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Density Profile of a Hard Disk Liquid System under Gravity *
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The free energy and the density profile of a hard disk liquid system under gravity are calculated by using the

dimensional crossover of Rosenfeld hard sphere (3𝐷) functional as well as the functional constructed from the

scaled-particle theory which is considered to be very accurate. The two methods give the consistent results for a

wide range of packing fractions.
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The density profile of colloid suspensions under
gravity is a subject of scientific interest and practi-
cal importance. First, there are interesting phenom-
ena of layering, phase transitions, or phase separations
related with gravity. Secondly, the study of estuarine
sedimentation is very important for environmental im-
provement. In addition, the equilibrium density dis-
tribution of colloid particles under gravity is a com-
petitive result of three main factors, i.e. the direct
potential interaction, the entropy, and the gravitation
field. Thus it is interesting to see how these compet-
ing factors together influence the sedimentation equi-
librium of the suspension in confined geometry under
gravity.

In recent decades, several groups have made calcu-
lations on various aspects of the hard sphere liquid un-
der gravity. For instance, Vrij[1] studied the inhomo-
geneous density distributions of hard sphere fluids un-
der gravity by using density functional theory (DFT)
and the Monte Carlo simulation method. The density
profile was also studied by Chen and Ma.[2] Biben et
al.[3] observed the sudden crystallization on the bot-
tom layer of the simulation box when the gravitational
field was strong enough. Jamnik[4] calculated the den-
sity distribution of adhesive hard sphere colloids in a
planar pore under gravity by means of the Ornstein–
Zernike integral equation. Moreover, local density ap-
proximation of DFT has been tested in the description
of dense colloid suspensions under gravity.[5]

In the theory of inhomogeneous fluids, density
functional theory[6,7] is the approach which has been
extensively developed and used. DFT has been widely
used in recent years for its ability to treat many-
electron quantum systems[8,9] as well as many-particle
classical systems[7,10] in the same basic framework,
but also due to its tremendous computational sim-
plicity and versatility. In this Letter we calculate the
density profile for hard disc colloids under gravity by
using Rosenfeld DFT after dimensional crossover and

functional obtained from the scaled-particle theory.
For an inhomogeneous fluid in an external poten-

tial 𝑉ext(𝑟), the grand potential Ω[𝜌] and the intrinsic
Helmholtz free energy 𝐹 [𝜌] are both unique function-
als of the density distribution 𝜌(𝑟), and are related
as[11]

Ω[𝜌] = 𝐹 [𝜌] +

∫︁
𝑑𝑟𝜌(𝑟)(𝑉ext(𝑟) − 𝜇), (1)

where 𝜇 is the chemical potential of the system. The
intrinsic Helmholtz free energy 𝐹 [𝜌] consists of a non-
interacting ideal free energy 𝐹𝑖𝑑 and the excess free
energy 𝐹𝑒𝑥 arising due to interparticle interactions

𝐹 [𝜌] = 𝐹𝑖𝑑[𝜌] + 𝐹𝑒𝑥[𝜌], (2)

where 𝐹𝑖𝑑[𝜌] is the contribution of ideal gas which can
be evaluated exactly by[12]

𝐹𝑖𝑑[𝜌] = 𝑘𝐵𝑇

∫︁
𝑑𝑟𝜌(𝑟)[ln(𝜆3

0𝜌(𝑟)) − 1], (3)

where 𝜆0 = ℎ̄
√︁

2𝜋
𝑚𝑘𝐵𝑇 is the thermal de Broglie wave-

length, with 𝑘𝐵 as the Boltzmann constant and 𝑇 the
temperature. Rosenfeld proposed that in an inhomo-
geneous hard sphere fluid system the excess part 𝐹𝑒𝑥

which comes from the interaction is given by[13]

𝐹𝑒𝑥[𝜌] = 𝑘𝐵𝑇

∫︁
𝑑𝑟Φ[𝑛𝛼(𝑟)]. (4)

We consider the excess free energy density

Φ[𝑛𝛼(𝑟)] = Φ1 + Φ2 + Φ3, Φ1 = −𝑛0 ln(1 − 𝑛3),

Φ2 =
𝑛1𝑛2 − 𝑛1 · 𝑛2

1 − 𝑛3
, Φ3 =

1
3𝑛

3
2 − 𝑛2(𝑛2 · 𝑛2)

8𝜋(1 − 𝑛3)2
.

