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We design magnetic traps for atoms based on the average magnetic field of vortices induced in a
type-II superconducting thin film. This magnetic field is the critical ingredient of the demonstrated
vortex-based atom traps, which operate without transport current. We use Bean’s critical-state
method to model the vortex field through mesoscopic supercurrents induced in the thin strip. The
resulting inhomogeneous magnetic fields are studied in detail and compared to those generated
by multiple normally-conducting wires with transport currents. Various vortex patterns can be
obtained by programming different loading-field and transport current sequences. These variable
magnetic fields are employed to make versatile trapping potentials.

PACS numbers: 37.10.Gh, 03.75.Be, 74.78.Na

I. Introduction

The development of microchips for trapping and ma-
nipulating ultracold atoms has progressed rapidly in the
last decade [1–3]. With lithography and other processes,
complex surface structures can be fabricated to provide
various tight trapping potentials for cold atoms in the
proximity of the microchip surface. However, the fluctu-
ating electromagnetic fields emanating from metallic sur-
faces may lead to loss and decoherence of trapped atoms,
thus limiting the performance of the atom chip [4–6] in
devices such as atom interferometers and atomic clocks.
Superconducting atom chips have been shown to reduce
both the near field noise and technical noise [7–15]. The
spin-flip lifetime and coherence of the trapped atoms im-
proves accordingly. Additionally, superconducting atom
chips may provide a platform to realize a coherent in-
terface between atomic or molecular quantum states and
quantum solid-state devices [16–19].

A special property of type-II superconductors in the
mixed state is the presence of vortices. The effect of
vortices on the trapping potentials generated by current-
carrying superconducting structures in the mixed state
has been studied [20, 21]. Recently, stable magnetic traps
without applied transport current that use the fields pro-
duced by vortices trapped in a superconducting strip [22]
or disk [23] have been experimentally demonstrated. This
suggests that vortices could provide a bridge between co-
herent atomic states and solid-state quantum devices, en-
abling novel applications and interesting new fundamen-
tal studies. The properties of these vortex-based traps
depend directly on the vortex distribution. This also im-
plies that sufficiently cold atoms could be used as a sen-
sitive probe of the distribution and dynamics of vortices
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in superconductors [22, 23].
In this paper, we describe in detail how to design mag-

netic traps for low-field seeking atoms using vortex pene-
tration in a type-II superconducting thin film. We show
how to create various trap types such as a single harmonic
type trap, a double trap, or traps without the typically
applied bias field, and we include experimental character-
izations related to our theoretical findings. These traps
form at distances large compared to the characteristic
vortex-vortex spacing, so it is useful to model the vortex
field with the Bean critical-state approximation [24, 25].
This approach replaces the individual vortices in a mixed
state (Shubnikov state) superconductor with an equiva-
lent current density in a finite-width thin strip, which ac-
curately describes our setup geometry. The mesoscopic
equivalent supercurrent can be induced either by an ex-
ternal magnetic field pulse perpendicular to the surface
or by a transport current pulse through the superconduc-
tor; we study both cases. Straightforward application of
the Biot-Savart law then yields the potential relevant for
an atom with a magnetic moment that is in the vicin-
ity of the microchip. This computation has enabled the
discovery and optimization of several vortex-based trap
geometries that we have subsequently observed in exper-
iments [26]: a micro-trap resembling the Z-type wire-
trap geometry, a double trap, and a self-sufficient trap
requiring no external bias field. While analogous poten-
tials have been demonstrated using normally-conducting
wires, we expect that in our superconducting atom chip
(during the atom-trapping phase), the near-field noise is
significantly reduced and technical noise decreases as the
transport current is absent.
The paper is organized as follows. Sec. II contains a

brief summary of magnetic flux penetration in type-II
superconductors. In Sec. III we study the mesoscopic
equivalent supercurrents induced by a pulsed external
field perpendicular to the strip surface. The induced su-
percurrent distribution is computed along with the re-
sulting external magnetic field, which is the basis for the
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magnetic traps. In Sec. IV we provide similar analysis
for supercurrent distributions that remain after apply-
ing a pulsed transport current. In Sec. V we explore the
impact of the transport current history on the magnetic
atom trap and on the trapped vortices. Concluding re-
marks are given in Sec. VI.

