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Abstract 

 
This paper presents an algorithm, which is based on 

a Hopfield neural network, for determining unit 
commitment. By constructing an appropriate energy 
function, a single layer Hopfield neural network can 
solve the problem of assigning output power of 
generators at any given time. Based on this single 
layer Hopfield neural network, a multi-layer Hopfield 
neural network is presented. The multi-layer Hopfield 
neural network can solve the problem of power system 
unit commitment. The energy functions of single layer 
and multi-layer Hopfield neural network and the 
corresponding algorithm are given in the paper. The 
restricted conditions of the balance between power 
supply and demand, maximum and minimum outputs of 
power plants are considered in the energy function. So 
is the speed of propulsion and decreasing power of 
generators. An example shows that the result obtained 
by Hopfield neural network is somewhat similar to that 
obtained by genetic algorithm, but the calculation time 
is much shorter.  

Keywords: unit commitment, Hopfield neural 
network, optimization, power system, planning 
 
1. Introduction 
 

Unit commitment is an important task of short term 
power system economic dispatch. Researchers have 
studied some algorithms for solving the problem. In 
general, the existing algorithms can be grouped into 
two classes-the traditional optimal technology and the 
artificial intelligent technology. Dynamic 
programming[1,2] and Lagrangian relaxation method[3~5] 
are two representative algorithms in traditional 
optimization technology. The algorithms based on 
random search optimization method attract most 
researchers’ attention in artificial optimization 
technologies. Reference [6] and [7] optimize the unit 
commitment problem by using evolutionary 
optimization method and social evolutionary 
programming respectively. Reference [8-10] used 
genetic algorithms to optimize unit commitment 
problem. Recently, particle swarm optimization 

method is attracting more and more researchers’ 
attention. Reference [11-13] used this algorithm for 
optimizing unit commitment problem. Through 
optimization power unit’s on/off status, reference [14] 
optimizes unit commitment problem by an improved 
discrete particle swarm optimization algorithm 
(DPSO). The improved DPSO overcome the DPSO’s 
defect of falling into a local optimal result through a 
new initializing machine. 

However, from the existed literature it is rear to see 
unit commitment algorithms based on calculating a 
group of differential functions. In this paper we put 
forward an algorithm, which is based on a multi-layer 
Hopfield neural network, to optimize the unit 
commitment problem. 
 
2. Mathematical Model 
 

The mathematical model of the unit commitment 
can be written as: 
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Where ( )itit PF  is the fuel cost function of i-th unit 
at the t-th hour which can be expressed as 

( ) iitiitiitit CPbPaPF ++= 2 . In the expression, ia , 

ib  and iC  are all constants; itP  is the power output of 

i-th unit at the t-th hour; TiS  is the start-up cost of the 

i-th unit. itU  is the on/off status of the i-th unit at the 

t-th hour, and { }1,0∈itU ; N is the number of thermal 
generating units; H is the number of hours in the period 
studied. 

In constraints, tC  is the power loss at t-th hour; 

DtP  is the system load demand at t-th hour. k is spare 

coefficient. miniP  and maxiP  are the i-th unit’s 

minimum and maximum power outputs. UPiR  and 

DRiR  are the ramp-up and ramp-down rate limits of 

the i-th unit. UiM  and DiM  are the minimum up-time 
and down-time of the i-th unit. ku is the hour at which 
the i-th unit is started up and kd is the hour at which 
the i-th unit is shut down. 

In the above formulation, the decision variable itU  

of either 0 or 1, and variables itP  of continuous values 
constitute a mixed integer programming problem. We 
propose a multi-layer Hopfield neural network to solve 
the problem. 

 
3. The structure of Hopfield neural 
network 

 
Before calculating equation (1), it is necessary to 

establish a neural network model for expressing the 
result of optimization. If we only want to optimize 
each unit’s power output at hour t and don’t take the 
second part of equation (1) into consideration, we can 
establish a matrix as shown in table 1 for any given 
time t. 

