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Abstract
This paper is devoted to a study of dimensional entropy, especially entropy on
the fibres of factor maps. We show that dimensional entropy and topological
entropy of sets are not usually equal, while dimensional entropy over fibres
always corresponds to entropy of the factor. Then we provide an estimate of
the dimensional entropy of the image of a set under a factor map. Finally we
solve a few questions stated recently by Dai and Jiang on distance entropy
(which is a modification of dimensional entropy).

Mathematics Subject Classification: 37B40

1. Introduction

One of the main aims of the qualitative theory of dynamical systems is a description of the
complexity of dynamics. A tool commonly used for this purpose is the so-called entropy theory,
which is an important ingredient of topological dynamics, ergodic theory and many other fields
related to modern theory of dynamical systems (e.g. see the survey paper by Katok [17], the
book by Pesin [23] or forthcoming book by Downarowicz [10]).

In his fundamental paper of 1958, Kolmogorov introduced the measure-theoretic entropy
in ergodic theory [18], and next in 1965 Adler, Konheim and McAndrew introduced the
concept of topological entropy in the context of compact Hausdorff space equipped with a
continuous self-map [1]. A classical result, connecting these two quantities is the variational
principle [8, 12, 13, 21] which, generally speaking, says that for every continuous map on
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a compact metric space, the topological entropy equals the supremum of measure-theoretic
entropies, where the supremum is taken over all invariant Borel probability measures for the
considered system. Meanwhile, in [4] using separated and spanning sets, Bowen obtained
another definition of entropy depending on the metric (called the metric entropy in that paper)
and proved that in the context of compact metric space it coincides with the topological entropy
of [1]. He also established a theorem which can be used to estimate entropy of factors in terms
of entropy of fibres of the factor map [4, theorem 17]. Two years later, in 1973, motivated by the
definition of the Hausdorff dimension, Bowen introduced the so-called dimensional entropy
of a subset [5]. Even the single problem of relations between entropy and the Hausdorff
dimension has received lots of attention in research papers (e.g. see [2, 22]) and while big
progress has been made, still many questions remain open (e.g. see monograph [23] by Pesin).

The definition we will be particularly interested in for this paper is dimensional entropy,
denoted hB throughout (as we said before, introduced in [5]). The main reason is that
dimensional entropy seems to be a more sensitive tool when calculating entropy capacity of
subsets. For example, dimensional entropy of countable set is always zero, while topological
entropy of such a set can be equal to the entropy of the whole system. In fact, it was proved
in [26] that for each system there exists a countable closed subset with its topological entropy
equal to that of the whole system.

In this paper we will mainly focus on dimensional entropy of subsets and their
transformations by factor maps. It is well known that for continuous transformations on
compact metric spaces, dimensional entropy of the whole space coincides with topological
entropy of the system [5], while, as shown in section 3, it is not the case when we consider that
of subsets. Strictly speaking, it may happen that dimensional entropy is strictly smaller than
topological entropy for quite a large family of sets of the system (e.g. a dense subset of the
hyperspace). For this reason, it seems rather hard in general to deduce information about the
value of dimensional entropy when the value of topological entropy of this subset is known.
Therefore, one of our main aims is to obtain estimates similar to [4, theorem 17], that is, we
could estimate dimensional entropy of factors in terms of dimensional entropy of fibres of the
factor map. Generally speaking, if we replace htop (i.e. topological entropy) by hB then still
inequality from [4, theorem 17] is valid, that is

hB(S, π(K)) � hB(T , K) � hB(S, π(K)) + htop(T |π). (1.1)

We emphasize once again the fact that while these formulae look similar, values of hB and htop

can be different, and so we also need quite a different approach to prove this new inequality. In
the process of proving the above result, we also find that the supremum of dimensional entropy
of fibres is the same as that of topological entropy of fibres.

The paper is organized as follows. In the next section we recall definitions of most of the
concepts used in the latter parts of the paper. In section 3 we show that in general there is
no relation between topological and dimensional entropy of subsets. Sections 4 and 5 aim to
prove the theorem estimating dimensional entropy of factors in terms of dimensional entropy
of fibres of the factor map.

