix. Apply what we just proved to this modified A and

then let ξ → 0+ to conclude the proof. �
Remark 2.2 The inequality (2.6) implies

|˜A−1 − A−1| ≤ [(2n − 1)δ + O(δ2)]A−1 (2.7)

for sufficiently small δ. Two comments are in order:

1. The factor 2n − 1 in the linear term can be improved. In fact, Xue and Jiang [30],
using a more complicated argument, gave another version of (2.7) with the linear
term (2n − 1)δ replaced by
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M-matrix Sylvester equations 645

(

n

1 − �(A)
+ n − 1

)

ε = 2n − 1 − (n − 1)�(A)

1 − �(A)
ε ≤ (2n − 1)δ.

2. Modulo the factor 2n − 1, the factor δ in the linear term in (2.7) is asymptotically
best possible because

max
˜A

max
i, j

|(˜A−1− A−1) � A−1|(i, j) ≥ δ

1−δ
subject to |A− ˜A| ≤ ε|A|.

(2.8)

Suppose for the moment that A is irreducible. Let u > 0 be the Perron eigenvector
of D−1 N . Consider ˜A = (1 − ε)D − (1 + ε)N ≤ A and thus ˜A−1 ≥ A−1, and

b
def= ˜Au = D[1 − �(A) − ε(1 + �(A))]u = (1 − δ)Au.

Therefore ˜A−1b = (1 − δ)−1 A−1b. We have for each i

δ

1 − δ
=

∑n
j=1(

˜A−1 − A−1)(i, j)b( j)
∑n

�=1(A−1)(i,�)b(�)

=
n

∑

j=1

(˜A−1 − A−1)(i, j)

(A−1)(i, j)

(A−1)(i, j)b( j)
∑n

�=1(A−1)(i,�)b(�)

≤ max
1≤ j≤n

|(˜A−1 − A−1) � A−1|(i, j),

as was to be shown. Consider now A is reducible. There is a permutation matrix
Π such that ΠT AΠ is block upper-triangular with all diagonal blocks square and
irreducible. It can be seen that one of the diagonal block, say Ak , has the prop-
erty that �(Ak) = �(A). Since A−1

k is a submatrix of A−1, we see that, subject to
|A − ˜A| ≤ ε|A|,

max
˜A

max
i, j

|(˜A−1− A−1) � A−1|(i, j) ≥max
˜A

max
i, j

|(˜A−1
k − A−1

k ) � A−1
k |(i, j) ≥ δ

1−δ
,

as needed.

Remark 2.3 Under the conditions of Theorem 2.3, the commonly used first order error
analysis goes as follows. Write ˜A = A + (ΔA) and ˜A−1 = A−1 + E . We have

AE = −(ΔA)A−1 − (ΔA)E

by expanding ˜A˜A−1 = [A + (ΔA)](A−1 + E) = I . Because A−1 ≥ 0,

|E | ≤ |A−1(ΔA)A−1| + O(ε2)

≤ ε A−1 |A| A−1 + O(ε2) (2.9)
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646 J. Xue et al.

= ε (I − D−1 N )−1(I + D−1 N ) A−1 + O(ε2)

= ε

[

A−1 + 2
∞
∑

i=1

(D−1 N )i A−1

]

+ O(ε2). (2.10)

Since A−1 and ˜A−1 have the same zero-nonzero pattern2, we get

|[(A+ΔA)−1− A−1] � A−1|≤ε

[

1n1T
n +2

( ∞
∑

i=1

(D−1 N )i A−1

)

� A−1

]

+O(ε2).

(2.11)

The linear terms in (2.10) and (2.11) are sharp. See Proposition 2.1 below. Compared
to (2.6),

1. (2.11) is only a first order bound,
2. It gives no indication why and when |[(A + ΔA)−1 − A−1] � A−1| is tiny, unlike

(2.6) which says |[(A + ΔA)−1 − A−1] � A−1| is proportional to [1 − �(A)]−1ε.

But (2.11) is easily implementable for the practical purpose of error estimation: calcu-
late enough terms in the series [In + 2

∑

i (D−1 N )i ]A−1 to have at least one or more
correct decimal digits in every entry. This can be costly sometimes, though, when the
series is slowly convergent and some entries are of much tinier magnitudes than others
(because convergence to different entries is not uniform in general).

One consequence of (2.7) and (2.9) is the remarkable inequality in the following
proposition.

Proposition 2.1 Let χ = 1+�(A)
1−�(A)

. We have

lim sup
ε→0

|[(A + ΔA)−1 − A−1] � A−1|
ε

= A−1 |A| A−1 ≤ (2n − 1)χ A−1.

Proof The limit equation holds by taking ΔA = ε|A| or ΔA = −ε|A| in Remark 2.3.
On the other hand, (2.6) implies that the limit is no larger than (2n − 1)χ A−1. �

Proposition 2.1 implies that the componentwise condition number for the inverse
of a nonsingular M-matrix A in the sense of [9] is

(A−1 |A| A−1) � A−1. (2.12)

2.2 Accurate inverse

Remarks 2.1 and 2.2 say that in general the suggested accuracies by Theorems 2.2 and
2.3 under the specified entrywise perturbations are best possible. In this subsection,
we show how to numerically compute A−1 with the suggested accuracies.

2 This is because A−1 = (I − D−1 N )−1 D−1 = ∑∞
i=0(D−1 N )i D−1 and ˜A−1 = ∑∞

i=0(˜D−1
˜N )i

˜D−1,
where ˜D = diag(˜A) and ˜A = ˜D − ˜N .
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M-matrix Sylvester equations 647

According to [1], it is numerically advantageous to represent A by the triplet
{N , u, v} whenever 0 < u ∈ R

n is available such that v = Au ≥ 0. A’s diag-
onal can then be conveniently (and accurately) recovered by (2.5) when needed. In
what follows, we will treat indistinguishably an M-matrix and its parameterized triplet
representation if available, and write

A = {N , u, v}, where u > 0 and v = Au ≥ 0. (2.13)

It is worth pointing out that numerically v is not exactly Au but an entrywise accurate
approximation which is all that is needed for the GTH-like algorithm [1], an extension
of the GTH algorithm [12] for stochastic matrices, to work.

There are two cases to consider. First, when this triplet representation is known,
the GTH-like algorithm [1] which is entrywise forward stable computes A−1 with
entrywise relative accuracy dictated by the working precision [1].

If a triplet representation is not known a priori, then all we need is to find a positive
vector u ∈ R

n such that ṽ = fl(Au) ≥ 0. This can often be achieved by solv-
ing (I − D−1 N )u = 1n for u by, e.g., Gaussian elimination (with partial pivoting),
because theoretically u = (I − D−1 N )−11n > 0. Unless I − D−1 N is almost singu-
lar, u > 0 and the residual (I − D−1 N )u − 1n for the computed u is tiny, relative to
1n . This means

ṽ = fl(Au) = fl(D[I − D−1 N ]u) ≈ D1n ≥ 0.