II. Magnetic flux penetration

We briefly review magnetic flux penetration in the
form of quantized vortices, in order to introduce the
physics background relevant to the simulations presented
in the following sections. Vortex penetration exists for
only type-II (as opposed to type-I) superconductors.
The order parameter of a superconductor is given by
κ = λ/ξ, where λ is the London penetration depth and
ξ is the coherence length. Type-I superconductors have
κ < 1/

√
2 and their transition from the superconduct-

ing phase to the normal conducting state occurs for ex-
ternal magnetic fields Bext higher than the thermody-
namic critical field Bc(T ) = Φ0/

√
8πξ(T )λ(T ), where

Φ0 = h/2e = 2.07 10−15 Tm2 is the quantum of magnetic
flux. For an applied field Bext < Bc(T ), the supercon-
ductor is in the Meissner state and flux penetrates only
into a thin surface layer of depth λ. In this layer, the
shielding currents can reach the critical current density
jc(T ) = Bc(T )/µ0λ(T ). In contrast, Type-II supercon-

ductors have κ > 1/
√
2 and are characterised by two

critical magnetic fields: Bc1(T ) ≃ Φ0/4πλ(T )
2 ≤ Bc(T )

below which the superconductor is in the Meissner state,
and Bc2(T ) = Φ0/2πξ(T )

2 ≥ Bc(T ) above which the su-
perconductor is in the normal conducting state. In the
field range Bc1(T ) < Bext < Bc2(T ), the superconductor
is said to be in the mixed (or Shubnikov) state and mag-
netic flux penetrates in the form of vortices. Each single
vortex carries a quantum of magnetic flux and consists
of a normal core of radius ≈ ξ around which shielding
currents flow within a radius ∼ λ [27].
In an ideal type-II superconductor without defects or

fluctuations, vortices enter the sample from the edges and
arrange themselves in a triangular lattice (Abrikosov lat-
tice). The distance between vortices decreases when Bext

and T increase. Shielding currents with density jc flow
in the penetrated region and are no longer restricted to a
thin surface layer of thickness λ(T ), but can also flow in
the interior of the sample. For temperatures close to Tc,
the magnetic flux penetrates uniformly into the sample
and can be described by means of a mesoscopic equivalent
supercurrent as in the critical-state models [24, 25]. At
temperatures below an activation temperature Ta < Tc,
the flux penetration happens via dendritic avalanches
that propagate into the sample from the edge [28]. How-
ever, the study presented in this paper assumes that the
superconductor temperature is close to Tc, so magnetic
flux penetration is accurately described by the models
given in [24, 25].

Actual (non-ideal) type-II superconductors have de-

fects that act as pinning centers where vortices are more
likely to form. The pinning energy competes with the
mutual repulsion of the vortices, so an energetically un-
favorable arrangement of vortices will change because of
thermal fluctuations. Thermal fluctuations may lead to
the depinning of single vortices by providing the flux line
enough energy to leave the pinning center. During the
application of an external magnetic field, an equilibrium
between the pinning energy and the vortex-vortex repul-
sion is reached, and the resulting vortex distribution may
resemble a glass phase without long-range spatial order.
After the magnetic field is removed, a new equilibrium
configuration must be reached. The vortices remaining
in the sample produce the remanent magnetization and
the superconductor is said to be in the remanent state.
The vortex configuration in the remanent state can be
subsequently modified by applying a transport current.
The transport current passes through the vortices and
a Lorentz force arises between the electric current and
magnetic flux lines. As a consequence, some vortices
may leave the superconductor or accumulate asymetri-
cally with respect to their initial equilibrium configura-
tion [27].

In previous experimental investigations [26], we mea-
sured the location of the vortex-based magnetic atom
trap to be stable over ∼ 2 hours. This confirms that
any thermal relaxation of the vortices does not affect the
overall macroscopic magnetization of the superconductor
on the experiment timescale. We assume that the vortex
configuration is stable as long as no transport current is
applied.

III. Magnetization by external magnetic field

In this section, we consider a magnetic field Bext

applied perpendicularly to a superconducting strip as
shown in Fig. 1. We assume that the strip thickness d
is much smaller than the width 2w and that the strip is
infinitely long in the y-direction, such that we can reduce
our study to the xz-plane. For magnetic field amplitudes
such that Bc1 < Bext < Bc2, the magnetic flux enters
the strip from the edges in the form of vortices. The
average magnetic field of the vortices can be accounted
for by computing the magnetic field generated by the
equivalent mesoscopic supercurrents in the strip. In the
following sections we study the vortex field only through
the supercurrent distribution. Due to the memory effect
of the superconductor, supercurrents remain in the strip
even after the external field is completely removed. We
present several magnetic trap configurations relative to
various loading field sequences.
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FIG. 1: Schematic of the superconducting strip where d is the
strip thickness and 2w the strip width. The strip is assumed
to be infinitely long in the y-direction. A magnetic field pulse
Bext is applied perpendicularly to the strip surface. When
the amplitude is such that Bc1 < Bext < Bc2, magnetic flux
penetrates the strip from the edges, i.e. from x = ±w.