While we are mostly interested in the context of (compact) metric spaces, similar to [5], we
present our results using the weakest possible assumptions (e.g. consider also non-metrizable
topological spaces). Most of our arguments, especially these leading to (1.1), are purely
topological, i.e. we do not use properties of invariant measures and other tools from ergodic
theory. Later, i.e. when (1.1) is established, we show how some tools from ergodic theory can
be used to strengthen (1.1). This is done in section 6.

We finish the paper with the appendix, where we answer some questions on so-called dis-
tance entropy (an extension of dimensional entropy to non-compact setting) introduced in [7].
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2. Preliminaries

We denote by N, N0, Z and R the set of all positive integers, non-negative integers, integers
and real numbers, respectively.

By a dynamical system, denoted by (X, T ), we mean a topological space X equipped with
a continuous self-map T : X → X. If additionally T is a homeomorphism, we say that (X, T )

is an invertible dynamical system. Given dynamical systems (X, T ) and (Y, S), we say that
π : (X, T ) → (Y, S) is a factor map between (X, T ) and (Y, S) if π : X → Y is a continuous
surjection and π ◦ T = S ◦ π . In the above situation, we say that (Y, S) is a factor of (X, T ),
or that (X, T ) is an extension of (Y, S).

Let (X, T ) be a dynamical system, K ⊆ X and let W be a family of subsets of X. We
write K ≺ W if there is W ∈ W such that K ⊆ W . If the condition K ≺ W does not hold,
we denote this fact by writing K �≺ W . If U , V are two families of subsets of X, we say that
V is finer than U , denoted by V ≺ U , if V ≺ U for each V ∈ V . We also simply write ∪V
to denote the sum

⋃
V ∈V V ⊂ X and denote mesh V = supV ∈V diam V .

By a cover of X we mean a finite family of Borel subsets with union X and a partition
of X is any cover of X consisting of disjoint sets. If all elements of a cover U are open sets
we say that U is an open cover. Denote by CX, Co

X and PX, respectively, the set of covers,
open covers and partitions of X. We emphasize here the fact that according to the introduced
definition, cover always means a finite cover. While it is not that important on compact spaces
(there is always a finite subcover), in a non-compact setting it becomes a necessity as otherwise
the definition of topological entropy would have no sense in this setting.

Given two covers U , V ∈ CX we define the cover U ∨ V ∈ CX by

U ∨ V = {U ∩ V : U ∈ U , V ∈ V }.
Note that if U , V ∈ Co

X then U ∨ V ∈ Co
X and the same is true for partitions.

For each U ∈ CX and n ∈ N0 we denote T −n(U ) = {T −n(U) : U ∈ U }. Similarly, for
any m, n ∈ N0 with m � n we denote

U n
m = T −m(U ) ∨ T −m−1(U ) ∨ · · · ∨ T −n(U ).

2.1. Topological entropy

Given a dynamical system (X, T ), K ⊆ X and U ∈ CX we denote by N(U , K) the minimal
cardinality among all sub-families V ⊆ U covering K , that is ∪V ⊇ K . For technical reasons
we always put N(U , ∅) = 1. Using the above notation, we define

hU (T , K) = lim sup
n→+∞

1

n
log N(U n−1

0 , K).

Note that if U , V ∈ CX and U ≺ V then hU (T , K) � hV (T , K). The topological entropy
of K and topological entropy of (X, T ) are defined, respectively, by

htop(T , K) = sup
U∈Co

X

hU (T , K) and htop(T ) = htop(T , X).