Even if I − D−1 N is almost singular, it is still possible that u > 0 and ṽ = fl(Au) ≥ 0.
Suppose for the moment this is the case. It is not difficult to show that

ṽ = fl(Au) = ˜Au for some ˜A satisfying |˜A − A| ≤ [nu + O(u2)]|A|,

where u is the machine unit roundoff. Split ˜A = ˜D − ˜N with ˜D = diag(˜A). We then
have found ˜A = {˜N , u, ṽ}. Apply Theorem 2.3 to get

|˜A−1 − A−1| ≤ [n(2n − 1)δ + O(δ2)]A−1, (2.14)

where δ = 1+�(A)
1−�(A)

u. But since ˜N is unknown and in actual computation, we have to

compute the inverse of the M-matrix ̂A
def= {N , u, ṽ} instead by the GTH-like algo-

rithm. Because the algorithm is entrywise forward stable [1], the computed inverse ̂X
of ̂A = {N , u, ṽ} by the GTH-like algorithm differs from ̂A−1 entrywise by O(u), i.e.,
|̂A−1−̂X | ≤ O(u)̂A−1. Theorem 2.2 says |˜A−1− ̂A−1| ≤ [n(2n−1)u+O(u2)]̂A−1.
Putting all together to get

|A−1 − ̂X | ≤ |A−1 − ˜A−1| + |˜A−1 − ̂A−1| + |̂A−1 − ̂X |
≤ [ f (n)δ + O(δ2)]A−1,

where f is some low degree polynomial. This implies that the computed ̂X as an
approximation to A−1 achieves the guaranteed accuracy suggested by Theorem 2.3,
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648 J. Xue et al.

except the low degree polynomial factor f (n) (which commonly appears in most error
analysis in Numerical Linear Algebra and usually overestimates the actual).

When either u > 0 or ṽ = fl(Au) ≥ 0 fails to hold for the computed u through solv-
ing (I − D−1 N )u = 1m, I − D−1 N is almost singular3. Solving (I − D−1 N )u = 1m

is basically one step of the inverse iteration. Which means u may come out very close
to the Perron eigenvector of D−1 N . There are two subcases:

A is irreducible. So is D−1 N . Its Perron eigenvector is entrywise positive. Therefore
we may continue the inverse iteration for a few more steps: repeat until u > 0 and
v = Au ≥ 0,

solve (I − D−1 N )u1 = u for u1; set u := u1/‖u1‖∞;
where the �∞-norm ‖u1‖∞ = maxi |(u1)(i)|. We may also use the inverse iteration
described in [8,29] which is more expensive per step because the linear system differs
from one step to another.

A is reducible. More steps of the inverse iteration may not help because the Per-
ron eigenvector may have entries whose values are 0. For such a case, we first find a
permutation matrix Π such that4

ΠT AΠ =

⎛

⎜

⎜

⎜

⎝

A11 −A12 . . . −A1q

A22 . . . −A2q
. . .

...

Aqq

⎞

⎟

⎟

⎟

⎠

,

where all Aii are nonsingular irreducible M-matrices, and all Ai j ≥ 0 for i �= j .
It suffices to be able to compute all A−1

i i ≥ 0 as accurately as they can be because
then (ΠT AΠ)−1 is block upper-triangular with diagonal blocks A−1

i i and off-diagonal
blocks computed without a single subtraction. Each A−1

i i can be computed accurately
as described above for the irreducible A.

3 Entrywise perturbation analysis

Throughout this section, A ∈ R
n×n and B ∈ R

m×m , and they are split as

A = D1 − N1, D1 = diag(A), �1 = �(A)
def= ρ(D−1

1 N1), (3.1a)

B = D2 − N2, D2 = diag(B), �2 = �(B)
def= ρ(D−1

2 N2). (3.1b)

with all A(i,i) > 0, all B( j, j) > 0, and all Ni ≥ 0. Also 0 ≤ C ∈ R
n×m . Possibly one

of �i may be bigger or equal to 1. Recall MSEs (1.1) and (1.5). P is defined by (1.2)
and ˜P is defined similarly. Set

3 Or I − D−1 N is singular. This situation will come up later and yet we need a triplet representation for it.
4 This can be done by MATLAB function dmperm. For numerical efficiency, this should be done first
actually to decouple AX + X B = C .
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M-matrix Sylvester equations 649

τ1 = mini A(i,i)

max j B( j, j)
, τ2 = min j B( j, j)

maxi A(i,i)
. (3.2)

3.1 Main results

Our main entrywise relative perturbation results for MSE (1.1) are Theorems 3.1 and
3.2. Theorem 3.1 assumes that both A and B are nonsingular M-matrices, and Theo-
rem 3.2 does not require this but have conditions to imply that P = Im ⊗ A + BT ⊗ In

is a nonsingular M-matrix. Note that when both A and B are nonsingular M-matrices,
P is a nonsingular M-matrix, but not the other way around.

Because MSE (1.1) is equivalent to P vec(X) = vec(C) and P is a nonsingu-
lar M-matrix, entrywise relative perturbation results in Sect. 2.1 on the inverse of a
nonsingular M-matrix are naturally applicable to yield entrywise relative perturba-
tion bounds for X . Indeed this is the case for Theorem 3.1 below. But other resulting
bounds by such a straightforward application will contain �(P). Because of its huge
dimensional size relative to the sizes of A and B, estimates on �(P) are potentially
much more difficult to obtain than �i . For this reason, in what follows we adopt a
not-so-straightforward approach to establish bounds involving �i but not �(P).

For the sake of presentation, we introduce

η+
p;t =

(

1 + t

1 − t

)p

, η−
p;t =

(

1 − t

1 + t

)p

for 0 ≤ t < 1 and p ≥ 0. (3.3)

For sufficiently tiny t ≥ 0, we have asymptotically η±
p;t = 1 ± 2p t + O(t2). Our

main results in this section take the form

η−
mn;χε

X ≤ ˜X ≤ η+
mn;χε

X, or asymptotically, (3.4a)

|˜X − X | ≤ [2mn χε + O(ε2)]X, (3.4b)

where χ is to be specified later.

Theorem 3.1 Suppose that A and B are nonsingular M-matrices and that there exist
0 ≤ ε < 1, 0 < u ∈ R

n, and 0 < y ∈ R
m such that

|(˜A − A) � A|(i, j) ≤ ε for i �= j, |Au − ˜Au| ≤ ε Au, (3.5a)

|(˜B − B) � B|(i, j) ≤ ε for i �= j, |BT y − ˜BT y| ≤ ε BT y, (3.5b)

|C − ˜C | ≤ εC. (3.5c)

Then ˜A and ˜B too are nonsingular M-matrices, and (3.4) holds with χ = 1.

Proof The MSEs can be rewritten equivalently as P vec(X) = vec(C) and
˜P vec(˜X) = vec(˜C). P is a nonsingular M-matrix because A and B are. The inequal-
ities in (3.5a) and (3.5b) guarantee that ˜A and ˜B are nonsingular M-matrices, too; so
is ˜P . By (3.5a) and (3.5b), we have
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˜P(y ⊗ u) = y ⊗ ˜Au + ˜BT y ⊗ u

≤ (1 + ε)[y ⊗ Au + BT y ⊗ u]
= (1 + ε) P(y ⊗ u),

and similarly ˜P(y ⊗ u) ≥ (1 − ε) P(y ⊗ u). Together they imply

|P(y ⊗ u) − ˜P(y ⊗ u)| ≤ ε P(y ⊗ u).

On the other hand, the off-diagonal entries at the same positions for P and ˜P are one
of the three possible cases:

0 and 0, or A(i, j) and ˜A(i, j), or B(k,�) and ˜B(k,�),

where i �= j and k �= �. Thus |(˜P − P) � P|(i, j) ≤ ε for i �= j by (3.5a) and (3.5b).
So the conditions of Theorem 2.2 are satisfied for P and ˜P , and thus

vec(˜X) = ˜P−1 vec(˜C)

≤ (1 + ε)mn−1

(1 − ε)mn
P−1 (1 + ε) vec(C)

= (1 + ε)mn

(1 − ε)mn
vec(X),

vec(˜X) ≥ (1 − ε)mn

(1 + ε)mn
vec(X),

as was to be shown. �
Remark 3.1 Alternatively if the last inequalities in (3.5a) and (3.5b) are replaced by

|uT A − uT
˜A| ≤ ε uT A, |yT BT − yT

˜BT| ≤ ε yT BT,

respectively, the conclusion of this theorem still holds.