A. Induced supercurrent distribution and field

distribution

We simulate the current distribution for an external
magnetic field Bc1 < Bext < Bc2 applied perpendic-
ularly to the type-II superconducting thin strip in the
virgin state. In the regions where flux penetrates, the
current density reaches the critical value jc, according
to Bean’s critical-state model [24, 25]. As d ≪ 2w, the
current density in the strip is assumed to be constant
over the strip thickness d. For simplicity, to model the
supercurrent distribution we use a sheet current density
defined as J(x) = j(x)d, where j(x) is the local current
density. The sheet current density J(x) in the strip is
given by [25]

J(x,Bext, Jc) =

{

2Jc

π
arctan

(

x
w

√

w2−b2

b2−x2

)

, |x| ≤ b

Jc
x
|x| , b ≤ |x| ≤ w

(1)
where b = w/ cosh(Bext/Bc) denotes the half width of
the central flux-free region, Bc = µ0Jc/π is the ther-
modynamic critical field, Jc = jcd is the critical sheet
current density and 2w is the strip width. The width of
the outer region penetrated by the vortices is given by
w − b. The maximum penetration field Bp of the strip,
which can be described by Brandt’s model [25], is ob-
tained when b goes to zero, yielding

Bp =

(

µ0jcd

π

)

ln

(

2w

d

)

. (2)

When Bext decreases to its final value, Bf , and
−Bext < Bf < Bext, the sheet current density can be
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FIG. 2: (color online) Distribution of the sheet current density
across the strip for Bext = 0 → 2.4Bc → 0. Blue dot-dashed
line: sheet current density for Bext = 0 → 2.4Bc; red dashed
line: sheet current density for Bext = 2.4Bc → 0; black solid
line: final sheet current density. The x-position is normalized
by w, and the sheet current density is normalized by Jc.

described by [25]

J(x,Bf , Jc) = J(x,Bext, Jc)−J(x,Bext−Bf , 2Jc) . (3)

We plot in Fig. 2 the sheet current density distribution re-
sulting from the application of a field pulse Bext = 2.4Bc.
An increase of Bext from zero to 2.4Bc induces a sheet
current density J(x, 2.4Bc, Jc) computed by Eq. (1) and
represented by the blue dot-dashed line in Fig. 2. When
Bext is decreased to zero, some anti-vortices penetrate
the strip from the edges. This is described by a sheet
current density J(x, 0, 2Jc) with opposing sign with re-
spect to J(x, 2.4Bc, Jc), and it is represented by the red
dashed line Fig. 2. The final current density is the sum
of these two curves as in Eq. (3), and it is represented
by the black solid line in Fig. 2. For symmetry reason,
the supercurrents flow in opposite directions in the two
halves of the strip and the net current in the entire strip
is zero. Most supercurrents flow in the regions given by
0.4w < |x| < w; the supercurrents in the central part
are considerably smaller. We integrate the final sheet
current density J(x) over one half of the strip and find
that the current magnitude is ±0.37jcdw. In simulations
throughout this paper we will always consider a sample
strip with 2w = 400 µm width, d = 1 µm thickness and
jc = 2.08× 106 A/cm2 resulting in a maximum penetra-
tion field Bp = 499.27 G and a thermodynamic critical
field Bc = µ0Jc/π = 83.33 G. For example, the applica-
tion of a field pulse of Bext = 200 G induces a supercur-
rent of magnitude ±1.55 A in each half of the strip. The
superconducting strip thus resembles two parallel wires
with counter-propagating currents.
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B. Design of magnetic trap