Proposition 2.1. Let (X, T ) be a dynamical system, U ∈ CX and K, K1, K2 ⊆ X. Then

(2.1.1) hU (T , ∅) = 0 and so htop(T , ∅) = 0.
(2.1.2) hU (T , K) = hU (T , T (K)) and so htop(T , K) = htop(T , T (K)).
(2.1.3) hU (T , K1) � hU (T , K1 ∪ K2) and so htop(T , K1) � htop(T , K1 ∪ K2).
(2.1.4) hU (T , K) ∈ [0, log(#U )], here #U denotes the cardinality of U .
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Proof. The proof of (2.1.1) and (2.1.3) is straighforward. For the proof of (2.1.2) it is enough
to observe that

K ⊂
s⋃

i=1

n+1⋂
j=0

T −j (V
j

i ) �⇒ T (K) ⊂
s⋃

i=1

T

n+1⋂
j=0

T −j (V
j

i )

 ⊂
s⋃

i=1

n⋂
j=0

T −j (V
j+1
i ),

T (K) ⊂
s⋃

i=1

n⋂
j=0

T −j (V
j

i ) �⇒ K ⊂
s⋃

i=1

n+1⋂
j=1

T −j (V
j−1
i ),

which immediately leads to the following inequality, finishing the proof:

1

#U
N(U n+1

0 , K) � N(U n
0 , T (K)) � N(U n+1

0 , K).

Finally, N(U n−1
0 , K) � (#U )n and so hU (T , K) � log(#U ). �

2.2. Dimensional entropy

Next we present another approach to entropy, introduced by Bowen in the spirit of the Hausdorff
dimension [5].

Given a dynamical system (X, T ) and a non-empty set K ⊆ X, C(K) denotes the set of
all countable families of subsets of X such that if V ∈ C(K) then ∪V ⊇ K . Given U ∈ CX,
ε > 0 and E ⊂ X define

nT,U (E) = sup
{
j ∈ N0 : T i(E) ≺ U for each 0 � i < j

}
.

Note that nT,U (E) ∈ [0, +∞] and nT,U (E) = 0 exactly when E �≺ U . For any fixed ε > 0
let Cε(K) denote these V ∈ C(K) so that nT,U (E) � 1

ε
for any E ∈ V .

For each λ ∈ R and any V ∈ C(K) we define (applying the rule 00 = 0)

m(T , U , V , λ) =
∑
E∈V

(
e−nT,U (E)

)λ
,

and next

mT,U (K, λ, ε) = inf
V ∈Cε(K)

m(T , U , V , λ).

For completeness, we also define mT,U (∅, λ, ε) by putting mT,U (∅, λ, ε) = +∞ if λ < 0,
mT,U (∅, λ, ε) = 1 if λ = 0 and mT,U (∅, λ, ε) = 0 if λ > 0.

Observe that mT,U (K, λ, ε) is decreasing as the function of ε so the following formulae
are well defined

mT,U (K, λ) = lim
ε→0+

mT,U (K, λ, ε) = lim
n→+∞ mT,U

(
K, λ,

1

n

)
.

It follows immediately that if λ � η then mT,U (K, λ) � mT,U (K, η). It is also not hard to
verify that mT,U (K, λ) ∈ (0, +∞) for at most one λ.

Lemma 2.2. Let K �= ∅ and M(T , U , K, n) denote the collection of all countable families
T = {(Ai, ni) : i ∈ I } with ∪{Ai : i ∈ I } ⊇ K and such that for each i ∈ I , n � ni ∈ N and
Ai ∈ U ni−1

0 . Then, for each λ � 0,

mT,U (K, λ) = lim
n→+∞ inf

{∑
i∈I

e−λni : {(Ai, ni) : i ∈ I } ∈ M(T , U , K, n)

}
. (2.1)
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Proof. First, note that if nT,U (E) > k then we can find A ∈ U k−1
0 so that E ⊂ A (and

obviously nT,U (E) � nT,U (A) � k). In particular if nT,U (E) = ∞ then for any fixed λ > 0
there is k ∈ N0 such that e−kλ is small enough. Since V is at most countable, this shows that
for any δ, ε > 0 and any V ∈ Cε(K) we can find W ∈ Cε(K) such that each element of W is
an element from