It is not necessary to require that both A and B are nonsingular M-matrices in
order for AX + X B = C to have a unique solution. What is necessary is that P is
nonsingular. The following lemma presents conditions to ensure the nonsingularity of
P .

Lemma 3.1 If either

0 ≤ �1 < 1, 0 ≤ �1 ≤ �2 < 1 + τ1(1 − �1), (3.6)

or

0 ≤ �2 ≤ �1 < 1 + τ2(1 − �2), 0 ≤ �2 < 1, (3.7)

then P = Im ⊗ A + BT ⊗ In is a nonsingular M-matrix.
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Proof We first consider the case in which both A and B are irreducible. We’ll only
consider the case (3.6). Denote by u > 0 and y > 0 the Perron eigenvectors of D−1

1 N1

and D−1
2 N T

2 , respectively, i.e.,

D−1
1 N1u = �1u, D−1

2 N T
2 y = �2 y. (3.8)

Now if also �2 < 1, then it is evident that P is a nonsingular M-matrix. Assume that
�2 ≥ 1. We have P(y ⊗ u) = (1 − �1)y ⊗ (D1u) + (1 − �2)(D2 y) ⊗ u. Notice

(D2 y) ⊗ u ≤ maxj B( j, j)

mini A(i,i)
y ⊗ (D1u) = τ−1

1 y ⊗ (D1u)

to get

P(y ⊗ u) ≥ [(1 − �1) + (1 − �2)τ
−1
1 ]y ⊗ (D1u) > 0 (3.9)

by (3.6). Therefore P is a nonsingular M-matrix by Theorem 2.1.
The first inequality in (3.9) leads to

P(y ⊗ u) ≥ {[(1 − �1) + (1 − �2)τ
−1
1 ] min

i
A(i,i)} y ⊗ u,

P−1(y ⊗ u) ≤ {[(1 − �1) + (1 − �2)τ
−1
1 ] min

i
A(i,i)}−1 y ⊗ u.

By [7, p.28]

ρ(P−1) ≤ {[(1 − �1) + (1 − �2)τ
−1
1 ] min

i
A(i,i)}−1.

Let α(P) denote the eigenvalue of P with the smallest real part. Then [18, Problem 19
on p.129]

α(P) = 1

ρ(P−1)
≥ ((1 − �1) + (1 − �2)τ

−1
1 ) min

i
A(i,i) > 0. (3.10)

Now for reducible A or B, let ̂A = A − ξ1n1T
n and ̂B = B − ξ1m1T

m for sufficiently
small ξ , and let �̂1, �̂2 and ̂P be defined similarly to their counterparts �1, �2 and P .
We have

α(̂P) ≥ [(1 − �̂1) + (1 − �̂2)̂τ
−1
1 ] min

i
̂A(i,i).

As ξ → 0+, by the continuity of eigenvalues, α(̂P) → α(P), �̂1 → �1, and �̂2 → �2.
Thus (3.10) holds for the reducible case, too. Hence P is a nonsingular M-matrix. �
Theorem 3.2 Under the conditions of Lemma 3.1, suppose

|A − ˜A| ≤ ε|A|, |B − ˜B| ≤ ε|B|, |C − ˜C | ≤ εC, (3.11)
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and let

χ =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1 + �1 + (1 + �2)τ
−1
1

1 − �1 + (1 − �2)τ
−1
1

, if (3.6),

1 + �2 + (1 + �1)τ
−1
2

1 − �2 + (1 − �1)τ
−1
2

, if (3.7).

(3.12)

If χ ε < 1, then (3.4) holds.

Proof We shall prove the claim under (3.6). Lemma 3.1 says that P is a nonsingular
M-matrix. Suppose for the moment that both A and B are irreducible, and let u > 0
and y > 0 be the Perron eigenvectors of D−1

1 N1 and D−1
2 N T

2 , respectively. So (3.8)
holds. We have

P(y ⊗ u) = (1 − �1)y ⊗ D1u + (1 − �2)D2 y ⊗ u, (3.13)
˜P(y ⊗ u) ≥ [(1 − ε) − (1 + ε)�1]y ⊗ (D1u) + [(1 − ε) − (1 + ε)�2](D2 y) ⊗ u,

(3.14)
˜P(y ⊗ u) ≤ [(1 + ε) − (1 − ε)�1]y ⊗ (D1u) + [(1 + ε) − (1 − ε)�2](D2 y) ⊗ u.

(3.15)

The conditions of this theorem guarantee that the right-hand sides of these inequalities
are positive. Now we look at the entrywise ratio [˜P(y⊗u)]�[P(y⊗u)] whose typical
kth entry satisfies, by (3.13) and (3.14),

[˜P(y ⊗ u)](k)

[P(y ⊗ u)](k)

≥ [(1−ε)−(1 + ε)�1]A(i,i)+[(1−ε)−(1 + ε)�2]B( j, j)

(1−�1)A(i,i) + (1−�2)B( j, j)
(3.16)

≥ [(1 − ε) − (1 + ε)�1]τ1 + [(1 − ε) − (1 + ε)�2]
(1 − �1)τ1 + (1 − �2)

(3.17)

for some i and j , where the inequality sign in (3.17) is due to the fact that the right-
hand side of (3.16) is an increasing function of t = A(i,i)/B( j, j) because its derivative
with respect to t is

2ε(�2 − �1)

[(1 − �1)t + (1 − �2)]2 ≥ 0,

by (3.6). Therefore ˜P(y ⊗ u) ≥ (1 − δ)P(y ⊗ u), where δ = χ ε. Similarly, we can
show that ˜P(y ⊗ u) ≤ (1 + δ)P(y ⊗ u). It can be seen that |(˜P − P) � P|(i, j) ≤ ε

for i �= j . Apply Theorem 2.2 to complete the proof.
Now for possibly reducible A and B, we apply the result just proved for the irre-

ducible case to MSEs with A − ξ1m1T
m and B − ξ1n1T

n and with ˜A − ξ1m1T
m and

˜B − ξ1n1T
n , and then let ξ → 0+ to conclude the proof. �

Theorem 3.2 is applicable to the following important cases:
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1. Both A and B are nonsingular M-matrices, i.e., �max = max{ρ1, ρ2} < 1. This
application is done in Corollary 3.1 below.

2. 0 < �1 < �2 = 1. The application is straightforward—χ becomes

χ = 1 + �1 + 2τ−1
1

1 − �1
.

But if also BT y = ˜BT y = 0 for the Perron eigenvector y of D−1
2 N T

2 , a sharper
bound can be gotten. See Theorem 3.3 below. This case will become important
later in our perturbation analysis for the Wiener–Hopf factorization in [31].

Corollary 3.1 Suppose that A and B are nonsingular M-matrices, and set �max =
max{�1, �2} and χ = 1+�max

1−�max
. If (3.11) holds and χ ε < 1, then ˜A and ˜B are nonsin-

gular M-matrices, and (3.4) holds.

Proof That ˜A and ˜B are nonsingular M-matrices is because of Theorem 2.3. It can be
verified that

1 + �i + (1 + � j )τ
−1
i

1 − �i + (1 − � j )τ
−1
i

≤ 1 + �max

1 − �max
.

Apply Theorem 3.2 to conclude the proof. �
Theorem 3.3 Assume �1 < �2 = 1, B is irreducible, and ˜BT y = 0, where y > 0 is
the Perron vector of D−1

2 N T
2 . Let χ = 1+�1

1−�1
. If (3.11) holds and χ ε < 1, then (3.4)

holds.

