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Mott-insulating phases and magnetism of fermions in a double-well optical lattice
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We theoretically investigate, using nonperturbative strong correlation techniques, Mott-insulating phases and
magnetic ordering of two-component fermions in a two-dimensional double-well optical lattice. At filling
of two fermions per site, there are two types of Mott insulators, one of which is characterized by spin-1
antiferromagnetism below the Néel temperature. The superexchange interaction in this system is induced by the
interplay between the interband interaction and the spin degree of freedom. A great advantage of the double-well
optical lattice is that the magnetic quantum phase diagram and the Néel temperature can be easily controlled by
tuning the orbital energy splitting of the two-level system. Particularly, the Néel temperature can be one order of
magnitude larger than that in standard optical lattices, facilitating the experimental search for magnetic ordering
in optical lattice systems.
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Introduction. There are currently worldwide efforts in
studying the collective properties of cold atoms either in a
single trap or in an optical lattice [1]. A central goal of
these studies is to explore many-body quantum phases in
both bosonic and fermionic systems. While both bosonic and
fermionic Mott insulators have been realized in laboratories
[2–5], the experimental search for magnetism in optical lattices
is currently ongoing. Most of these studies have been focusing
on the single-band physics. For example, it is known that
two-component fermions in the lowest band can be used to
study spin-1/2 antiferromagnetism [6].

A question naturally arises: Is it possible to realize multi-
band magnetic systems using cold atoms in optical lattices?
Theoretical studies suggest, for example, exploring excited
bands in optical lattices to search for unique magnetism [7,8],
partly because of the enhanced tunnel coupling in excited
bands [9,10]. While there are currently experimental efforts
along this direction to populate atoms in excited bands [11,12],
whether one can overcome the finite-lifetime problem of atoms
in excited bands still remains unclear.

On the other hand, there is a crucial practical issue on the
energy and time scales of atoms in optical lattices. Ordinary
optical lattices are characterized by extremely small energy
scales, which also lead to slow relaxation of lattice systems
to equilibrium. For example, the tunneling of the lowest band
is approximately a few nK which corresponds to a time scale
of a few tens of milliseconds. The energy scale associated
with the superexchange interaction t2/U is even smaller
since U � t typically. As a result, the Néel temperature of
antiferromagnetism in ordinary optical lattices is far too low for
experimental observation. Meanwhile, it is also challenging for
the system to reach equilibrium because of the long relaxation
time. A scheme to enhance the relevant energy scales is
therefore very desirable, particularly in the context of the
experimental study of many-body magnetism in optical lattice
systems.

In this Rapid Communication, we theoretically study
quantum magnetism of fermions in a double-well optical
lattice. Instead of the usual spin-1/2 magnetic ordering in an
ordinary optical lattice, the double-well effectively produces
a spin-1 system. The associated magnetism is induced by the

interband interaction between the lowest two bands, and is
a ground-state property. Moreover, the characteristic energy
scale for observing magnetism can be enhanced by one order of
magnitude compared with the spin-1/2 magnetism in ordinary
optical lattices. As a result, the magnetism may be much easier
to achieve and observe experimentally in the double-well
optical lattice.

A double-well optical lattice contains two potential wells,
which are separated by a barrier, on each lattice site. Its unique
advantage is that the band gap between the lowest two bands is
tunable [13,14]. When these two bands are very close to each
other, interesting quantum many-body phenomena, which are
completely absent in ordinary optical lattices, emerge [14,15].
We will see that the interplay between the orbital degree of
freedom and the fermionic spin lies at the heart of the physics
reported here. Theoretically it is, however, challenging to study
fermions with spin degrees of freedom in the presence of
multiple bands. We employ the dynamical mean-field theory
(DMFT) method [16], and study both the Mott-insulating
phases and magnetic properties of fermions in a double-well
lattice. We show that at filling of two fermions per site, the
Mott insulator developed in the system can be either the triplet
(ns,np) = (1,1) states or the admixture u(2,0) − v(0,2). For
the former case, antiferromagnetic order emerges in the spin-1
channel, which should be experimentally observable.

Model. We consider the Hamiltonian containing a tight-
binding-band part and an on-site interaction part, characteriz-
ing the two lowest bands (labeled by s and p, respectively) in
a symmetric double-well lattice H = Hband + Hint. In the real
space, the band part can be written as

Hband =
∑
rσ

[(εs − μ)s†σ,rsσ,r + (εp − μ)p†
σ,rpσ,r ]

+
∑
rσ

(−tsxs
†
σ,rsσ,r+x − tsys

†
σ,rsσ,r+ y

+ tpxp
†
σ,rpσ,r+x − tpyp

†
σ,rpσ,r+ y + H.c.), (1)

where s
†
σ,r (p†

σ,r ) creates a fermion with spin σ on the s(p)
orbital of site r , εs and εp are the energies for s and p orbitals,
and μ is the chemical potential. The hopping amplitude for s
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and p orbitals may differ in x and y directions, thus we label
them as tsx , tsy , tpx , tpy , respectively.