⋃
n�0 U n

0 and V ≺ W , m(T , U , W , λ) � m(T , U , V , λ) + δ. This proves
that

mT,U

(
K, λ,

1

n

)
= inf

{∑
i∈I

e−λni : {(Ai, ni) : i ∈ I } ∈ M(T , U , K, n)

}

for any n ∈ N and so the result follows. �

Now that we have all of the ingredients introduced, we can define the dimensional entropy
of K relative to U as

hB
U (T , K) = inf{λ ∈ R : mT,U (K, λ) = 0}

= sup{λ ∈ R : mT,U (K, λ) = +∞}.
We also define the dimensional entropy of K by

hB(T , K) = sup
U∈Co

X

hB
U (T , K).

If U , V ∈ Co
X satisfy U ≺ V then hB

U (T , K) � hB
V (T , K). Thus if {Un}∞n=1 is a sequence

in Co
X with limn→∞ mesh(Un) = 0 and (X, T ) is a dynamical system acting on a compact

metric space, then

lim
n→+∞ hB

Un
(T , K) = hB(T , K)

because in this setting the Lebesgue number exists for any V ∈ Co
X.

The following facts are well known or elementary (e.g. see [5, propositions 1 and 2]
and [15, proposition 2.3 and lemma 3.1]). While results in [15] are stated for X being a
compact metric space, nothing more than the assumption that X is a compact topological
space is used in the proofs.

Proposition 2.3. Let (X, T ) be a dynamical system on a compact topological space, let
K1, K2, · · · ⊆ X, K ⊆ X, U ∈ CX, V ∈ Co

X, m ∈ N and i ∈ N. Then

(2.3.1) hV (T , X) = hB
V (T , X) and so htop(T ) = hB(T , X).

(2.3.2) hB
U (T , ∅) = 0 and so hB(T , ∅) = 0.

(2.3.3) hB
U

(
T ,
⋃

n∈N
Kn

) = supn∈N
hB

U (T , Kn) and so hB
(
T ,
⋃

n∈N
Kn

) = supn∈N
hB

(T , Kn).

(2.3.4) hB
T −i (U )

(T m, K) � hB
U (T m, T i(K)) and so hB(T m, K) � hB(T m, T i(K)).

(2.3.5) hB

U m−1
0

(T m, K) = mhB
U (T , K) and so hB(T m, K) = mhB(T , K).

(2.3.6) hB
U (T , K) � lim inf

n→+∞
1
n

log N(U n−1
0 , K) � hU (T , K).

Corollary 2.4. If (X, T ) is a dynamical system on a compact topological space, K ⊆ X and
U ∈ CX then hB

U (T , K) � log(#U ).
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2.3. Measure-theoretic entropy

Let X be a compact metric space and let (X, T ) be a dynamical system. M (X) denote the
set of all Borel probability measures on X. By M (X, T ) we denote the set of all T -invariant
measures µ ∈ M (X), i.e. µ(A) = µ(T −1(A)) for any Borel set A. It is known that both
M (X) and M (X, T ) are convex, compact metric spaces when endowed with the weak∗-
topology. We denote by BX the set of all Borel subsets of X. For any given partition α ∈ PX,
any measure µ ∈ M (X) and any sub-σ -algebra C ⊂ BX, we define the function

Hµ(α|C ) =
∑
A∈α

∫
X

−Eµ(1A|C )(x) log Eµ(1A|C )(x) dµ(x),

where Eµ denotes the conditional µ-expectation. It is well known that Hµ(α|C ) increases
with respect to α (i.e. its sub-partitions) and decreases with respect to C (i.e. is smaller for
larger sub-σ -algebras). For any U ∈ CX we define

Hµ(U |C ) = inf
α∈PX,α≺U

Hµ(α|C ).

