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a b s t r a c t

In this paper, we introduce a modified variational iteration method (MVIM) for solving
Riccati differential equations. The solutions of Riccati differential equations obtained using
the traditional variational iteration method (VIM) give good approximations only in the
neighborhood of the initial position. The main advantage of the present method is that it
can enlarge the convergence region of iterative approximate solutions. Hence, the solutions
obtained using the MVIM give good approximations for a larger interval, rather than a
local vicinity of the initial position. Numerical results show that the method is simple and
effective.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, a modified variational iteration method is presented for addressing the following Riccati differential
equation:{

u′(x) = p(x)+ q(x)u(x)+ r(x)u2(x), 0 ≤ x ≤ X,
u(0) = α, (1.1)

where p(x), q(x), r(x) are continuous, which plays a significant role in many fields of applied science [1]. For example,
as is well-known, a one-dimensional static Schrödinger equation is closely related to a Riccati differential equation. A
solitary wave solution of a nonlinear partial differential equation can be expressed as a polynomial in two elementary
functions satisfying a projective Riccati equation [2]. Such problems also arise in the optimal control literature. Therefore,
the problem has attracted much attention and has been studied by many authors. However, an analytical solution in an
explicit form seems unlikely to be found except for certain special situations. For example, some Riccati equations with
constant coefficients can be solved analytically by various methods [3]. Therefore, one has to resort to numerical techniques
or approximate approaches to get its solution. Recently, Adomian’s decomposition method has been proposed for solving
Riccati differential equations in [4]. Abbasbandy [5–7] solved a special Riccati differential equation—the quadratic Riccati
differential equation—using He’s VIM, the homotopy perturbation method (HPM) and the iterated He’s HPM, and compared
the accuracy of the solution obtained with that derived by Adomian’s decomposition method. Geng [8] introduced the
piecewise VIM for solving Riccati differential equations.
The variational iteration method, which was proposed originally by He [9–14], has been proved by many authors to be

a powerful mathematical tool for addressing various kinds of linear and nonlinear problems [15–25]. The reliability of the
method and the reduction in the burden of computational work gave this method wider application.
In this paper, we present a MVIM for solving (1.1) and obtain an accurate numerical solution. The advantage of theMVIM

over the existingmethods for solving this problem is that the solution of (1.1) obtained using the present method is efficient
not only for a smaller value of x but also for a larger value.
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The rest of the paper is organized as follows. In the next section, the VIM is introduced. The MVIM for solving (1.1) is
presented in Section 3. Numerical examples are presented in Section 4. Section 5 ends this paper with a brief conclusion.

2. Analysis of the variational iteration method

Consider the differential equation

Lu+ Nu = g(x), (2.1)

where L and N are linear and nonlinear operators, respectively, and g(x) is the source inhomogeneous term. In [9–14], the
VIM was introduced by He, where a correct functional for (2.1) can be written as

un+1(x) = un(x)+
∫ x

0
λ{Lun(t)+ N

∼
un(t)− g(t)}dt, (2.2)

whereλ is a general Lagrangianmultiplier [10], which can be identified optimally via variational theory, and
∼
un is a restricted

variation which means that δ
∼
un = 0. By this method, it is firstly required to determine the Lagrangian multiplier λ that will

be identified optimally. The successive approximations un+1(x), n ≥ 0, of the solution u(x) will be readily obtained upon
using the Lagrangian multiplier determined and any selective function u0(x). Consequently, the solution is given by

u(x) = lim
n→∞

un(x).

In fact, the solution of problem (2.1) is considered as a fixed point of the following functional under a suitable choice of
the initial term u0(x):

un+1(x) = un(x)+
∫ x

0
λ{Lun(t)+ Nun(t)− g(t)}dt. (2.3)

As a well-known powerful tool, we have:

Theorem 2.1 (Banach’s Fixed Point Theorem). Assume that X is a Banach space and

A : X → X

is a nonlinear mapping, and suppose that

‖A[u] − A[v]‖ ≤ α‖u− v‖, u, v ∈ X

for some constants α < 1. Then A has a unique fixed point. Furthermore, the sequence

un+1 = A[un],

with an arbitrary choice of u0 ∈ X, converges to the fixed point of A.

According to Theorem 2.1, for the nonlinear mapping

A[u(x)] = u(x)+
∫ x

0
λ{Lu(t)+ Nu(t)− g(t)}dt,

a sufficient condition for convergence of the variational iterationmethod is strict contraction ofA. Furthermore, the sequence
(2.3) converges to the fixed point of Awhich is also the solution of problem (2.1).