Table 1. The planning result table 
 W1 W2 … WM 

F1 0 1 … 0 

F2   …  

…
… 

  …  

FN 1 0 … 0 

 
In table1, the number in line refers to a unit and the 

number in column refers to the unit’s minimum power 
output adjustment value, and there is 

W1=W2……=WM=W. An element in the table with 
value 1 indicates that the corresponding column output 
value will be assigned to the corresponding row unit. 
For example, if element (i,j) is 1, this indicates that i-th 
unit will increase its output by Wj. The relation 
between Wj and DtP  can be written as: 

Dt

M

j
j PW =∑

=1

                                 (2) 

From equation (2) we can see that there is only one 
element with a value of 1 in each column, the others 
with a value of 0. Otherwise, the output would not be 
equal to the system load demand. 

The value of M can be written as: 









=
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Where ( )Int  is the integral function and 

minINCR  is the minimum value for adjusting a unit. 

Let ijv  denote element (i,j) of table1. On the basis 
of the matrix shown in table 1, we can establish the 
Hopfield neural network energy function for unit 
commitment at t-th hour as follows: 
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In equation (4), E1 ~ E3 and vu  are coefficients. 
The first part of equation (4) makes each column to 
have only one element with a value of 1. The second 
part makes each unit’s power output to be within the 
given region. The third part corresponds to the first 
part of equation (1).  

Equation (4) doesn’t take the second part of 
equation (1) into consideration and can not decide each 
unit’s power output for all hours. So in order to solve 
equation (1), it’s necessary to establish a multi-layer 
Hopfield neural network. 

The multi-layer Hopfield neural network has H 
layers of neural network which correspond to 1t -hour

～ Ht -hour. The structure of multi-layer Hopfield 
neural network is shown in Fig.1, and the output of 
each layer is similarly to Table1. The number of 
columns of each layer neural network can be decided 
according to equation (3). 
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Figure 1.  The sketch map of multilayer neural 

network 
So, itu  in equation (1) can be written as: 

tiit e
u

+
=

1
1

                                  (5) 

Where 

( )

v

tM

j
tij

t u

v
i









−−

=
∑

=

5.0
1  

Let tijv  denote element (t,i,j), the energy function of 
the multi-layer Hopfield neural network can be written 
as: 
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In equation (6), E1～E8 are coefficients; H is the 

number of hours in the period studied. ( )tM , which 
varies with t, is the number of columns of the neural 
network, and can be calculated by using equation (3). 

vu  is a coefficient. The meanings of other parameters 
are similar to those of equation (1). 

In equation (6), item E1 makes the output of each 
layer neural network fit the form of table1 and also 
makes the power output of all units equal to the power 
load demand at each hour. The item E2 forces the 
output of each unit to be within the unit’s minimum 
and maximum power output. The item E3 minimizes 
the fuel cost and corresponds to part 1 of the equation 
(1). Item E4 makes each unit’s ramp-up rate to be less 
than UPiR . Item E5 forces each unit’s ramp-down rate 

to be less than DRiR . Item E6 minimizes the start-up 
cost. Item E7 minimizes the power output of each unit 
when the unit is going to be started-up. Item E8 
minimizes the power output of each unit when the unit 
is going to be shut-down. 

We use the following equation[15] to calculate (6) 

tij

tij

v
E

dt
du

∂
∂−=                                (7) 

Where tiju  is the input of neural node (t,i,j) and tijv  is 
the output of neural node (t,i,j). 

After establishing the energy function (6), we can 
deduce the dynamic function as follow: 
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It is easy to get the result by solving equation (8) 
through the euler method. 
 
4. Calculation algorithm 
 

The constraints of UiM  and DiM , which are not 
taken into consideration in the energy function, will be 
considered in the algorithm shown in Fig.2. 

Begin

Find the unit Nt that can not fit the
minimum up-time limit

Output the result

Yes

No

Calculate the result by neural
network

Delete the row corresponding to Nt when
constructing Hopfield neural network

Is the result
convergency?