We compute the magnetic fields generated by the su-
percurrents (equivalent to the average field of all vortices)
by applying the Biot-Savart theorem. We plot the z-
component of the vortex field, Bz(x,w), along the x-axis
in Fig. 3(a) at a distance z = w. Note that this com-
ponent is zero at two points near the strip edges where
quadrupole-type confinement can be generated by can-
celling the x-component of the vortex field with a bias
field, we discuss this trap configuration in Sec. III B 1.
We plot in Fig. 3(b) the x-component of the vortex field,
Bx(x, z), along the x-axis at a distance z = w, for sym-
metry reasons this component is always zero above the
strip center, Bx(0, z) = 0. The z-component of the vor-
tex field Bz(0, z) is nonzero above the strip center, and
we plot Bz(0, z) as a function of z in Fig. 3(c). Therefore,
by cancelling the z-component of the vortex field above
the strip center, a field minimum can be obtained to con-
fine low-field seeking atoms. This is discussed in detail
in Sec. III B 2. For comparison, we also plot the mag-
netic fields created by two counter-propagating currents
in parallel, normally-conducting wires in Fig. 3 (red cir-
cles). The two wires are at x = ±w and carry a current
of ±0.37jcdw. The superconducting strip and the two
current-carrying wires give rise to similar spatial mag-
netic field distributions. Only Bz(0, z) is qualitatively
different at short distances z < w as shown Fig. 3(c),
because a superconductor expels all magnetic fields per-
pendicular to its surface. In the following, we discuss
in detail various trapping potentials with these magnetic
fields.

1. Magnetic trap with parallel bias field

A quadrupole trap can be formed above one of the
two strip edges by applying a homogenous bias field
Bx

bias along the x-direction such that it cancels the x-
component of the vortex field and Bx

bias + Bx(x, z) = 0.
For simplicity, we assume that the strip is infinitely
thin, so Bx

bias induces no current. The trap can be
generated at various distances z by changing the bias
field Bx

bias accordingly. This kind of trap has been
recently observed experimentally in [22] and we show
a typical magnetic field configuration in Fig. 4. Such
a configuration is formed with a field-loading pulse of
amplitude 2.4Bc and a bias field Bx

bias = −0.173Bc, and
the trap is formed at a distance z = 0.8w. Simulations
with our superconducting sample strip yield a field pulse
of amplitude 2.4Bc = 200 G and a homogenous field
Bx

bias = 14.4 G generating quadrupole-type confinement
at a height of 0.8w = 160 µm.

As shown in Fig. 2, there are counter-propagating su-
percurrents in each half of the strip. However, the cur-
rents in the central part of the strip are considerably
smaller than in the outer region and the entire supercon-
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FIG. 3: (color online) Components of the magnetic field gen-
erated by equivalent supercurrents relative to Bext = 0 →

2.4Bc → 0 (blue lines) and by two counter-propagating cur-
rents±0.37jcdw (red circles). (a) Bz(x,w) vs x at fixed height
z = w; (b) Bx(x,w) vs x at fixed height z = w; (c) Bz(0, z)
vs z above the strip center x = 0. The x- and z- positions are
normalized by w and the magnetic field is normalized by Bc.

ducting strip resembles two normally-conducting wires
with counter-propagating currents. The current near
the edges gives the dominant contribution to the mag-
netic field distribution and the magnetic field at distances
z < w above the strip edges resembles the magnetic field
generated from a single current-carrying wire.
Our simulations consider only the two dimensional con-

finement, leading to a guiding potential along the wire in
y-direction as in Fig. 4. However, to realize actual trap-
ping of atoms, confinement along the y-direction must be
provided as well. In our experimental realization of the
described trap, this axial confinement is due to pattern-
ing the strip in a Z-shape [22]. In a simplified schematic,
this geometry is similar to two normally-conducting Z-
wires carrying opposing currents. Following this anal-
ogy, we employ only one of these wires and the magnetic
field along y originating from the corners of the Z-shape
provides axial confinement. The axial field is due to the
curvature of the magnetic field component By, and has a



5

0.5

1.0

1.5

2.0

trap

-2 -1 0 1 2
x [ w ] 

z
 [

 w
 ]

FIG. 4: (color online) A quadrupole type confinement above
the edge of the strip formed by the vortex field together
with a parallel homogeneous field Bx

bias = −0.173Bc. The
vortex-loading field pulse has an amplitude of 2.4Bc. x- and
z-positions are normalized by w.

non-vanishing value at the center of the quadrupole-type
radial potential. In total, this leads to finite magnetic
field and a quasi-harmonic potential near the trap min-
imum. In our actual apparatus, similar magnetic fields
arise from the corners of the vortex-loaded, Z-shaped su-
perconducting strip. This produces confinement along
y for all of the traps presented in this work. However,
all subsequent discussion of potentials is limited to two
dimensional confinement in the xz-plane.
In our experimental realization, we also apply an offset

field By
bias along the y-direction to increase the absolute

magnetic field at the trap minimum. This is done to re-
duce Majorana spin-flip losses. We characterize this trap
by performing rf atom-loss spectroscopy to determine the
depth of the magnetic potential. We load atoms into the
trap, apply a 50 ms rf pulse, then use absorption imaging
to determine the remaining population. This number is
compared to a background image (no applied rf) to de-
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FIG. 5: Atom loss spectrum of the Z-type micro-trap. The
remaining fractional population is determined by comparing
resonant laser absorption images with and without a previous
50 ms rf pulse; error bars reflect statistical uncertainty. The
field value at the trap minimum is 6.6 G, which offsets the low-
frequency threshhold to approximately 4 MHz. The inferred
trap depth is about 1 mK.