Proof Assume that A is irreducible and then use the limiting argument for the reduc-
ible case. We have y ⊗ u > 0. Let δ = χ ε. Use BT y = ˜BT y = 0 to get

P(y ⊗ u) = (1 − �1)y ⊗ D1u,

˜P(y ⊗ u) ≥ ((1 − ε) − (1 + ε)�1)y ⊗ D1u

≥ (1 − δ)P(y ⊗ u),

˜P(y ⊗ u) ≤ (1 + δ)P(y ⊗ u).

Apply Theorem 2.2 to complete the proof. �
Remark 3.2 1. For a more general splitting A = D′

1 − N ′
1 and B = D′

2 − N ′
2,

where D′
1 and D′

2 are positive diagonal and N ′
1 and N ′

2 are nonnegative. Define
�′

i = ρ((D′
i )

−1 N ′
i ) for i = 1, 2, then all the results above still hold with �i replaced

by �′
i , τi by τ ′

i , where

τ ′
1 = mini (D′

1)(i,i)

maxj (D′
2)( j, j)

, τ ′
2 = min j (D′

2)( j, j)

maxi (D′
1)(i,i)

.
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2. Similarly to what is in Remark 2.3, the commonly used first order error analysis
can be performed, too, under the assumption that P is a nonsingular M-matrix and
(3.11) hold. Write ˜Z = Z + (ΔZ) for Z = A, B, C , and X , where ΔZ is the
perturbation to Z . Substitute them into ˜A˜X + ˜X ˜B = ˜C and use AX + X B = C to
get

A(ΔX) + (ΔX)B = (ΔC) − (ΔA)X − X (ΔB) − (ΔA)(ΔX) − (ΔX)(ΔB).

Define linear operator L : Z → AZ + Z B whose matrix representation is P for
which P−1 ≥ 0. Therefore,

|ΔX | ≤ L−1(|(ΔC) − (ΔA)X − X (ΔB)|) + O(ε2)

≤ ε L−1(C + |A|X + X |B|) + O(ε2)

= 2ε L−1(D1 X + X D2) + O(ε2). (3.18)

Since X and ˜X have the same zero-nonzero pattern, we have

|(ΔX) � X | ≤ 2εΥ � X + O(ε2)

≤ 2γ ε1n1T
m + O(ε2) (3.19)

where Υ ∈ R
n×m and γ are defined by

AΥ + Υ B = D1 X + X D2, γ = max
i, j

(Υ � X)(i, j). (3.20)

Two immediate comments are

1. Υ = L−1(C) + L−1 (|L|(L−1(C))) ≥ L−1 (|L|(L−1(C))) since X = L−1(C).
2. The linear terms in (3.18) and (3.19) are sharp. See Proposition 3.1 below.

Compared to (3.4a) of the theorems and corollaries, (3.19) is a first order bound (with
its linear term sharp) and it also does not reveal the informative insight into the sen-
sitivity of X as (3.4a) does, e.g., its proportionality to (1 − �max)

−1 in Corollary 3.1.
But (3.19) is easily implementable for the practical purpose of error estimation. The
following iterative scheme: Υ0 = X and for k ≥ 0

D1Υk+1 + Υk+1 D2 = N1Υk + Υk N2 + D1 X + X D2 (3.21)

produces a sequence {Υi } that monotonically convergent to Υ because P is a nonsin-
gular M-matrix. Iterate (3.21) enough steps until Υk has one or more correct decimal
digits in each of its entries. This can be costly, though, when it is slowly convergent
and Υ has entries of widely varying magnitudes.

Proposition 3.1 Under the conditions of Theorem 3.2, we have

lim sup
ε→0

|ΔX |
ε

= 2L−1(C) + 2L−1 (|L|(L−1(C))), (3.22)

L−1 (|L|(L−1(C))) ≤ (mnχ − 1)L−1(C), (3.23)
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where linear operator L(Z) = AZ + Z B and Υ is defined by the first equation in
(3.20), and χ in Theorem 3.2.

Proof In Item 2 of Remark 3.2, take ΔC = ±ε C,ΔA = ∓ε |A|, and ΔB = ∓ε |B|
to see (3.22). On the other hand, Theorem 3.2 says that this limit is no larger than
2mnχ L−1(C). �

Proposition 3.1 implies that the componentwise condition number of MSE (1.1) in
the sense of [9] is

[2L−1(C) + 2L−1 (|L|(L−1(C)))] � X. (3.24)

3.2 Discussions

The standard perturbation results [17, p. 313] suggest that the error ‖˜X − X‖ could
be as big as inversely proportional to the smallest singular value of P or equivalently
the separation between A and −B. Our entrywise relative perturbation bound by The-
orem 3.1 is always tiny and those by Theorem 3.2, Corollary 3.1 and Theorem 3.3 are
inversely proportional to

1 − �i + (1 − � j )τ
−1
i , 1 − �max, 1 − �1,

respectively. Since usually the smallest singular value of P is smaller and can be made
arbitrarily smaller than any of them (even for M-matrices A and B as indicated by
Example 3.1 below), our bounds are often (much) sharper in such a situation.

Example 3.1 Let the entries of Um ∈ R
m×m be 0 except its (i, i + 1)th entries which

are 1, and let A = 1
2 In − ωUn and B = 1

2 Im − ωU T
m . Both A and B are nonsingular

M-matrices, �max = �1 = �2 = 0, and thus 1 − �max = 1. Consequently χ = 1 in
Theorem 3.2 and therefore small entrywise relative perturbations as in (3.11) will only
introduce small entrywise relative changes to the solution X of MSE AX + X B = C .
On the other hand, ‖P−1‖2 = O(ωm+n−2) for ω > 1, where ‖ · ‖2 denotes the spec-
tral norm of a matrix. Consequently the standard perturbation results [17, p. 313] can
produce error bounds on ‖˜X − X‖/‖X‖ that are too larger than the normwise relative
perturbations to A, B, and C to be useful.

In order to see ‖P−1‖2 = O(ωm+n−2), we let Ωk = diag(1, ω, . . . , ωk−1). Then
we have

A = Ω−1
n ( 1

2 In − Un)Ωn,

BT = Ω−1
m ( 1

2 Im − Um)Ωm,

P = (Ω−1
m ⊗ Ω−1

n )[Im ⊗ ( 1
2 In − Un) + ( 1

2 Im − Um) ⊗ In](Ωm ⊗ Ωn)

= (Ω−1
m ⊗ Ω−1

n )

⎛

⎜

⎜

⎜

⎜

⎝

T −In
. . .

. . .

. . . −In

T

⎞

⎟

⎟

⎟

⎟

⎠

m×m

(Ωm ⊗ Ωn),
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where T = In − Un . Therefore

P−1 =

⎛

⎜

⎜

⎜

⎝

Ω−1
n T −1Ωn ωΩ−1

n T −2Ωn · · · ωm−1Ω−1
n T −mΩn

Ω−1
n T −1Ωn . . . ωm−2Ω−1

n T −m+1Ωn
. . .

...

Ω−1
n T −1Ωn

⎞

⎟

⎟

⎟

⎠

.

Now notice T −k = ∑n−1
i=0

k(k+1)···(k+i−1)
i ! Ui

n to see that as ω → ∞

ωk−1Ω−1
n T −kΩn

ωm+n−2 →
{

0, for k < m,
m(m+1)···(m+n−2)

(n−1)! e1eT
n , for k = m.

Therefore as ω → ∞

‖P−1‖2 = (m + n − 2)!
(m − 1)! (n − 1)! ωm+n−2 + O(ωm+n−3),

as expected. This expression exposes two factors that contribute to the rapid growth
of ‖P−1‖2: the factor involving the factorials and the factor ωm+n−2. Both grow
prohibitively fast.

We suspect that the factor 2mn in (3.4b) probably overestimate entrywise relative
changes. Our suspicion comes from the following—usually extreme—example.

