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Abstract. Let f : C → C be a holomorphic function such that f (z) �= 0 for any z ∈ C. We
show that if g = | f (z)|2dz ⊗ dz̄ is a complete Riemannian metric, then f must be a constant.
As a corollary we give a new proof of the classical Liouville theorem.

1. INTRODUCTION. An entire function is a holomorphic function defined on C.
The classical Liouville theorem says that a bounded entire function must be a constant
[3]. It was improved by the little Picard theorem [1] which says that an entire function
f must be a constant if f omits two values. If f just omits one value, then f is not
necessarily a constant as f = ez is an entire function with one value omitted. In this
paper we show that under a certain geometric condition, an entire function with one
value omitted is still a constant. More precisely, we are going to prove the following
theorem.

Theorem 1. Let f : C → C be a holomorphic function such that f (z) �= 0 for any
z ∈ C. If g = | f (z)|2dz ⊗ dz̄ is a complete Riemannian metric, then f must be a
constant.

A Riemannian metric is called complete if every bounded closed subset is relatively
compact. The classical Hopf–Rinow theorem gives a different characterization of a
complete Riemannian metric [2].

As a corollary of Theorem 1, we get the following classical Liouville theorem.

Theorem 2. If f : C → C is a bounded holomorphic function, then f must be a
constant.

Proof. Suppose that | f (z)| ≤ A for some constant A and any z ∈ C. Let γ be any
smooth curve joining 0 and z. Then the length of γ with respect to g = |e f |2dz ⊗ dz̄
is computed by

L(γ ) =
∫

γ

|e f ||γ ′(t)| =
∫

γ

eRef |γ ′(t)| ≥ e−A

∫
γ

|γ ′(t)|.

Let dg, d0 be the distance functions with respect to g, g0, respectively, where
g0 = dz ⊗ dz̄. Then we have

dg(0, z) ≥ e−Ad0(0, z).

Let K be any closed and bounded subset with respect to g. Then K is also bounded
with respect to g0. Since g0 is a complete Riemannian metric, K must be relatively
compact by Hopf–Rinow theorem. By the Hopf–Rinow theorem again, g = |e f |2dz ⊗
dz̄ is a complete Riemannian metric. Then Theorem 1 implies that e f must be a
constant. Hence f must be a constant.
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2. PROOF OF THEOREM 1. The proof is based on the following lemma.

Lemma 1. Let F : (M, g) → (N , h) be a local diffeomorphism between Rieman-
nian manifolds such that F∗h = g. If g is a complete Riemannain metric, then F is a
covering map.

Proof. See p. 144 in [2].

Remark. In Lemma 1 we do not have to assume that F is onto in prior. In fact, by the
assumption of Lemma 1, we can derive that F is onto.

Since f is an entire function, there is an entire function F such that f (z) = ∂ F
∂z . As

f (z) �= 0 for any z ∈ C, F is a local biholomorphism between C by implicit function
theorem. Let g0 = dz ⊗ dz̄ be the standard Riemannian metric on C. Then we have
the following lemma.

Lemma 2. F∗g0 = | f (z)|2dz ⊗ dz̄.

Proof. F∗g0 = F∗(dz ⊗ dz̄) = F∗dz ⊗ F∗dz̄
= ∂ F

∂z dz ⊗ ∂ F̄
∂ z̄ d z̄ = | f (z)|2dz ⊗ dz̄.

By assumption, | f (z)|2dz ⊗ dz̄ is a complete Riemannian metric. It follows that
F∗g0 is complete by Lemma 2. Combined with the fact that F is a local biholomor-
phism, F must be a covering map by Lemma 1. As C is simply connected, F must
be a global biholomorphism. Since Aut (C) = {az + b, a, b ∈ C} by Lemma 3 below,
then F = a0z + b0 for some constants a0, b0. Hence f (z) = ∂ F

∂z = a0.

Lemma 3. Aut (C) = {az + b |a, b ∈ C}.

Proof. There are many known proofs so far. Here we provide a proof using Picard’s
great theorem. If F ∈ Aut (C), then F can be expressed as a global convergence power
series

F(z) = �∞
n=0anzn. (1)

Then G(z) = F( 1
z ) = �∞

n=0
an
zn has an essential singularity at z = 0 unless the an even-

tually are all zero. If there were an essential singularity, then by Picard’s great theorem,
G would map multiple points to the same value which contradicts that F is injective.
Hence G has no essential singularity and the an eventually are all zero. It follows
that F is a polynomial. By the fundamental theorem of algebra, a polynomial F(z) is
injective if and only if F(z) = az + b for some a, b ∈ C.
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