(5)

and

𝑛𝛼(𝑟) =

∫︁
𝑑𝑟′𝜌(𝑟′)𝜔(𝛼)(𝑟 − 𝑟′), 𝛼 = 0, 1, 2, 3

𝑛𝛼(𝑟) =

∫︁
𝑑𝑟′𝜌(𝑟′)𝜔(𝛼)(𝑟 − 𝑟′), 𝛼 = 1, 2. (6)
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The weight functions 𝜔(𝛼)(𝑟) are characteristic func-
tions for the geometry of particle.

𝜔(3)(𝑟) = Θ(|𝑟| −𝑅), 𝜔(2)(𝑟) = 𝛿(|𝑟| −𝑅),

𝜔(1)(𝑟) =
𝜔(2)(𝑟)

4𝜋𝑅
, 𝜔(0)(𝑟) =

𝜔(2)(𝑟)

4𝜋𝑅2
,

𝜔(2)(𝑟) =
𝑟

|𝑟|
𝛿(|𝑟| −𝑅), 𝜔(1)(𝑟) =

𝜔(2)(𝑟)

4𝜋𝑅
. (7)

Then the exact functional relation can be applied and
the theory can be used both in a variation procedure
or through the exact minimum principle for the equi-
librium density,[12] given by the Euler-Lagrange equa-
tion

𝛿𝐹 [𝜌]

𝛿𝜌(𝑟)
+ 𝑉ext(𝑟) = 𝜇. (8)

The model system we shall investigate here is colloid
suspensions of hard disk particles confined between
two parallel hard walls with a distance 𝐿 apart with
the external field perpendicular to the walls, where the
wall at 𝑧 = 0 is regarded as the bottom of the slit. A
schematic representation is given in Fig. 1. Since the
disk-like particles follow a relatively common molec-
ular model, such as benzene-hexa-n-alkanoates,[14]

CeF3
[15] and the soluble hexabenzocoronene[16] and

so on, therefore the study of them is of practical im-
portance. In addition, the freezing of two-dimensional
hard disks[17] and the density distribution of a fluid
through a microporous solid[18] were also discussed.
Meanwhile, the radial distribution functions of hard
disk mixtures as well as the density distributions near
the large hard disk and within the hard circular cav-
ity had been studied.[6] However, to our knowledge,
as many theoretical studies have been devoted to the
understanding of the behavior of elongated hard col-
loid particles confined in a geometry, suspensions of
disc-shaped hard particles confined in a geometry un-
der gravity have not yet been investigated. In the case
of extreme confinement, the hard disks are adsorbed
on the two-dimensional plane of 𝑦 − 𝑧, thus the di-
mensionality can be reduced to two (𝐷 = 2). Next,
we apply the dimension crossover technique, following
Ref. [19], we have

Φ[{𝑛𝛼};𝜆] = Φ1 + Φ2 + 𝜆Φ3, (9)

where 𝜆 is the variational parameter. The density

𝜌(𝑟) = 𝜌(𝑧), (10)

the excess free energy density functional takes the
form

𝐹𝑒𝑥[𝜌(𝑟);𝜆]

𝐴
= 𝑘𝐵𝑇

∫︁
𝑑𝑧Φ[𝑛𝛼(𝑧);𝜆], (11)

where the weighted densities 𝑛𝛼(𝑟) = 𝑛𝛼(𝑧) are given

by[20−22]

𝑛3(𝑧) = 𝜋

∫︁ 𝑧+𝑅

𝑧−𝑅

𝜌(𝑧′)[𝑅2 − (𝑧′ − 𝑧)2]𝑑𝑧′,

𝑛2(𝑧) = 2𝜋𝑅

∫︁ 𝑧+𝑅

𝑧−𝑅

𝜌(𝑧′)𝑑𝑧′,

𝑛2(𝑧) = −2𝜋

∫︁ 𝑧+𝑅

𝑧−𝑅

𝜌(𝑧′)(𝑧′ − 𝑧)𝑑𝑧′𝑧

𝑛0(𝑧) =
𝑛2(𝑧)

4𝜋𝑅2
, 𝑛1(𝑧) =

𝑛2(𝑧)

4𝜋𝑅
,

𝑛1(𝑧) =
𝑛2(𝑧)

4𝜋𝑅
. (12)
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Fig. 1. A schematic diagram of the model system. The
normal of thin platelets of radius 𝑅 is perpendicular to the
plane of 𝑦 − 𝑧.