If the minimum up-time limit of
each unit is satisfied?

No

Yes

 
Figure 2.  Optimization algorithm 

From equation (8) we can see that E4 has little 

influence on 
dt

duvij . When UPtiO >0, the square term 

in denominator makes E4 to be 0. When UPtiO <0, the 
denominator tends to 1, the e function in numerator 
makes E4 to tend to 0. So, the coefficient E4 should be 
very large to ensure the fourth part of equation (8) to 
work. In real calculation, the following codes can 
ensure the fourth part will work. 

if  vw>RUP[i]  then  s4=-E4  else  s4=0; 

E4 is the coefficient E4 of equation (6), and 
( ) ( )

∑∑
−

=
−
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show that such program can improve calculation 
efficiency and save much calculation time. The same 
method is adopted to realize the E2, E5 and E6 terms. 
 
5. Example 
 

In order to validate the energy function and 
algorithm, we took a system which was shown in 
reference [16] with 10 units as an example. In the 
calculation, the values of coefficients are E1=2800000, 
E2=400000, E3=1000, E4=70000, E5=70000, 
E6=40000, E7=200000 and E8=200000. The 
calculation result is shown in table2, the fuel cost is 
81332.3, the start-up cost is 298.4, and the total cost is 
81630.7. Reference [16] calculated the same example, 
the total cost was 81245.461. There is little difference 
in the total cost by using Hopfield neural network and 
another algorithm, but calculating a group of 
differential functions is somewhat simpler. 

Table 2.  Calculation result 
 1-unit 2-unit 3-unit 4-unit 5-unit 
1-hour 0 0 0 104 106 
2-hour 0 0 0 90 102 
3-hour 0 0 0 101 90 
4-hour 0 0 0 66 73 
5-hour 0 0 0 79 68 
6-hour 0 0 0 71 65 
7-hour 0 0 0 65 69 
8-hour 0 0 0 69 62 
9-hour 0 0 0 40 59 
10-hour 0 0 0 36 59 
11-hour 0 0 0 34 57 
12-hour 0 0 0 32 54 
13-hour 0 0 0 32 50 
14-hour 15 0 0 28 52 
15-hour 15 20 30 26 51 
16-hour 15 20 30 25 50 
17-hour 15 20 30 25 50 
18-hour 15 20 30 25 50 
19-hour 19 22 34 30 51 
20-hour 20 24 32 31 56 
21-hour 18 24 35 34 60 
22-hour 22 22 34 35 62 
23-hour 21 21 38 34 66 
24-hour 23 30 35 39 69 
 6-unit 7-unit 8-unit 9-unit 10-unit 
1-hour 280 261 385 519 345 
2-hour 223 283 445 520 317 
3-hour 139 262 397 520 431 
4-hour 115 247 329 520 550 
5-hour 123 227 391 402 550 
6-hour 109 216 339 520 550 
7-hour 104 207 305 520 550 
8-hour 96 205 274 520 474 
9-hour 82 137 209 433 550 
10-hour 77 129 180 379 550 
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11-hour 78 135 158 363 495 
12-hour 83 125 136 348 422 
13-hour 79 123 138 357 421 
14-hour 75 120 140 317 413 
15-hour 76 120 125 296 381 
16-hour 75 120 125 309 391 
17-hour 75 120 137 345 443 
18-hour 75 120 152 359 534 
19-hour 81 137 197 439 550 
20-hour 81 151 266 489 550 
21-hour 97 184 298 520 550 
22-hour 101 221 333 520 550 
23-hour 124 228 348 520 550 
24-hour 112 240 372 520 550 

 
6. Conclusion 
 

(1) The unit commitment problem can be changed to 
a transport problem which can not be subdivided with 
many constraints. 

(2) The energy function of multi-layer Hopfield 
neural network can take most mathematical constraints 
into consideration, so we can obtain the result of unit 
commitment problem by calculating a group of 
differential functions. 

(3) Some items in differential functions can be 
simplified, and the simplification process will not 
affect the result precision. 
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