Example 3.2 In Example 3.1 above: A = 1
2 In −ωUn and B = 1

2 Im −ωU T
m , we perturb

both 1
2 to 1

2 (1 − ε) and both ω to ω(1 + ε), where −1 < ε < 1. Following the line of
arguments there, we see

˜P−1
(1,mn) = (1 + ε)m+n−2

(1 − ε)m+n−1 P−1
(1,mn).

So for C = eneT
m perturbed to ˜C = (1 + ε)eneT

m , we have

˜X(1,1) = (1 + ε)m+n−1

(1 − ε)m+n−1 X(1,1).

Since usually such A and B are the worst of all, we conjecture that 2mn might be
replaceable by 2(m + n − 1).

The linear term in (3.4b) reflects the correct order of entrywise relative changes in
X for all covered cases by the theorems and corollaries above. This is explained by
the following examples.

Example 3.3 For Theorem 3.1, we take A and B as 1
2 In − ωUn and 1

2 Im − ωU T
m ,

respectively, except introducing a tiny number θ to A’s (n, 1)th position and to B’s
(1, m)th position. For Z = A and B, perturb Z to ˜Z as

˜Z(i,i) = (1 − ε)Z(i,i), and ˜Z(i, j) = (1 + ε)Zi, j) for i �= j.
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Following the argument in Item 2 of Remark 2.1, we see the conditions of Theorem 3.1
with C = eneT

m and ˜C = (1 + ε)eneT
m are satisfied. As θ → 0,

˜X(1,1) → (1 + ε)m+n−1

(1 − ε)m+n−1 X(1,1) = (2[m + n − 1]ε + O(ε2)) X(1,1).

So the linear term in (3.4b) is at least of O(ε) in general.

Example 3.4 For Theorem 3.2, the linear term in (3.4b) contains the factor

[1 − �i + (1 − � j )τ
−1
i ]−1 ε

that we shall argue is asymptotically best possible. Consider A = α In − N1 and
B = β Im − N2, both irreducible. Then τ1 = α/β = τ−1

2 . Consider ˜A = (1− ε)α In −
(1 + ε)N1 and ˜B = (1 − ε)β Im − (1 + ε)N2. It can be verified that

˜P(y ⊗ u) = (1 − δ)P(y ⊗ u),

where δ = χε, y, and u are as defined in the proof of Theorem 3.2. Let C ∈ R
n×m be

such that vec(C) = P(y ⊗ u). Then AX + X B = C has the solution X = uyT and
˜A˜X + ˜X ˜B = C has solution ˜X = 1

1−δ
uyT. Thus for all (i, j)

|(˜X − X) � X |(i, j) = δ

1 − δ
,

indicating asymptotically the factor [1 −�i + (1 −� j 2)τ−1
i ]−1 ε cannot be improved.

A similar argument to Item 2 of Remark 2.2 can be used to get

max
˜A, ˜B

max
i, j

|(˜P − P) � P|(i, j) ≥ δ

1 − δ
subject to (3.11).

Example 3.5 In principle, Example 3.4 covers Corollary 3.1. But we can have exam-
ples without requiring Di being the multiples of the identity matrices. In fact, we may
pick any nonsingular and irreducible M-matrices A and B with �1 = �2. Perturb A
and B to

˜A = (1 − ε)D1 − (1 + ε)N1, ˜B = (1 − ε)D2 − (1 + ε)N2.

Let u > 0 and y > 0 be the Perron eigenvectors of D−1
1 N1 and D−1

2 N T
2 , respectively.

We have

P(y ⊗ u) = (1 − �max)(y ⊗ D1u + D2 y ⊗ u),

˜P(y ⊗ u) = [(1 − ε) − (1 + ε)�max][y ⊗ D1u + D2 y ⊗ u]
= (1 − χε)P(y ⊗ u).

The rest of construction is the same as Example 3.4.
Similarly for Theorem 3.3, we can have examples without requiring Di being

the multiples of the identity matrices as well. Take any nonsingular and irreducible
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M-matrix A = D1 − N1 and a singular and irreducible M-matrix B. Let ˜A = (1 − ε)

D1 − (1 + ε)N1 and ˜B = B. The rest of construction is similar and thus omitted.

4 Algorithms for Sylvester equations

The perturbation theorems for MSE

AX + X B = C, (1.1)

in Sect. 3 cover two cases:

1. A and B are nonsingular M-matrices, and C ≥ 0;
2. One of A and B is a nonsingular M-matrix (while the other may not) and

P
def= Im ⊗ A + BT ⊗ In is a nonsingular M-matrix,

and again C ≥ 0.

Together, they cover all possible cases in our definition of an MSE: both A ∈ R
n×n

and B ∈ R
m×m have positive diagonal entries and nonpositive off-diagonal entries

and P = Im ⊗ A + BT ⊗ In is a nonsingular M-matrix, and C ≥ 0 because this
definition implies at least one of A and B is a nonsingular M-matrix. To see this, we
note the eigenvalues of P are all possible sums μ + ν, where μ and ν are eigenvalues
of A and B, respectively. P being a nonsingular M-matrix implies by Theorem 2.1
that all �(μ + ν) = �(μ) + �(ν) > 0, where �(·) takes the real part of a complex
number. So either minμ∈eig(A) �(μ) > 0 or minν∈eig(B) �(ν) > 0, where eig(·) is
the set of the eigenvalues of a matrix. Thus one of A and B must be a nonsingular
M-matrix again by Theorem 2.1. Furthermore with

τ = 1

2

[

min
μ∈eig(A)

�(μ) − min
ν∈eig(B)

�(ν)

]

(4.1)

all eigenvalues of both A − τ In and B + τ Im have positive real parts and therefore
both A − τ In and B + τ Im are nonsingular M-matrices.

Without loss of generality, we may assume that both A and B are irreducible.
Otherwise the Eq. (1.1) can be decomposed into a sequence of smaller Sylvester equa-
tions that can be solved sequentially and each smaller equation has the form of (1.1)
with irreducible A and B. In fact, let Π1 ∈ R

n×n and Π2 ∈ R
m×m be two permutation

matrices such that

ΠT
1 AΠ1 =

⎛

⎜

⎜

⎜

⎝

A11 −A12 . . . −A1q

A22 . . . −A2q
. . .

...

Aqq

⎞

⎟

⎟

⎟

⎠

, ΠT
2 BΠ2 =

⎛

⎜

⎜

⎜

⎝

B11
−B21 B22

...
...

. . .

−Bp1 −Bp2 . . . Bpp

⎞

⎟

⎟

⎟

⎠

,

where Ai j ∈ R
ni ×n j , Bi j ∈ R

mi ×m j , all Aii and B j j are irreducible, all Im j ⊗ Aii +
BT

j j ⊗ Ini are nonsingular M-matrices, and all Ai j ≥ 0 and Bi j ≥ 0 for i �= j .
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Partition ΠT
1 XΠ2 = (Xi j ) and ΠT

1 CΠ2 = (Ci j ) into q × p block matrices with
Xi j , Ci j ∈ R

ni ×m j . Then the (i, j)th block from both sides of (ΠT
1 AΠ1)(Π

T
1 XΠ2)+

(ΠT
1 XΠ2)(Π

T
2 BΠ2) = ΠT

1 CΠ2 gives

Aii Xi j + Xi j B j j = Ci j +
q

∑

�=i+1

Ai� X�j +
p

∑

�= j+1

Xi� B�j

which suggests that the block columns of ΠT
1 XΠ2 can be computed sequentially from

the last to the first and within each block column from the last block at the bottom
upwards to the first block at the top. Each of these smaller equations has the form of
(1.1) is an MSE with irreducible A and B and nonnegative C .