termine the remaining fractional population. In Fig. 5
the remaining fraction as a function of applied frequency
is shown. The minimum trap field value has been offset
with a 6.6 G uniform bias field pointing along the y-axis
of the trap, which is why the loss threshold occurs at ap-
proximately 4 MHz rather than near zero frequency. The
23 MHz frequency interval over which stretched-state ru-
bidium atoms are removed from the trap implies a po-
tential well-depth on the order of 1 mK.

The superconducting chip employed in our experi-
ments features two micro-structures with different width.
Our simulations predict linear scaling of the trap-to-
surface distance with the strip width, a consequence of
the direct proportionality of the remanent-state sheet
current to the strip width. We experimentally observe
atoms in the described micro-trap type above both these
strips. For this measurement both strips have been pre-
pared using the same applied magnetic fields. We show
the measured trap-to-surface distance for the different
widths in Fig. 6. The measurement confirms the pre-
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FIG. 6: Experimentally determined microtrap-to-surface dis-
tance scaling with strip width w. The trap-to-surface distance
is plotted for a fixed horizontal bias field of 26 G and super-
conductor strip widths of 200 µm and 400 µm. Error bars re-
flect systematic uncertainty, and the dashed curve is a linear
fit constrained to intersect the origin. Adequate agreement
is found with the prediction (solid curve) from a simulation
based on the Brandt model. The linear relationship arises
from the direct proportionality of the remanent-state current
to the width of the superconducting strip.

dicted scaling, as shown by the dashed curve, which is a
linear fit constrained to go through the origin. The solid
curve reflects the proportionality constant from our simu-
lations. Although the measurements do not overlap with
the theory, this minor difference is consistent with other
types of measurements that previously revealed discrep-
ancies with the Brandt model [24, 25]. The relative agree-
ment indicates the validity of the simplifications made in
the model.
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2. Magnetic trap with perpendicular bias field

A quadrupole-type confinement can be realized with a
perpendicular bias field as well. We show in Fig. 3(b)
that Bx(0, z) is always zero above the strip center, while
Bz(0, z) 6= 0 as in Fig. 3(c). The nonzero value ofBz(0, z)
can be cancelled with a homogeneous bias field Bz

bias to
generate a minimum at (0, z) in the magnetic poten-
tial. A conceptually similar trap has been experimen-
tally demonstrated in [23]. The perpendicular bias field
Bz

bias also induces supercurrents in the strip, which we
account for in our simulations. When the sum of the in-
duced fields and the bias field is zero, a magnetic trap
forms at (0, z). A small perpendicular field, for exam-
ple Bz

bias ∼ −0.2Bc, generates a quadrupole trap near
z = w above the center of the strip, as shown in Fig. 7.
Note that there is a second trap directly on the surface at
the strip center as Bz(0, 0) and Bx(0, z) are always zero.
The simulation done for our sample using a bias field
Bz

bias = 16.6 G, shows a quadrupole trap at a height of
200 µm.

trap

-2 -1 0 1 2
x [ w ] 

0.5

1.0

1.5

2.0

z
 [

 w
 ]

FIG. 7: (color online) A quadrupole trap above the strip cen-
ter formed by the vortex field together with a perpendicular
homogeneous field Bz

bias = −0.2Bc. The vortex-loading field
pulse has an amplitude of 2.4Bc. The x- and z-positions are
normalized by the strip width w.

3. Magnetic trap without bias field

The superconductor records the history of sign changes
in applied magnetic fields. Sequences of field reversals
can be used to induce complex current distributions al-
lowing the creation of versatile magnetic field geometries.
We present a specially designed supercurrent distribu-
tion generating a self-sufficient trapping field able to store
atoms without any other bias fields. We consider a mag-
netic field perpendicular to the strip in the virgin state,
increase the field from zero to 2.4Bc and then decrease to
−1.2Bc, before finally removing the external field com-
pletely. The resulting current density distribution in the
strip is plotted in Fig. 8(a).
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FIG. 8: (color online) Loading field perpendicular to the strip
with sequence Bext = 0 → 2.4Bc → −1.2Bc → 0. (a) current
density distribution in the strip. (b) equipotential lines for an
atom with nonzero magnetic moment. A trap can be seen at
a height of z = 0.6w.