Similar to Hµ(α|C ), Hµ(U |C ) increases with respect to U and decreases with respect to C .
When µ ∈ M (X, T ) and T −1(C ) ⊂ C with respect to sets of µ-measure zero, then it is
known (and not hard to check) that an = Hµ(U n−1

0 |C ) is a non-negative and sub-additive
sequence (i.e. an+m � an + am) for any given U ∈ CX. Then the following limit always exists:

hµ(T , U |C ) = lim
n→∞

1

n
Hµ(U n−1

0 |C ) = inf
n∈N

1

n
Hµ(U n−1

0 |C ).

The relative measure-theoretical µ-entropy of (X, T ) relevant to C is defined by

hµ(T |C ) = sup
U∈PX

hµ(T , U |C ).

Since X is a compact metric space, for every U ∈ Co
X there is δ > 0 such that V ≺ U

provided that V ∈ CX is a cover with mesh(V ) < δ. In particular, if we fix any sequence
{Un}∞n=1 ∈ Co

X with limn→∞ mesh(Un) = 0 then hµ(T |C ) = limn→∞ hµ(T , Un|C ).
In the special case of C = {∅, X} we simply write Hµ(U ), hµ(T , U ) and hµ(T ) instead

of Hµ(U |C ), hµ(T , U |C ) and hµ(T |C ).
If π : (X, T ) → (Y, S) is a factor map between dynamical systems on compact metric

spaces then we define the relative measure-theoretical µ-entropy of (X, T ) with respect to π

by the formula

hµ(T |π) = hµ(T |π−1(BY )).

Similarly, we put hµ(T , U |π) = hµ(T , U |π−1(BY )).
Note that when C = {∅, X} then simply Eµ(1A|C ) ≡ µ(A) and so for any α ∈ PX

we have

Hµ(α) = −
∑
A∈α

µ(A) log(µ(A)).

Given partitions α, β ∈ PX and a sub-σ -algebra C ⊂ BX, define

Hµ(α|β) = Hµ(α ∨ β) − Hµ(β),

Hµ(α|C ∨ β) = Hµ(α ∨ β|C ) − Hµ(β|C ).

Observe that

Hµ(α|β) = −
∑
B∈β

∑
A∈α∨β,A⊂B

µ(A) log

(
µ(A)

µ(B)

)
,
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which shows that our definition is the same as the one introduced in [24] (and so also, the one
used in [5]). We can also interpret C ∨ β as C ∨ β∗ where β∗ is the σ -algebra generated by
β (and C ∨ D is the smallest σ -algebra containing union of σ -algebras C , D ). Then it gives
another way to interpret the above formulae. It can also be verified that Hµ(α|β∗) = Hµ(α|β).

Let us summarize here a few basic properties of measure-theoretic entropy (see [14]
and [25, theorem 4.12]).

Lemma 2.5. LetX be a compact metric space and let (X, T )be an invertible dynamical system,
µ ∈ M (X, T ), U , V ∈ PX and let C be a sub-σ -algebra of BX such that T −1(C ) ⊂ C with
respect to sets of µ-measure zero. Then

(2.5.1) hµ(T , U ∨ V ) � hµ(T , U ) + hµ(T , V ),
(2.5.2) if U ≺ V then hµ(T , U ) � hµ(T , V ),
(2.5.3) hµ(T , U ) � hµ(T , V ) + Hµ(U |V ),
(2.5.4) hµ(T |C ) = supW ∈Co

X
hµ(T , W |C ),

(2.5.5) hµ(T , U |C ) � hµ(T , V |C ) + Hµ(U |V ∨ C ),
(2.5.6) Hµ(U |C ∨ V ) = Hµ(U |C ∨ V ∗).

3. Topological versus dimensional entropy of subsets

Let us assume for a moment that X is a compact metric space. In view of proposition 2.3
the reader may wonder what are the relations between topological and dimensional entropy
when we evaluate it for a subset K ⊂ X instead of X. While it is hard to provide a full
characterization the following fact highlights possible problems that can arise. It also gives a
very good motivation for further study of relations between values of htop and hB over subsets.
If the class of subsets where these two quantities coincide could be characterized, it would be
possible to use htop and hB interchangeably. Unfortunately, it is not clear in general, when
these two quantities coincide. Before we start, let us recall [26, remark 5.13(4)].