In the 2𝐷 limit,

𝜌(𝑧) = 𝜌(2𝐷)𝛿(𝑧), (13)

where 𝜌(2𝐷) = 𝑁/𝐴 is the number of spheres divided
by the area of the slab, i.e. the 2𝐷 density, these
weighted densities take the form

𝑛3(𝑧) = 𝜋𝜌(2𝐷)(𝑅2 − 𝑧2)Θ(|𝑧| −𝑅),

𝑛2(𝑧) = 2𝜋𝜌(2𝐷)𝑅Θ(|𝑧| −𝑅),

𝑛2(𝑧) = 2𝜋𝜌(2𝐷)𝑧Θ(|𝑧| −𝑅)𝑧. (14)

The 2𝐷 packing fraction is defined by 𝜂 = 𝜌(2𝐷)𝜋𝑅2.
Measuring length in units 𝑅, and letting 𝑅 = 1, then
the weighted densities are given by

𝑛3(𝑧) = 𝜂(1 − 𝑧2)Θ(|𝑧| − 1),

𝑛2(𝑧) = 2𝜂Θ(|𝑧| − 1), 𝑛1(𝑧) =
𝜂

2𝜋
Θ(|𝑧| − 1),

𝑛0(𝑧) =
𝜂

2𝜋
Θ(|𝑧| − 1), 𝑛2(𝑧) = 2𝜂𝑧Θ(|𝑧| − 1)𝑧,

𝑛1(𝑧) =
𝜂

2𝜋
𝑧Θ(1 − |𝑧|)𝑧. (15)

The excess free energy per particle can be obtained
analytically:

𝑓 (2𝐷)
𝑒𝑥 (𝜆, 𝜂) =

𝐹𝑒𝑥[𝜌(𝑟)]

𝑁𝑘𝐵𝑇
=

∫︁ 1

−1

𝑑𝑧Φ(𝑧)/𝜌(2𝐷)

=𝜆𝜂 +
𝜆𝜂2

3(1 − 𝜂)
+

(︂
2 − 𝜆 +

𝜆𝜂

3(1 − 𝜂)

)︂
×

√︂
𝜂

1 − 𝜂
arctan

(︂√︂
𝜂

1 − 𝜂

)︂
, (16)
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and this result is compared with that of the scaled-
particle theory (SPT) functional

𝑓 (2𝐷)
𝑒𝑥 (𝜂) = 𝜂/(1 − 𝜂) − ln(1 − 𝜂), (17)

which is constructed from the equation of state:[23]

𝑃 = 𝑘𝐵𝑇𝜌/(1 − 𝜂)2. (18)
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Fig. 2. Excess free energy per particle for hard discs ob-
tained from Eqs. (16) and (17), as a function of the pack-
ing fraction 𝜂. The lines from top to bottom correspond
to 𝜆 = 1.0, 0.6, 0.4, 0.2,0 in Eq. (16). The solid line cor-
responds to the result of scaled particle theory (Eq. (17)),
which is highly accurate.
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Fig. 3. The density distributions of hard disk liquid un-
der gravity with the gravity length 𝐿𝐺 = 𝑘𝐵𝑇

𝑚𝑔
= 𝜎 and

the system size is 𝐿 = 8𝜎. From (a) to (c) the packing
fractions are 𝜂 = 0.01, 0.05, 0.15, respectively.

In Fig. 2, we present the comparative diagrams of
excess free energy for several values of 𝜆, from which it
is readily seen that the two results are in good agree-
ment when 𝜆 = 0.6. We next apply the functionals
to the situation that the system is under gravity and

calculate the density distributions of hard disk liquid
by means of Rosenfeld functional. The results then
are compared with that from the accurate 2𝐷 SPT
density functional.