A double minimum in the potential can be realized
with an additional external field reversal of 0.7Bc added
to the presented sequence, as shown in Fig. 9(b). This se-
quence consists in total of the fields Bext = 0 → 2.4Bc →
−1.2Bc → 0.7Bc → 0, which leads to two additional seg-
ments with reversed current in the outer parts of the
strip. The supercurrent density distribution is plotted in
Fig. 9(a). The trapping height is around 0.25w ∼ 50 µm.
These self-sufficient traps are attractive for integration
with other atom-optic devices, due to the absence of noise
associated with transport current.

IV. Magnetization by transport current

A. Induced supercurrent distribution and field

distribution

A transport current Ia will also induce supercurrents
in the type-II superconductor. This can be used to gen-
erate various patterns of supercurrent distribution and
corresponding magnetic potential surfaces.

A transport current Ia applied through a supercon-
ducting strip in the virgin state leads to magnetic flux
penetrating the strip from the edges. In the region of
flux penetration, the current density takes on the criti-
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FIG. 9: (color online) Loading field perpendicular to the strip
with sequence Bext = 0 → 2.4Bc → −1.2Bc → 0.7Bc → 0.
(a) current density distribution in the strip. (b) equipotential
lines for an atom with nonzero magnetic moment. A double
trap can be seen around a height of 0.25w.

cal value jc. In our case, the z-dependence of the cur-
rent density is negligible as the thickness of the strip is
much smaller than its width. The sheet current density
J(x) = j(x)d distribution in the superconducting strip is
given by [25]

J(x, Ia) =

{

2Jc

π
arctan

(√

w2−b2

b2−x2

)

, |x| ≤ b

Jc , b ≤ |x| ≤ w
(4)

where b = w
√

1− I2a/I
2
p is the flux-free region, Ia is the

applied current and Ip = 2wJc the maximal transport
current. When the transport current Ia decreases to
−Ip < If < Ip, the total current density distribution
can be described by [25],

J(x, If , Jc) = J(x, Ia, Jc)− J(x, Ia − If , 2Jc) . (5)

If the transport current is decreased to zero, some anti-
vortices penetrate the strip from the edges and current
density −J(x, Ia, 2Jc) is induced in the opposite direc-
tion. We plot the corresponding remanent supercur-
rent density distribution in Fig. 10. In the outer region
given by w > |x| > 0.935w, the sheet current density
J(x) is positive, whereas in the inner region given by
|x| < 0.935w, J(x) is negative. As the transport current
Ia is removed, the sum of the sheet current density across

the strip width vanishes. The current flowing in the outer
region w > x > 0.935w (−w < x < −0.935w) has the
same magnitude as the current flowing in the inner re-
gion 0 < x < 0.935w (−0.935w < x < 0). Therefore,
the whole superconducting strip resembles four normally-
conducting wires, where the outer two wires carry current
in the opposite direction of the inner two wires. This
schematic description of the current distribution is sig-
nificantly different from the supercurrents induced by a
perpendicular magnetic field pulse.

 -1

0

1

 

 

-1 -0.5 0 0.5 1

x [ w ]

J
  
 [ 

J
c

 ]

FIG. 10: (color online) Distribution of the sheet current den-
sity across the strip for the loading current pulse Ia = 0 →

0.5Ip → 0. Blue dot-dashed line: sheet current density for
Ia = 0 → 0.5Ip; red dashed line: sheet current density for
Ia = 0.5Ip → 0; black solid line: finale sheet current density.
The sheet current density is normalized by its critical value
Jc and the x-position is normalized by w.

The magnetic field components generated by the su-
percurrents induced with a transport current are shown
in Fig. 11 (blue lines). For comparison, we also plot
the magnetic field components generated by a setup of
four wires in Fig. 11 (red circles), where the current
in each wire is equal to the current flowing in the re-
gion −w < x < −0.935w of the superconducting strip.
Integrating the sheet current density of Eq. (5) over
−w < x < −0.935w gives I = 0.04jcdw. We place
the two outer wires at ±w and the two inner wires at
±0.737w. These positions yield good agreement as shown
in Fig. 11.