3. The modified variational iteration method for solving (1.1)

The main drawback of the standard VIM is that the sequence of successive approximations of the solution obtained can
be rapidly convergent only in a small region, which will greatly restrict the application area of such a method.
To enlarge the convergence region of the sequence of successive approximations obtained, we shall modify the VIM by

introducing an auxiliary parameter.
For (2.1), we rewrite it as

Lu− Lu+ γ [Lu+ Nu− g(x)] = 0, (3.1)

where γ is an auxiliary parameter and γ 6= 0, which is used to adjust the convergence region of the following iterative
formula.
A correct functional for (2.1) can be written as

un+1(x) = un(x)+
∫ x

0
λ{Lun(t)− L

∼
un(t)+ γ [L

∼
un(t)+ N

∼
un(t)− g(t)]}dt, (3.2)
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where λ is a general Lagrangian multiplier, which can be identified optimally via variational theory, and
∼
un is a restricted

variation which means that δ
∼
un = 0.

According to the VIM, the following iteration formula can be obtained:

un+1(x) = un(x)+ γ
∫ x

0
λ(t, x)[Lun(t)+ Nun(t)− g(t)]dt, n = 0, 1, 2, . . . . (3.3)

From the convergence analysis in Section 2, it is easy to see that the smaller the value of |γ | is, the wider the convergence
region of iterative sequence (3.3) is.
In fact, iterative formula (3.3) gives us vast freedom of choice. For some strong nonlinear problems, one can choose a

relatively small value of |γ | (generally less than 1) to obtain a good approximation in a wider region.
In addition, it should be especially pointed out that when γ = 1, (3.3) becomes the standard variational iteration formula

(2.3).
For Eq. (1.1), according to the above MVIM, we construct the correct functional as follows:

un+1(x) = un(x)+
∫ x

0
λ(t){u′n(t)−

∼
u
′

n(t)+ γ [
∼
u
′

n(t)− q(t)
∼
un(t)− r(t)

∼
u
2

n(t)− p(t)]}dt, 0 ≤ x ≤ X, (3.4)

where
∼
un is a restricted variation, i.e. δ

∼
un = 0; λ is a general Lagrangian multiplier and can be easily identified as λ = −1.

So we can obtain the following iteration formula:

un+1(x) = un(x)− γ
∫ x

0
[u′n(t)− q(t)un(t)− r(t)u

2
n(t)− p(t)]dt, 0 ≤ x ≤ X, n = 0, 1, 2, . . . (3.5)

where u0(x) is an initial approximation satisfying the initial condition of Eq. (1.1).

Theorem 3.1. Suppose that u0(x) = α and the iterative sequence {un(x)} obtained from (3.5) converge to u(x); then u(x) is the
solution of Eq. (1.1).

Proof. Taking limits in the iterative formula in (3.5), it follows that

lim
n→∞

un+1(x) = lim
n→∞

un(x)− γ
∫ x

0
lim
n→∞
[u′n(t)− q(t)un(t)− r(t)u

2
n(t)− p(t)]dt, (3.6)

and thus,

γ

∫ x

0
[u′(t)− q(t)u(t)− r(t)u2(t)− p(t)]dt = 0. (3.7)

Since γ 6= 0, it follows immediately that∫ x

0
[u′(t)− q(t)u(t)− r(t)u2(t)− p(t)]dt = 0. (3.8)

Then differentiation of both sides with respect to x yields

u′(x) = p(x)+ q(x)u(x)+ r(x)u2(x). (3.9)

Obviously, u(x) satisfies Eq. (1.1). Also, u(0) = α, since un(0) = α.
Hence, u(x) is the solution of Eq. (1.1) and the proof is complete. �

According to Banach’s fixed point theorem, it is easy to obtain the convergence condition for the sequence un obtained
from (3.5).

Theorem 3.2. Define a nonlinear mapping

T [u(x)] = u(x)− γ
∫ x

0
[u′(t)− q(t)u(t)− r(t)u2(t)− p(t)]dt.

A sufficient condition for convergence of the iterative sequence {un(x)} obtained from (3.5) is strict contraction of the nonlinear
mapping T . Furthermore, the sequence (3.5) converges to the fixed point of T which is also the solution of Eq. (1.1).

Therefore, according to (3.5), by choosing a proper γ and initial approximation u0(x), the successive approximations of
the solution to (1.1) on the entire interval [0, X] can be obtained.