The interacting part of the Hamiltonian can be written as

Hint =
∑

r

[Usns↑,rns↓,r + Upnp↑,rnp↓,r

+Usp(ns↑,rnp↓,r + ns↓,rnp↑,r )

−Usp(s†↓,rp
†
↑,rp↓,rs↑,r + p

†
↑,rp

†
↓,rs↑,rs↓,r + H.c.)],

(2)

where nασ,r = α
†
iσ,rαiσ,r (α = s,p) is the number operator

for orbital α at site r , Uα = 4πh̄2as

M

∫
d3xW 4

α (x) denotes the

intraband interaction, while Usp = 4πh̄2as

M

∫
d3xW 2

s (x)W 2
p(x)

denotes the interband interaction, where as is the scattering
length, M is the mass of the fermion, and Wα(x) is the
Wannier wave function for each band. The interorbital terms
in Eq. (2) characterized by Usp are referred as density-
density, spin-exchange, and pair-hopping interactions. This
model is essentially the rotationally invariant Slater-Kanamori
interaction that is widely studied in transition metal oxides
[17]. The main difference here is that the spin-exchange and
pair-hopping interactions are as strong as the interorbital
density-density interaction. An important parameter which
controls the multiband physics is the energy-level splitting
between the two levels, defined as � ≡ εp − εs . When � is
small or intermediate, interactions between the two orbitals
give rise to interesting phenomena, as we discuss below.
When � becomes very large the physics reduces to that
of the single-band model. The Hamiltonian in Eq. (2) has
been previously considered for fermions at resonance in an
ordinary optical lattice in one dimension [18]. In our case,
the reduced band gap makes the realization of a two-band
system more practical in current experiments. Moreover, the
higher dimensionality of our system gives distinct physical
phenomena not accessible in one dimension.

We start from the atomic limit, where the tunneling terms
are absent. We are interested in the states at filling of two
fermions per site, the schematics of which are shown in
Figs. 1(b) and 1(c). When there is one fermion in each
orbital, they form triplets which are denoted as (ns,np) =
(1,1), namely, p

†
↑s

†
↑|0〉, 1√

2
(p†

↑s
†
↓ + p

†
↓s

†
↑)|0〉, and p

†
↓s

†
↓|0〉,

with degenerate energy ET = 2(εs − μ) + �. The singlet state
1√
2
(p†

↑s
†
↓ − p

†
↓s

†
↑)|0〉 has a higher energy ES = 2(εs − μ) +

� + 2Usp. ES > ET simply because two fermions interact
with each other by s-wave short-range interaction. In the
spirit of the Hubbard model, atoms with different spins
repel each other and atoms with the same spin do not
interact. On the other hand, the two fermions can also form
admixtures u(2,0) ± v(0,2), as shown in Fig. 1(c), due to the
pair-hopping interaction. The eigenenergies are E± = 2(εs −
μ) + � + Up+Us

2 ±
√

(� + Up−Us

2 )2 + U 2
sp. By controlling �

in the double-well lattice, E− can be made either smaller or
larger than ET . Throughout this Rapid Communication we
fix parameters Us = 12t , Up = 14t , Usp = 12t , and vary �

and the temperature T . Straightforward algebra reveals that at
the critical value �c = 4t , E− = ET . For latter use we note
that the hopping integrals are chosen as tsx = tsy = tpy = t ,
tpx = 2t . The large tpx stems from the fact that p bands are

(a)

s orbitals
p orbitals

εs

εp

tsx

tpx

(b)

+

1
2 )

(c)

E+

EET

ES

)

u v+

1
2 ))

u v

FIG. 1. (Color online) (a) Profile of the double-well potential (the
green/light gray line) along the x direction. The s (red/gray lines)
and p (blue/dark gray lines) orbitals are schematically shown. The
hopping integrals and energies for s(p) orbitals, tsx(tpx) and εs(εp),
are indicated. Note that the potential is not double-welled along the
y direction (not shown), where the hopping integrals are tsy and tpy

correspondingly. (b) (ns,np) = (1,1) eigenstates in the atomic limit,
including triplet states with energy ET and a singlet state with energy
ES . (c) Linear combinations of (2,0) and (0,2) states as eigenstates
for the Hamiltonian in the atomic limit, whose energies are denoted
by E±. See the text for details.

spatially more extended along the x direction. However, our
solution to the lattice model as well as the physics therein does
not depend on this particular set of parameters in any important
way.