B. Magnetic trap with bias field

Trapping of atoms with the transport-current induced
supercurrents can be achieved by applying a bias field
Bx

bias along the x-direction. This bias field cancels the
non-zero field component Bx(0, z) above the center of the
strip, whereas the field component Bz(0, z) always van-
ishes at the center, as shown in Figs. 11(a)-(b). Changing
Bx

bias cancels Bx(0, z) at a different z, causing the trap to
form at a different height. We plot Bx(0, z) at different
heights z in Fig. 11(c). Due to the field repulsion caused
by the Meissner effect, this component is qualitatively
different from the potential of four normally-conducting
current-carrying wires. A typical example of the newly
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FIG. 11: (color online) Magnetic field components due to
trapped vortices (blue lines) and due to four current-carrying
wires (red circles). (a) Bx(x, z) vs x at fixed height z = w;
(b) Bz(x, z) vs x at fixed height z = w; (c) Bx(x, z) vs z

above the center of strip x = 0. The applied current pulse
is Ia = 0 → 0.5Ip → 0. The four normally-conducting wires
carry a current of ±0.04jcdw. The x- and z-positions are
normalized by w and the magnetic field is normalized by πBc.

designed trap, formed by Bx
bias = −0.006Bc at z = w is

shown in Fig. 12(a). Simulations with our superconduct-
ing sample strip yield a loading transport current pulse
Ia = Ip = 8.32 A and a bias field Bx

bias = −0.5 G gen-
erating a magnetic trap at z = 200 µm above the strip
center.

A double magnetic trap can be realized by apply-
ing a bias field Bx

bias. The z-component of the mag-
netic field generated by the induced supercurrents also
crosses zero around ±2.0w, as shown Fig. 11(b), while
Fig. 11(b) shows that the x-component Bx(±2.0w,w)
has opposite sign at those points. The application of
a bias field Bx

bias = −Bx(±2.0w,w) = 0.0016Bc gener-
ates a double minimum in the potential at (±2.0w,w)
as presented in Fig. 12(b). Simulations with our super-
conducting sample strip yield a loading transport current
pulse Ia = Ip = 8.32 A and a bias field Bx

bias = 0.13 G

trap

-1 -0.5 0 0.5 1
x [ w ]

0.5

1.0

1.5

2.0(a)

z
 [

 w
 ]

traps

-3 -1 0 1 3
x [ w ]

2-2

0.5

1.0

1.5

2.0(b)

z
 [

 w
 ]

FIG. 12: (color online) Equipotential lines of the total exter-
nal field. (a) A single trap above the strip center formed by
the vortex fields and a parallel field Bx

bias = −0.006Bc. (b)
Double traps above x = ±2w formed by the vortex fields,
together with a parallel field Bx

bias = 0.0016Bc .

generating a magnetic trap at a distance z = 200 µm and
lateral position x = ±400 µm.
As the sum of induced supercurrents across each half

of the strip width vanishes, the magnetic fields gener-
ated by opposing supercurrents cancel each other to much
greater extent when compared to supercurrents induced
by magnetic fields. The gradient fields required to form
the confining potentials arise only from the spatial dis-
tribution of the induced supercurrents. Therefore, the
confinement is much weaker now with respect to the trap-
ping potentials discussed in Sec. III. Efficient trapping
with transport-current induced vortex potentials can in
principle be achieved with sufficiently cold atoms. This
confinement can also be enhanced with superconductors
offering higher critical currents.

V. Effects of transport currents on magnetic trap

properties

A. Influence of hysteresis on the trap properties

using a transport current

Recent experiments on superconducting atom chips
have demonstrated magnetic traps created by a super-
conducting wire carrying a transport current and a ho-
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mogenous bias field [12, 21, 29]. In these experiments the
applied magnetic fields and transport currents are typ-
ically varied during the course of loading, transferring,
and trapping cold atoms. Due to the memory effect of
the superconductor in the mixed state, the influence of
the induced supercurrents on the total trapping poten-
tial has to be considered [20, 25] and has recently been
investigated experimentally [21].

-0.4

0.2

0

0.2

0.4

0.6

-1 -0.5 0 0.5 1

Ia [ Ip ]

z =1.6 w

B
b

ia
s

  
 [ 

B
c

 ]
x

FIG. 13: Bias field required to form a trap at fixed height 1.6w
applying various transport current histories. The transport
current increases from zero to the maximum value Ip, then
decreases to −Ip, before again returning to Ip.