In what follows, we may assume A and B are irreducible if necessary. But most
parts below do not need the irreducibility of A and/or B to work, however. So unless
we explicitly state that A and B are irreducible, they may be reducible.

When A and B are (singular or nonsingular) M-matrices, we argue that it suffices
to consider the case when

We have vectors u, v ∈ R
m and y, z ∈ R

n such that

u > 0, Au = v ≥ 0, and y > 0, BT y = z ≥ 0,

i.e., A = {N1, u, v} and BT = {N T
2 , y, z}.

(4.2)

If the vectors u, v, y, and z are given to begin with, then no argument is needed. If,
however, M-matrices A and/or B are given in their usual matrix format, approximate
triplet representations for A and BT can be computed as described in Sect. 2.2.

4.1 Direct method

It is based on Gaussian elimination to solve, equivalently, P vec(X) = vec(C). It can
be seen from (4.2) that

P = {Im ⊗ N1 + N T
2 ⊗ In, y ⊗ u, y ⊗ v + z ⊗ y}. (4.3)

Thus the GTH-like algorithm [1] applies.
When one of A and B is not an M-matrix but P is, we do not have (4.2). A triplet

representation for P can still be found. Suppose that A is a nonsingular M-matrix and
A = {N1, u, v} is either known or computed as usual. We use the idea in Sect. 2.2 to
find the Perron vector y > 0 of D−1

2 N T
2 , assuming B is irreducible. Since B is not

an M-matrix, it is possible that some of the entries of z = BT y are negative. Even
so, we still have (4.3) if y ⊗ v + z ⊗ y ≥ 0. If, however, y ⊗ v + z ⊗ y �≥ 0, then
we recompute a triplet representation for A in which u > 0 is the Perron vector of
D−1

1 N1 (assuming A is irreducible) and v = Au. If the conditions of Theorem 3.2 are
satisfied, then y ⊗ v + z ⊗ y ≥ 0 now. We again have (4.3).

123



660 J. Xue et al.

This direct method costs O(m3n3) and thus becomes very expensive even for mod-
est m and n. But for small m and n, it is an ideal method for computing “exact”
solutions to be used for any testing purpose.

4.2 Fixed point iterative methods

Any pair of splittings for A and B

A = M1 − K1, B = M2 − K2 (4.4)

gives rise to a splitting for P

P = M − K, M = Im ⊗ M1 + MT
2 ⊗ In, K = Im ⊗ K1 + K T

2 ⊗ In, (4.5)

and correspondingly an iterative method for MSE (1.1): X0 = 0 and for k ≥ 0

M1 Xk+1 + Xk+1 M2 = K1 Xk + Xk K2 + C. (4.6)

Convenient ones are those from the so-called regular splittings (4.5), namelyM−1 ≥ 0
and K ≥ 0, in such a way that (4.6) is easy to solve. The following five choices are
obvious ones:

M1 = diag(A), M2 = diag(B), (4.7a)

M1 = tril(A), M2 = triu(B), (4.7b)

M1 = triu(A), M2 = tril(B), (4.7c)

M1 = tril(A), M2 = tril(B), (4.7d)

M1 = triu(A), M2 = triu(B), (4.7e)

where tril(·) and triu(·) are MATLAB-like notations that take the lower and upper
triangular part of a matrix, respectively. Finally K1 = M1 − A and K2 = M2 − B.

Since P is a nonsingular M-matrix, the corresponding (4.5) are all regular. There-
fore [26] ρ(M−1K) < 1 and the iterative method (4.6) converges and moreover

0 = X0 ≤ X1 ≤ X2 ≤ · · · , lim
k→∞ Xk = X. (4.8)

Implementing (4.6), although a Sylvester equation itself, is easy for each of (4.7).
This is evident for (4.7a). For (4.7b)–(4.7e), both M1 and M2 are triangular and (4.6)
can be decomposed into a sequence of triangular linear systems5. A straightforward
implementation of (4.6) as is always gives Xk ≥ 0 for all k but may not preserve the

5 For upper triangular M1 and upper (lower) triangular M2, the columns of Xk+1 can be computed sequen-
tially one column at a time from the first to the last (from the last to the first) by solving m upper triangular
linear systems of order n. Similarly for lower triangular M1 and upper (lower) triangular M2, the columns
of Xk+1 can be computed sequentially one column at a time from the first to the last (from the last to the
first) by solving m lower triangular linear systems of order n.
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monotonicity in (4.8). There is a better way. From (4.6) for two consecutive steps, we
have

M1(Xk+2 − Xk+1) + (Xk+2 − Xk+1)M2 = K1(Xk+1 − Xk) + (Xk+1 − Xk)K2.

Set Δk = Xk+1 − Xk . We therefore suggest to implement (4.6) as follows:

Algorithm 4.1
Fixed Point Iterative Method for MSE AX + X B = C with (4.4).
1 Solve M1 X1 + X1 M2 = C for X1;
2 Δ0 = X1;
3 For k = 0, 1, . . ., until convergence
4 Solve M1Δk+1 + Δk+1 M2 = K1Δk + Δk K2 for Δk+1;
5 Xk+2 = Xk+1 + Δk+1;
6 Enddo.

With each of the splittings in (4.7), Algorithm 4.1 is guaranteed to produce a linearly
convergent sequence of Xk satisfying (4.8) with the rate of convergence ρ(M−1K).
Since all involved arithmetic operations are adding two nonnegative numbers, dividing
a nonnegative number by a positive number, or multiplying two nonnegative numbers,
Algorithm 4.1 is forward stable. Thus at convergence, the converged Xk is entrywise
relatively accurate, unless ρ(M−1K) is very close to 1 (this usually happens when
P is nearly singular) to require the number of steps so gargantuan that accumulated
roundoff errors become too great to overcome.

In our numerical tests, we use if maxi, j |(Xk+1 − Xk)� Xk+1|(i, j) ≤ ε to terminate
the iteration at Line 3. For a justification, see Item 4 in Remark 4.1 below.

For the ease of later references, we will use FPa, FPb, FPc, FPd, and FPe to
denote Algorithm 4.1 combined with the respective splittings (4.7a)–(4.7e).

4.3 Smith method

This iterative method to solve (1.1) is taken from Smith [24] and works for A and
B with (4.2) and at least one of them is a nonsingular M-matrix while the other is a
(singular or nonsingular) M-matrix. For any scalar μ, we have

(A + μI )X (B + μI ) − (A − μI )X (B − μI ) = 2μC.

If μ > 0, then both A + μI and B + μI are nonsingular and thus

X = X0 + F0 X E0,

where X0 = 2μ(A + μI )−1C(B + μI )−1, and

F0 = (A + μI )−1(A − μI ), E0 = (B − μI )(B + μI )−1.

Furthermore for μ > 0, ρ(F0)ρ(E0) < 1 because all eigenvalues of a nonsingular
M-matrix have positive real parts. So the solution of (1.1) admits the following series
expansion
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X =
∞
∑

i=0

Fi
0 X0 Ei

0

which can be quickly approximated by [24]

Xk+1 = Xk + F2k

0 Xk E2k

0 for k ≥ 0.

In fact Xk = ∑2k−1
i=0 Fi

0 X0 Ei
0.

For our purpose, we shall pick a μ such that

μ ≥ μopt
def= max{max

i
A(i,i), max

j
B( j, j)}, (4.9)

and that all A(i,i) − μ and B( j, j) − μ are calculated with high relative accuracy.
Inequality (4.9) which can be easily satisfied ensures

F0 ≤ 0, E0 ≤ 0, and ρ(F0)ρ(E0) < 1,

0 ≤ Xk ≤ Xk+1, and 0 ≤ X − Xk = F2k

0 X E2k

0 → 0 as k → ∞.