When the hopping terms are switched on, we employ
the single-site DMFT [16] to solve the strongly correlated
interacting lattice fermion problem. The key approximation
is the neglect of momentum dependence of the self-energy
�(k,ω) → �(ω), which is solved iteratively from an auxiliary
quantum impurity problem plus a self-consistency condi-
tion. We use the matrix representation of the continuous-
time hybridization-expansion quantum Monte Carlo impurity
solver [19] prescribed specifically for multiband interactions.
This is a state-of-the-art, highly demanding numerical solution
of the strongly interacting multiband lattice Hubbard model in
the context of our double-well optical lattice system.

Mott physics. There are multiple choices to fill a single
lattice site with two fermions, forming different types of the
Mott insulator. To distinguish them, we have calculated both
ns + np and ns − np as functions of μ for different values of
�, as shown in Fig. 2(a). A Mott-insulating gap at filling two
is evident for all cases, and there is no qualitative difference in
the value of ns + np between the different cases. However, the
difference in occupancy for the two orbitals (ns − np) shows
distinct behaviors. At very large level splitting � = 4.5t ,
ns � np. This is consistent with the analysis in the previous
section for the atomic limit, where each lattice site is filled by
the state u(2,0) − v(0,2) and u � v. In contrast, at small �,
e.g., as seen in Fig. 2(b) for � = 2.5t and � = 0, ns ≈ np

in the Mott-insulating regime. This indicates that on each
site the triplet states dominate the ground state. This is also
consistent with the atomic limit where the energy of (1,1) states
ET continuously decreases and eventually the (1,1) triplet
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FIG. 2. (Color online) (a) Total occupancy (ns + np) vs chemical
potential μ, calculated for four different values of �. The calculation
is done without magnetic order at temperature T = 0.2t . εs = 0 in
this plot. The points (circle, square, diamond, and triangle) indicate
the location at approximately the center of the gap for the line with
corresponding color (grayscale), where we study magnetic ordering.
(b) The difference in occupancy ns − np plotted at the same μ scale.

becomes the ground state with decreasing �, as discussed
in the previous section. The transition between the two types
of insulator is a crossover. Since in this Rapid Communication
we focus on properties at nonzero temperature, we shall not
discuss the nature of this transition at zero temperature.

For � → ∞, the magnetism is manifestly absent and the
ground state continuously connects to the trivial band insulator
in the lowest band of an ordinary optical lattice. For small and
intermediate �, however, a magnetization of spin-1 may arise
from the triplet states on a single lattice site. As a result, the
physics of magnetic ordering in double-well lattices at filling
two is far richer than that in standard optical lattices.

Magnetic order. When the (1,1) states dominate the on-site
Fock states for small �, the interacting Hamiltonian can be
mapped to a spin-1 Heisenberg model, which can be written
as

Heff =
∑

r

(Jx Sr · Sr+x + Jy Sr · Sr+ y), (3)

where

Jx = 2t2
sx

Us + Usp

+ 2t2
px

Up + Usp

,

(4)

Jy = 2t2
sy

Us + Usp

+ 2t2
py

Up + Usp

,

Sr = A†�A is a spin-1 operator, � are spin-1 Pauli matrices,
and A = (	†

1,	
†
0,	

†
−1)T are creation operators for triplet states

p
†
↑s

†
↑|0〉, 1√

2
(p†

↑s
†
↓ + p

†
↓s

†
↑)|0〉, and p

†
↓s

†
↓|0〉. Physically, the

spin-exchange terms in Eq. (3) come from the exchange of
fermions with different spins between the nearest-neighbor
sites in either of the two orbitals. Both orbitals contribute to
the spin-exchange terms in the effective Hamiltonian.
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FIG. 3. (Color online) (a) Total magnetization m = |ns↑ − ns↓ +
np↑ − np↓| vs temperature for four selective values of �. The
chemical potential is selected at approximate center of the gap (see
Fig. 2). (b) Color plot of the magnetization on the �-T plane. In
the white regime there is no magnetic order, while for low T the
magnetization reaches the maximum value, indicated as dark colors
(grayscale). The Néel temperature is shown as blue dashed lines
separating colored and white regimes. Note that the y axis does
not start from zero: It starts from the lowest temperature T = 0.05t

reached in the DMFT calculation.

In the one-dimensional case, Eq. (3) has been derived
previously in Ref. [18]. For that case, it has been known
that the one-dimensional spin-1 chain does not have any
magnetic order, rather, it has the Haldane phase. Nevertheless,
a two-dimensional spin-1 system can develop antiferromag-
netic ground states [20–22]. Therefore, one expects to see
antiferromagnetic spin ordering in a double-well optical lattice
when the gap � is small and the temperature is low [23].