For a 2𝐷 liquid system under gravity, the grand
potential is given by

𝐿𝛽Ωdisk[𝜌]

𝐴′ =

∫︁ 𝐿−𝑅

𝑅

𝑑𝑧𝜌(𝑧)[ln 𝜌(𝑧) − 1]

+

∫︁ 𝐿−𝑅

𝑅

𝑑𝑧𝜌(𝑧)(𝛽𝑚𝑔𝑧 − 𝜇eff)

+

∫︁ 𝐿−𝑅

𝑅

𝑑𝑧𝜌(𝑧)

[︂
𝜆𝜂 +

𝜆𝜂2

3(1 − 𝜂)

+

(︂
2 − 𝜆 +

𝜆𝜂

3(1 − 𝜂)

)︂
×

√︂
𝜂

1 − 𝜂
arctan

(︂√︂
𝜂

1 − 𝜂

)︂]︂
, (19)

where 𝛽 = 1
𝑘𝐵𝑇 , and 𝜇eff = 𝛽𝜇 − ln𝜆2

0 is an effective
chemical potential. In real systems, we usually specify
the average density 𝜌0 instead of the chemical poten-
tial, hence 𝜇eff can be determined by the relation∫︁ 𝐿−𝑅

𝑅

𝑑𝑧𝜌(𝑧) = 𝐿𝜌0. (20)

Consequently, the variation of grand potential with
respect to 𝜌 can also be obtained by taking 𝜆 = 0.6:

𝐿𝛽

𝐴′
𝛿Ωdisk[𝜌]

𝛿𝜌
= ln 𝜌(𝑧) + 𝛽𝑚𝑔𝑧 − 𝜇eff + 1.2𝜋𝜌(𝑧)

+
0.2𝜋2𝜌(𝑧)2 + 0.7𝜋𝜌(𝑧)

1 − 𝜋𝜌(𝑧)
+

0.5𝜋2𝜌(𝑧)2 − 0.2𝜋3𝜌(𝑧)3

[1 − 𝜋𝜌(𝑧)]2

+

{︃[︂
1.4 +

0.2𝜋𝜌(𝑧)

1 − 𝜋𝜌(𝑧)
+

0.2𝜋𝜌(𝑧)

[1 − 𝜋𝜌(𝑧)]2

]︂√︃
𝜋𝜌(𝑧)

1 − 𝜋𝜌(𝑧)

+

[︂
0.7𝜋𝜌(𝑧)

[1 − 𝜋𝜌(𝑧)]2
+

0.1𝜋2𝜌(𝑧)2

[1 − 𝜋𝜌(𝑧)]3

]︂√︃
1 − 𝜋𝜌(𝑧)

𝜋𝜌(𝑧)

}︃

× arctan

√︃
𝜋𝜌(𝑧)

1 − 𝜋𝜌(𝑧)
. (21)

The equilibrium density profile is obtained by the fact
that the functional derivative 𝛿Ω/𝛿𝜌 = 0. Thus ac-
cording to Eq. (21) we can obtain the numerical solu-
tion of the density profile. We represent the density
distributions of hard disc liquid for different values
of packing fraction 𝜂 in Figs. 3 and 4. From the fig-
ures, we observe that explicitly, when the particles are
very close to the bottom wall the density reaches its
maximum, and it decreases gradually as the particles
become further and further from the bottom wall be-
cause of the influence of gravitational field, which is
expected. In addition, it is noted that the whole den-
sity distribution extends much further than the grav-
itation length. This clearly indicates that the inter-
particle interaction plays a role opposite to the grav-
ity and tends to homogenize the density distribution.
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Therefore we have to take account of the potential
interaction when studying the real suspensions.
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Fig. 4. The density profile of hard disk liquid system un-
der gravity with the same gravity length as Fig. 3. The
packing fraction 𝜂 = 0.35 and 𝐿 = 8𝜎.

Furthermore, for a given system size and gravity
length the density decreases to zero quickly when the
packing fraction 𝜂 is relatively low. However, as 𝜂 in-
creases the rate of the density tending to zero becomes
smaller as is shown in Figs. 3 and 4. From Fig. 4, we
can explicitly see that the density near the upper slit
wall is much larger than zero when the width of slit
maintains at 𝐿 = 8𝜎.

In summary, the density profiles of hard disk liquid
under gravity have been calculated by using the di-
mensional crossover of Rosenfeld functional and then
compared with those functional obtained from the
SPT. It is found that the two results are in good agree-
ment. Our results are to be compared with computer
simulation data and experiment in the future.
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