The convergence is quadratic, and asymptotically

[‖X − Xk‖
‖X‖

]1/2k

∼ ρ(E0)ρ(F0). (4.10)

Since ρ(E0) and ρ(F0) are decreasing functions of μ subject to (4.9), we should pick
μ as small as possible. The requirement that all A(i,i) −μ and B( j, j)−μ are calculated
with high relative accuracy, together with (4.9), ensure that E0 and F0 are computed
entrywise with high relative accuracy. This is because A + μI ≥ A and B + μI ≥ B
are M-matrices and thus (A + μI )−1 ≥ 0 and (B + μI )−1 can be computed with
entrywise relative errors no worse than about (1 − �1)

−1u and (1 − �2)
−1u, respec-

tively (see Sect. 2.2) and because μI − A ≥ 0 and μI − B ≥ 0. In order to make
sure that all A(i,i) − μ and B( j, j) − μ are calculated with high relative accuracy, we
consider two cases:

1. If all A(i,i) and B( j, j) are known to be exact floating point numbers6, we take
μ = μopt.

2. If all A(i,i) and B( j, j) are contaminated with tiny relative errors to begin with or due
to decimal-to-binary conversions, we may simply take, e.g., μ = η · μopt to avoid
possible catastrophic cancelations for some η > 1 but not too close to 1, and at the
same time not to degrade too much the rate of convergence as given by (4.10).

6 Today most floating point number systems are binary and conform to the IEEE floating point standards
[3,4]. No catastrophic cancelation can occur in computing α − β for two floating point numbers because
the IEEE standards ensure either fl(α − β) = α − β exactly when α − β is a floating number or suffers a
rounding error no more than half unit in its last place [10].
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We now formulate the algorithm as Algorithm 4.2, and then comment on its imple-
mentation detail afterwards.

Algorithm 4.2
Smith Algorithm for AX + X B = C with (4.2).
1 Pick μ ≥ max

{

maxi A(i,i), max j B( j, j)
}

in such a way that
no catastrophic cancelations in calculating all A(i,i) − μ and B( j, j) − μ;

2 Aμ
def= A + μI = {N1, u, v + μu}, BT

μ
def= BT + μI = {N T

2 , y, z + μy};
3 Compute, by the GTH-like algorithm,

E0 = B−1
μ (B − μI ); F0 = A−1

μ (A − μI ); X0 = 2μA−1
μ C B−1

μ ;
4 X1 = X0 + F0 X0 E0;
5 For k = 1, 2, . . ., until convergence
6 Ek = E2

k−1, Fk = F2
k−1;

7 Xk+1 = Xk + Fk Xk Ek ;
8 Enddo.

Remark 4.1 We have already commented on how to choose μ. We now go down the
lines in the rest of the algorithm.

1. Use the triplet representations for Aμ and BT
μ to make the GTH-like algorithm

applicable to ensure that X0, E0, and F0 are computed with deserved entrywise
relative accuracy. Note, unlike solving (1.1) through P vec(X) = vec(C), that
there is no need to insist having a triplet representation for BT. The algorithm
works equally well with the availability of a triplet representation for B.

2. From Line 4 and forward, there is no single substraction involved. Thus all com-
putations are entrywise forward stable.

3. It remains to explain when to stop the iteration to make sure the last Xk has desired
entrywise relative accuracy as an approximation to the solution X . To this end, we
borrow an idea from Prof. W. Kahan (University of California at Berkeley) who
taught it to the third author in the mid-1990s [21].
Consider a nonnegative, monotonically increasing, and convergent sequence {αi },
i.e.,

0 < αi ≤ αi+1, lim
i→∞ αi = α. (4.11)

Let Δi = αi − αi−1. If Δ j+1/Δ j is decreasing for j ≥ k, and if Δk+1/Δk < 1,
then

α − αk+1 <
(αk+1 − αk)

2

(αk − αk−1) − (αk+1 − αk)
. (4.12)

Note the right-hand side of (4.12) coincides with the correction of Aitken’s
Δ2-method for speeding up a linearly convergent sequence [25, p. 312]. To see
(4.12), we let δ = Δk+1/Δk . For i ≥ k, we have

0 ≤ Δi+1 =
i

∏

j=k

Δ j+1

Δ j
Δk
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which gives 0 ≤ Δi+1 ≤ δi−k+1Δk . Therefore

α − αk+1 =
∞
∑

i=k+1

Δi+1 ≤ Δk

∞
∑

i=k+1

δi−k+1 = Δ2
k+1

Δk − Δk+1

which gives (4.12). So to compute α with relative accuracy ε, it suffices to stop the
iteration as soon as

(αk+1 − αk)
2

(αk − αk−1) − (αk+1 − αk)
≤ ε αk+1. (4.13)

A stopping criterion can then be easily drawn from this for the loop in Lines 5–8.
4. In our numerous tests (not all reported later in the next section), such a stopping

criterion with ε about the machine unit roundoff u works very well for the Smith
algorithm which converges quadratically but not so for Algorithm 4.1 which con-
verges linearly. This is because for a linearly convergent sequence {αi } satisfying
(4.11) there is no guarantee that Δ j+1/Δ j is eventually decreasing, and conse-
quently (4.12) is no longer valid. We argue that for a linearly convergent sequence
{αi }, a simple test whether |αk+1 − αk | ≤ ε|αk+1| would work just fine. Let r be
the rate of convergence. Near convergence, αk+1 − αk = αk+1 − α − (αk − α) ≈
(1 − 1/r)(αk+1 − α), and |αk+1| ≤ |αk+1 − α| + α. So |αk+1 − αk | ≤ ε|αk+1|
implies approximately

α − αk+1 � r

1 − r(1 + ε)
εα.

That is usually sufficient, unless r is too close to 1.

5 Numerical examples

In this section, we shall present two numerical examples to test our entrywise per-
turbation bounds as well the ability of the numerical methods in Sect. 4 to deliver
entrywise relatively accurate numerical solutions. In what follows, We will use two
error measures to gauge accuracy in computed solution ̂X : the Normalized Residual
(NRes)

NRes = ‖ÂX + ̂X B − C‖1

‖̂X‖1(‖A‖1 + ‖B‖1) + ‖C‖1
, (5.1)

a commonly used measure for gauging ̂X ’s accuracy because it can be easily computed,
and the entrywise relative error (ERErr),

ERErr = max
i, j

|(̂X − X) � X |(i, j)

123



M-matrix Sylvester equations 665

which is not available in actual computations but is made available here for our testing
purpose. Ideally both errors are 0, but numerically they can only be made about as
tiny as O(u). As we will see, for our purpose of getting ̂X with deserved entrywise
relative accuracy, tiny NRes (as tiny as O(u)) are not sufficient.

Example 5.1 A, B, C ∈ R
n×n are given by

A =

⎛

⎜

⎜

⎜

⎜

⎝

3 −1

3
. . .

. . . −1
−1 3

⎞

⎟

⎟

⎟

⎟

⎠

, B = A, C = In .

This is a very well-conditioned case with

A1n = 21n, 1T
n B = 21T

n , �1 = �2 = 1/3.

As n gets (modestly) big, X ’s entries show wide variations in magnitude. For testing
purpose, we computed an “exact” solution X for n = 100 by the computerized alge-
bra system Maple7. This “exact” solution X ’s entries range from 9.7 × 10−49 to 0.17.
MATLAB’s lyap which is based on Bartels and Stewart [5] fails to compute ̂X with
all entries nonnegative, giving

ERErr = 2.3 × 10+32, NRes = 8.8 × 10−15,

as expected. Further looking into the solution bylyap reveals that some of X ’s entries
of order O(10−16) are computed to negative numbers but still in the order of O(10−16).
The Smith algorithm with Kahan’s stopping criterion works extremely well: in just
seven iterations, it produces a computed ̂X with entrywise relative errors smaller than
3 × 10−15. The convergence to X ’s entries of different magnitudes by the five fixed
point iterations in Sect. 4 is very much uneven, even though their NRes are reduced
at predictable rates, except for FPe which is atypical for the example.