Here we analyze the influence of the memory effect
of variable transport currents on the micro-trap, that is
generated by combining a transport current with a ho-
mogenous bias field parallel to its surface as in [12, 21].
Our studies show that the memory effect of the transport
currents has a significant effect on the total trapping po-
tential. In our simulation we cycle the transport current
Ia from zero to the maximum current Ip, then reverse it
to −Ip and increase it back to Ip. The induced supercur-
rent and the overall magnetic potential generated by the
wire changes with different applied current histories. To
visualize changes in the total trapping potential caused
by the hysteresis, we calculate the bias field required to
form a trap at a fixed height for different current histo-
ries. In Fig. 13, we plot the bias field for a fixed height
of z = 1.6w. For our sample strip, the maximum ap-
plied current is Ip = 8.32 A. Increasing the transport
current from zero to Ia = 0.2Ip = 1.66 A, a bias field
of Bx

bias = 0.106Bc = 8.84 G is required to form a field
minimum at a height of z = 1.6w = 320 µm. Increas-
ing the transport current to Ia = Ip = 8.32 A and then
decreasing it back to Ia = 0.2Ip = 1.66 A, a higher bias
field of Bx

bias = 0.13Bc = 10.94 G is required at the same
trap-to-surface distance. Further decreasing the trans-
port current to Ia = −Ip = −8.32 A and then increasing
it to Ia = 0.2Ip = 1.66 A again, a lower bias field of
Bx

bias = 0.089Bc = 7.38 G is needed. Note that when
the transport current is around zero, the superconduct-
ing strip is in the remanent state and the trapping field
is provided by the supercurrents in the strip as discussed
in Sec. IVB. However, for small transport currents the
confinement can be so weak that atoms escape from the

trap. The memory effect of the strip and its effect on the
total trapping potential height is clearly evident in the
simulations shown in Fig. 13.

B. Effect of transport current on trapped vortices

Transport currents can also trigger motion and dissipa-
tion of trapped vortices. These effects are more compli-
cated, as they also depend on the depinning of vortices,
which in turn depends on the pinning energy and defects.
In our model these effects are not considered and here we
simply present a few experimental measurements. We ex-
perimentally observe the influence of transport current
on remanent magnetization in the same magnetic trap
type as described in Sec. III B 1. First we trap ultra-cold
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FIG. 14: effect of supercurrents due to pulsed transport cur-
rent visualized by the position of the micro-trap resembling
the Z-wire geometry. The trap-to-surface distance is mea-
sured absolute with a reflection method from the chip surface
while the horizontal position is measured with an arbitrary
offset. Error bars reflect systematic and statistical uncer-
tainty.

atoms in this trap for 100 ms relying only on induced su-
percurrents. Then we apply a variable transport current
through the strip for a duration of 200 ms. Afterward the
transport current is switched off and the atoms are held
100 ms longer in the trap relying only on the remaining
induced supercurrents. This procedure ensures that the
trapping potential is no longer directly influenced by the
transport current. However, the changes of the induced
supercurrents due to the applied transport current re-
main and are reflected in the trapping potential for the
atoms.
We visualize these changes by a measurement of the

trap position, shown in Fig. 14. We apply a magnetic
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field pulse of +220 G before each realization of the
micro-trap, ensuring identical vortex density before each
measurement. We then apply a transport current vari-
able from 0.5 A to −0.5 A. As shown in Fig. 14(a), the
trap-to-surface distance is reduced for higher absolute
value of the applied current, independent of the current
direction. The reduced distance is caused by a decrease
in magnitude of the induced supercurrents. The cloud
is also displaced horizontally as shown in Fig. 14(b).
However, the horizontal shift is only detectable for
negative currents within our measurement uncertainty.
We infer that the transport current not only reduces
the remanent magnetization, but also produces spatial
redistribution in the film. This shows that the transport
current can trigger vortex annihilation as well as more
complex dynamics.

VI. Conclusion

In conclusion, we have investigated the distribution of
supercurrents and vortices in a superconducting strip for
the purpose of designing magnetic trapping potentials for
neutral atoms. The supercurrents can be induced by ap-
plying an external magnetic field perpendicularly to the
strip surface or by directly applying a transport current.

Various supercurrent distributions can be induced in the
strip by different vortex-loading procedures, all due to
the memory effect of the superconductor. This versatility
may be exploited to generate different spatial magnetic
field patterns, with the goal of tailoring magnetic trap-
ping potentials for atoms. The properties of the vortex
traps, such as trap position and the trapping geometry
are strongly dependent on the detailed distribution of
vortices. Cold atoms may be used in future work as a
probe of the detailed vortex distribution. A new kind
of self-sufficient atom trap has been designed with this
technique. One major advantage of the vortex trap is
that the absence of transport currents and external bias
fields may reduce or even eliminate the technical noise
due to unstable power sources. For this reason, these
self-sufficient traps are attractive candidates for integra-
tion with other devices for cold atom manipulation.
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