To characterize the magnetization, we define m = |ns↑ −
ns↓ + np↑ − np↓| and solve the full Hamiltonian H = Hband +
Hint. The results for m as a function of the temperature
for different � are shown in Fig. 3(a). Clearly, the mag-
netization arises below the Néel temperature (denoted by
T N) and saturates to its maximum value as the temperature
approaches zero. For � = 0, the antiferromagnetic ordering
is most pronounced: It has the highest Néel temperature
T N � 0.37t . However, this must be interpreted with caution
because experimentally it is very difficult to tune the two
bands overlap with each other while keeping the tight-binding
model valid. We therefore focus on the cases with nonzero
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�. As � is increased, the magnetization drops faster as T

increases, and the Néel temperature decreases. For a relatively
large � = 4.5t , T N � 0.21t . Note that this value of � is
already above the critical value �c = 4t in the atomic limit
where u(2,0) − v(0,2) is the ground state. This indicates that
many-body effects, such as the correlation between nearest-
neighbor sites, enhance the threshold of �c for a finite m to
emerge.

To give a broader picture, we show in Fig. 3(b) a color
(grayscale) plot of the magnetization on a plane, of which
the axes are the energy-level splitting � and the temperature
T . The blue dashed line, separating colored (grayscale) and
white regimes, indicates the Néel temperature, above which no
magnetic order is present. The dark color (black and dark gray)
shown near the lowest accessible temperature T = 0.05t in our
simulations characterizes the saturation of the magnetization
to its maximum value. As the temperature is increased to
intermediate values, the color turns to red (gray), indicating a
moderate drop of the magnetization. When the temperature
is close to the Néel temperature, the magnetization drops
rapidly, as can be seen from the narrow yellow (light gray)
edge. A close examination of the Néel temperature reveals
that it drops relatively slowly for � < �c, but very rapidly for
� > �c. This is consistent with the qualitative atomic picture.
For � → ∞, the magnetic ordering and the corresponding
Néel temperature would eventually vanish. However, we have
shown that the Néel ordering would survive at reasonably large
values of �. This is remarkable, because previous analytical
argument of mapping to the spin-1 model [18] is valid for
� → 0 only, while for nonzero � a direct numerical solution
to the lattice model Eqs. (1) and (2) is highly nontrivial. Our
results relieve the restriction posed on experiments where
achieving very small � is difficult. An alternative way to
appreciate these results is that both m and T N are tunable
by controlling �, which has obvious important experimental
implications.

Enhancement of superexchange interaction. The increase of
J [cf. Eqs. (3) and (4)] in a double-well lattice comes from two
sources. First, as seen from Eq. (4), in addition to ts , tpx and
tpy also enter the expression for the superexchange interaction
J . The large value of tpx then enhances the amplitude of J ,
similar to the antiferromagnetism arising from p bands alone
[9]. Second and most importantly, tsx itself is significantly

enhanced in a double-well optical lattice. It has been shown
that tsx can be increased by one order of magnitude at a given
lattice depth for some realistic experimental parameters [14].
Thanks to the potential barrier in the center of each lattice
site of a double-well lattice, the Wannier wave function of
the lowest band spreads its weight toward the edge of the
corresponding unit cell, which consequently enhances the
overlap between Wannier wave functions on adjacent sites,
leading to an increase in the tunneling amplitude. As a result,
the Néel temperature can be strongly enhanced, easily by one
order of magnitude. The larger energy scale associated with
the tunneling and superexchange interaction will also help
to reach equilibrium faster in the strongly interacting region.
We emphasize that this spin-1 antiferromagntism originates
from the unique feature of the double-well optical lattice:
The s and p bands can be tuned close to each other, and the
resulting magnetic ordering incorporates both bands. It is this
feature that distinguishes our theory from previous proposals
regarding p bands alone [8,9].

Conclusion. Using nonperturbative “DMFT with
continuous-time quantum impurity solver” direct numerical
techniques, we study two-component fermions in a
double-well square optical lattice, with two interacting
orbitals per site. The Mott insulator at filling two is
constituted either by triplet (ns,np) = (1,1) or an admixture
u(2,0) − v(0,2). For the one associated with the triplets,
antiferromagnetic order emerges in the spin-1 channel
below the Néel temperature, which is determined by the
energy splitting between the two orbitals and the tunneling
amplitude. We establish that, as tp contributes to J and tsx
is significantly enlarged in double-well lattices, the Néel
temperature can be one order of magnitude larger than that of
the one-band system in ordinary optical lattices, thus perhaps
enabling the direct experimental observation of the elusive
Néel antiferromagnetism in cold atomic systems. Our work
should facilitate the search of magnetic order in optical lattice
systems.
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Nature (London) 415, 39 (2002).
[3] N. Gemelke, X. Zhang, C.-L. Hung, and C. Chin, Nature

(London) 460, 995 (2009).
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