4. Numerical examples

Now we apply the MVIM presented in Section 3 to some Riccati differential equations. Numerical results show that the
MVIM is very effective.
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Table 1
Numerical results for Example 4.1.

x Exact solution u(x) Present method (u9(x)) VIM (u2(x)) VIM (u9(x))

0.4 0.567812 0.513543 0.538667 0.567812
1.2 1.95136 1.90195 2.064 1.95136
2.0 2.35777 2.41229 3.33333 −1.34× 1013

2.8 2.40823 2.30603 3.32267 −1.10× 1059

3.6 2.41359 2.40026 1.008 −3.10× 10100

4.0 2.41401 2.50735 −1.33333 −4.90× 10119

Table 2
Numerical results for Example 4.2.

x Exact solution u(x) Present method (u10(x)) Method in [8] VIM (u2(x)) VIM (u10(x))

0.4 1.01765 1.0153 1.07252 1.01704 1.01765
0.8 1.11809 1.10893 1.14806 1.09907 1.11809
1.2 1.33114 1.32233 1.38805 1.17352 1.33113
2.0 2.00973 2.04175 2.10337 −1.03075 3.45× 109

2.8 2.80021 2.76833 2.90001 −23.3443 −1.88× 10164
3.6 3.60000 3.56075 3.7 −135.829 0
4.0 4.00000 4.09113 4.1 −280.397 0

Example 4.1. Consider the following Riccati differential equation [4–8]:{
u′(x) = 1+ 2u(x)− u2(x), 0 ≤ x ≤ 4,
u(0) = 0. (4.1)

The exact solution can be easily determined to be

u(x) = 1+
√
2 tanh

√2x+ log
(
−1+
√
2

1+
√
2

)
2

 .
According to (3.5), taking γ = 0.3, n = 9, the numerical results are shown in Table 1. From Table 1, we find that the solution
derived by the VIM [6] gives a good approximation only in the neighborhood of the initial position, while the presentmethod
gives a good approximation in a wider region.

Remark. The solutions of Example 4.1 derived using the ADM [4], HPM [5] and VIM [6] give good approximations only in
the neighborhood of the initial position. The approximations derived by the present MVIM, iterated HPM [7] and piecewise
VIM [8] are all efficient for the whole interval. However, the present method is more accurate than iterated HPM [7].

Example 4.2. Consider the following Riccati differential equation [8]:{
u′(x) = 1+ x2 − u2(x), 0 ≤ x ≤ 4,
u(0) = 1, (4.2)

with the exact solution

u(x) = x+
e−x

2

1+
∫ x
0 e
−t2dt

.

According to (3.5), taking γ = 0.15, n = 10, we can obtain the approximations of (4.2) on [0, 4]. The numerical results are
shown in Table 2. For analyzing the influence of the value of parameter γ , taking n = 5, the comparison of relative errors
for different values of the parameter γ is shown in Table 3. From Table 3, it is easy to see that the smaller the value of |γ | is,
the wider the convergence region of the iterative sequence (3.5) is. Also, when the value of |γ | is low, the convergence rate
of the iterative formula is relatively slow, and so more iterative steps are required.

5. Conclusion

In this paper, aMVIM is presented for solving Riccati differential equations. Comparingwith the standard VIM results, the
results for numerical examples demonstrate that the present method can give a more accurate approximation in a larger
region. This is also the main advantage of the present method. Therefore, the modification of the VIM can overcome the
restriction of the application area of the VIM, and then expand its scope of application. However, generally, when the value
of |γ | chosen is small, the rate of convergence of the iterative formula is relatively slow, and so more iterative steps are
required. This is the drawback of this modification.
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Table 3
Comparison of relative errors for different value of γ for Example 4.2.

x u(x) Relative errors (γ = 0.15) Relative errors (γ = 0.3) Relative errors (γ = 0.5) Relative errors (γ = 1.0)

0.4 1.01765 0.006357 0.001782 0.000137 9.7× 10−7
0.8 1.11809 0.030422 0.005078 0.000275 0.000252
1.2 1.33114 0.049773 0.000408 0.000724 0.007552
2.0 2.00973 0.002050 0.012415 0.000246 0.588025
2.8 2.80021 0.072808 0.036023 0.011100 3388.290
3.6 3.60000 0.015616 0.055719 0.365917 8.2× 1010

4.0 4.00000 0.098313 0.140001 496.7350 5.5× 1013

Acknowledgements

The authors would like to express thanks to the unknown referees for their careful reading and helpful comments.

References

[1] W.T. Reid, Riccati Differential Equations, Academic Press, New York, 1972.
[2] J.F. Carinena, G.Marmo, A.M. Perelomov,M.F. Ranada, Related operators and exact solutions of Schrodinger equations, International Journal ofModern
Physics A 13 (1998) 4913–4929.