Figure 1 displays the convergence history in terms of NRes and entrywise rela-
tive errors for the Smith algorithm, FPa, FPb, and FPe. The history curves for FPc
and FPd are nearly indistinguishable from those for FPb and FPa, respectively. One
should not be surprised by the superior performance of FPe. This is in large part due to
the structure of A (and B) and how the splitting (4.7e) is done. Except forFPewhich is
remarkably fast, the curves for NRes look very nice—decreasing substantially every
steps; the curves for entrywise relative errors, however, show very little improvements
for the first many iterations. This is due to the fact that X has (many) tiny entries.

It is worth pointing out that despite that the fixed point iterations FPa, FPb, FPc,
and FPd take many more iterations than the Smith algorithm, it does not imply that
they are more expensive for this example because each step of these fixed point itera-
tions takes O(n2) flops while each step of the Smith algorithm takes O(n3) flops! In

7 http://www.maplesoft.com/.
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Fig. 1 Example 5.1, n = 100. Convergence history for the Smith algorithm and the three fixed point
iterations. Left NRes; Right entrywise relative errors. Curves for FPb and FPc are indistinguishable, and
the same can be said for the curves for FPa and FPd. Curves for FPe are atypical

general the flop counts for the fixed point iterations can be up to O(n3) per step but
can be much less if A and B are very sparse. The sparsity of A and B does not affect
the flop counts for the Smith algorithm, however.

Next we relatively perturb each entries of A, B, and C to illustrate the effectiveness
of our perturbation bounds. We still take n = 100 for which we have the “exact” solu-
tion to compare to. In MATLAB, each nonzero entry in A, B, and C is multiplied by

1+ (rand− .5)∗Γ ∗eps, (5.2)

where Γ is an adjustable parameter. We then compute the solution of the perturbed
MSE (1.5) by the Smith algorithm with Kahan’s stopping criterion. Let ε be the small-
est one to satisfy (3.11).

Figure 2 plots entrywise relative errors in the solution of (1.5) against ε (caused by
letting Γ = 200 · 10i for 1 ≤ i ≤ 7), very much as predicted by Theorem 3.1 and
Corollary 3.1, except the factor 2n2 which seems to overestimate the errors.

Example 5.2 This is from modifying Example 3.1. We take m = n, C = In , and

A = B = In − ωUn − θeneT
1 .

This is an M-matrix if 1 − θωn−1 > 0, and in fact

Au = v for u = (ωn−1, . . . , ω, 1)T and v = (0, . . . , 0, 1 − θωn−1)T,

BT y = z for y = (1, ω, . . . , ωn−1)T and z = (1 − θωn−1, 0, . . . , 0)T.

While we have done tests for many values of ω and θ and observed similarly behaviors,
what we will report below is for ω = 3 and θωn−1 = 1/3. Since we are sure that
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Fig. 2 Example 5.1, n = 100:
Entrywise relative errors in ˜X as
ε varies. It is estimated via a
least squares fit that these
entrywise relative errors behave
like 14.5ε. Also plotted is

n 1+�max
1−�max

ε = 2nε. The error
bound up to the first order by

Corollary 3.1 is 2mn 1+�max
1−�max

ε = 4n2ε which may
overestimate relative errors too
much. Accidentally, γ = 100 in
the first order error bound
(3.19); so 2γ ε = 2nε here
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Fig. 3 Example 5.2. Left NRes for the computed solutions by MATLAB’s lyap, the Smith algorithm,
and the GTH-like algorithm; Right Entrywise relative errors and relative norm errors against the “exact”
solutions computed by the GTH-like algorithm for n ≤ 50

the direct method based on the GTH-like algorithm will deliver entrywise relatively
accurate solutions (to almost the full working precision), we regard those solutions as
the “exact” ones to check the errors in ̂X computed by the Smith algorithm, the fixed
point iterations, and MATLAB’s lyap. Accuracy results for the fixed point iterations
are not reported here as they are similar to those for the Smith algorithm. The high
computational complexity O(n6) of the GTH-like algorithm limits us to cap n at 50 for
running the algorithm in MATLAB on a PC. Figure 3 shows the numerical results as n
varies. Its left plot displays NRes as defined by (5.1). It shows the overall tendency of
NRes getting worse as n increases for MATLAB’s lyap while NRes for the Smith
algorithm and the direct method seem to behave independently of n. Also it shows the
unpredictable behavior of NRes for MATLAB’s lyap for n beyond about 50: NRes
can vary between nearly 10−15 to almost 10−5 with little regard about how big n may
be.
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In the right plot of Fig. 3, we show entrywise relative errors and

Relative 1-norm errors: ‖̂X − X‖1/‖X‖1

of ̂X computed by the Smith algorithm and MATLAB’s lyap against the “exact”
X computed by the GTH-like algorithm. The curves for MATLAB’s lyap move up
(rather quickly) while those for the Smith algorithm stay almost flat. There is a good
explanation as to why the error curves for MATLAB’s lyap behave this way. Since
the method is backward stable, we have for MATLAB’s lyap

‖̂X − X‖1/‖X‖1 ≤ O(‖P‖1‖P−1‖1u), (5.3)

and as a consequence

max
i, j

|̂X(i, j) − X(i, j)|
X(i, j)

≤ ‖̂X − X‖1

‖X‖1

‖X‖1

mini, j X(i, j)

≤ O(‖P‖1‖P−1‖1u) × maxi, j X(i, j)

mini, j X(i, j)
. (5.4)

For this example ‖P‖1‖P−1‖1 increases fast as n increases. So both bounds in (5.3)
and (5.4) increase fast, too, as n increases.

6 Concluding remarks

It seems to be more natural to call (1.1) an MSE if both A and B are M-matrices,
P = Im ⊗ A+ BT ⊗ In is nonsingular, and C ≥ 0. Our definition of an MSE seemingly
is more broad, but actually equivalent to this natural one because AX + X B = C is
the same as (A − τ I )X + X (B + τ I ) = C for any scalar τ and with τ given by (4.1)
both A − τ I and B + τ I are nonsingular M-matrices.

We have presented an entrywise perturbation analysis for MSE (1.1). It is proved
small relative perturbations to the entries of A, B, and C will only cause small relative
changes to each entry of the solution X , regardless of its magnitude. We argued that
the linear terms in our bounds are asymptotically best possible, except their dimen-
sionally dependent factor 2mn which we conjectured could be replaced by something
like 2(m + n).

The commonly used first order error analysis can be easily performed, too, as we
outlined in Remark 3.2, to yield a sharp and easily implementable first order error
bound. But our new analysis leads to more insightful bounds in that the effect of �(A)

and �(B) in the solution’s sensitivity is exposed.
We showed that the GTH-like algorithm [1], the Smith algorithm [24], and the clas-

sical fixed point iterations [26] with some minor but crucial implementation changes
can deliver computed solutions with predicted entrywise relative accuracy according
to our analysis. Our numerical results confirm our analysis and our accuracy claims
about the algorithms. We point out in passing that the condition C ≥ 0 is not necessary
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to ensure convergence of Xk to X by any of the iterative methods in Sect. 4; it is just
that without C ≥ 0 convergence is no longer monotonic.

This is the first paper of ours in a sequel of two on accurate solutions of MSE and
M-matrix algebraic Riccati equation (1.3) which is more difficult to analyze than MSE
because of its nonlinearity in X . The latter will be the subject of our investigation in
[31].
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