[3] M.R. Scott, Invariant Imbedding and its Applications to Ordinary Differential Equations, Addison-Wesley, 1973.
[4] M.A. El-Tawil, A.A. Bahnasawi, A. Abdel-Naby, Solving Riccati differential equation using Adomian’s decompositionmethod, AppliedMathematics and
Computation 157 (2004) 503–514.

[5] S. Abbasbandy, Homotopy perturbation method for quadratic Riccati differential equation and comparison with Adomian’s decomposition method,
Applied Mathematics and Computation 172 (2006) 485–490.

[6] S. Abbasbandy, A new application of He’s variational iteration method for quadratic Riccati differential equation by using Adomian’s polynomials,
Journal of Computational and Applied Mathematics 207 (2007) 59–63.

[7] S. Abbasbandy, Iterated He’s homotopy perturbation method for quadratic Riccati differential equation, Applied Mathematics and Computation 175
(2006) 581–589.

[8] F.Z. Geng, Y.Z. Lin, M.G. Cui, A piecewise variational iterationmethod for Riccati differential equations, Computers andMathematics with Applications
58 (2009) 2518–2522.

[9] J.H. He, Variational iteration method—a kind of non-linear analytical technique: some examples, International Journal of Non-Linear Mechanics 34
(1999) 699–708.

[10] J.H. He, Variational iteration method for autonomous ordinary differential system, Applied Mathematics and Computation 114 (2000) 115–123.
[11] J.H. He, Some asymptotic methods for strongly nonlinear equations, International Journal of Modern Physics B 20 (2006) 1141–1199.
[12] J.H. He, X.H.Wu, Variational iterationmethod: newdevelopment and applications, Computers andMathematicswith Applications 54 (2007) 881–894.
[13] J.H. He, Variational iteration method—some recent results and new interpretations, Journal of Computational and Applied Mathematics 207 (2007)

3–17.
[14] J.H. He, G.C. Wu, F. Austin, The variational iteration method which should be followed, Nonlinear Science Letters A 1 (1) (2010) 1–30.
[15] J.F. Lu, Variational iteration method for solving two-point boundary value problems, Journal of Computational and Applied Mathematics 207 (2007)

92–95.
[16] A.A. Soliman, M.A. Abdou, Numerical solutions of nonlinear evolution equations using variational iteration method, Journal of Computational and

Applied Mathematics 207 (2007) 111–120.
[17] M.A. Abdou, A.A. Soliman, Variational iteration method for solving Burgers and coupled Burgers equations, Journal of Computational and Applied

Mathematics 181 (2005) 245–251.
[18] D.D. Ganji, A. Sadighi, Application of He’s homotopy-perturbationmethod to nonlinear coupled systems of reaction–diffusion equations, International

Journal of Nonlinear Sciences and Numerical Simulation 7 (4) (2006) 411–418.
[19] Z.M. Odibat, S. Momani, Application of variational iteration method to nonlinear differential equations of fractional order, International Journal of

Nonlinear Sciences and Numerical Simulation 7 (2006) 27–34.
[20] D.H. Shou, J.H. He, Application of parameter-expanding method to strongly nonlinear oscillators, International Journal of Nonlinear Sciences and

Numerical Simulation 8 (1) (2007) 121–124.
[21] N. Bildik, A. Konuralp, The use of variational iterationmethod, differential transformmethod andAdomian decompositionmethod for solving different

types of nonlinear partial differential equations, International Journal of Nonlinear Sciences and Numerical Simulation 7 (1) (2006) 65–70.
[22] M. Tatari, M. Dehghan, On the convergence of He’s variational iteration method, Journal of Computational and Applied Mathematics 207 (2007)

121–128.
[23] J. Biazar, H. Ghazvini, He’s variational iteration method for solving hyperbolic differential equations, International Journal of Nonlinear Sciences and

Numerical Simulation 8 (3) (2007) 311–314.
[24] H. Ozer, Application of the variational iteration method to the boundary value problems with jump discontinuities arising in solid mechanics,

International Journal of Nonlinear Sciences and Numerical Simulation 8 (4) (2007) 513–518.
[25] E. Yusufoglu, Variational iteration method for construction of some compact and noncompact structures of Klein–Gordon equations, International

Journal of Nonlinear Sciences and Numerical Simulation 8 (2) (2007) 153–158.


	A modified variational iteration method for solving Riccati differential equations
	Introduction
	Analysis of the variational iteration method
	The modified variational iteration method for solving (1.1)
	Numerical examples
	Conclusion
	Acknowledgements
	References