Remark 3.1. Let (X, T ) be a dynamical system on compact metric space. If htop(T ) > 0
then for every closed set K there exists a countable closed subset K ′ ⊂ K such that
htop(T , K ′) = htop(T , K).

Let 2X denote the hyperspace of non-empty closed subsets of a compact metric space
(X, d). Endow 2X with the Hausdorff metric Hd induced from X by d. It is well known that
2X is also a compact metric space.

Corollary 3.2. If (X, T ) is a minimal dynamical system on compact metric space with
htop(T ) > 0 then there exists a dense set Y ⊂ 2X so that if A ∈ Y then 0 = hB(T , A) <

htop(T , A) = htop(T ).

Proof. Fix any non-empty open sets U1, · · · , Un ⊂ X. Since T is minimal, it is easy to verify
that for every i there is a closed set Ki ⊂ Ui such that htop(T , Ki) = htop(T ). Then there
are also countable closed subsets K ′

i ⊂ Ki with htop(T , K ′
i ) = htop(T , Ki). If we denote

A = ⋃
i K

′
i then A is a countable closed set, A ⊂ ⋃

i Ui , A ∩ Ui �= ∅ for every i and
additionally htop(T , A) = htop(T ). But A is countable, so we also have hB(T , A) = 0. Denote
by Y the set of all possible subsets A that can be constructed as above starting from any finite
sequence of open subsets of X. It is easy to verify that Y is dense in 2X (the easiest way to see
it is by so-called Vietoris topology [16]), and so the proof is completed. �

For systems with finite entropy the situation is even more complex. Let us recall first an
important fact about intermediate values of entropy over subsets (see [15]).

https://www.researchgate.net/publication/231819235_A_local_variational_principle_for_conditional_entropy?el=1_x_8&enrichId=rgreq-143d00ec-386e-4e99-b170-c27a337c170c&enrichSource=Y292ZXJQYWdlOzIzMDkyMjEwMjtBUzoxMDI0MDE5NjUwMzU1MjNAMTQwMTQyNTkzOTIzNw==
https://www.researchgate.net/publication/252919372_Lectures_on_the_Entropy_Theory_of_Measure-Preserving_Transformations?el=1_x_8&enrichId=rgreq-143d00ec-386e-4e99-b170-c27a337c170c&enrichSource=Y292ZXJQYWdlOzIzMDkyMjEwMjtBUzoxMDI0MDE5NjUwMzU1MjNAMTQwMTQyNTkzOTIzNw==
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Theorem 3.3. Let X be a compact metric space and let (X, T ) be an invertible dynamical
system with finite entropy. Then for each 0 � h � htop(T ) there exists a non-empty compact
subset Kh of X such that hB(T , Kh) = h = htop(T , Kh).

Corollary 3.4. Let X be a compact metric space and let (X, T ) be an invertible minimal
dynamical system with finite entropy. Then for any 0 � α � β � htop(T ) there is a dense
subset Yβ

α ⊂ 2X such that

hB(T , K) = α and htop(T , K) = β

for every K ∈ Yβ
α .

Proof. Let Kα be a set with hB(T , Kα) = α = htop(T , Kα) (using theorem 3.3). If we
fix any nonempty open set U then there is N ∈ N0 such that

⋃N
i=0 T i(U) = X and so by

proposition 2.3 there is i � 0 such that hB(T , T i(U) ∩ Kα) = α.
Note that for any x ∈ X we have hB(T , {x}) = 0 and so by theorem 4.1 (which will be

proved later) we find that hB(T , K) = hB(T , T −i (K)). Then K ′
α = T −i (T i(U) ∩ Kα) =

U ∩T −i (Kα) ⊂ U has dimensional entropy hB(T , K ′
α) = α. Obviously, still htop(T , K ′

α) = α

since it was the case for Kα and (X, T ) is minimal.
If we fix any nonempty open set U1, . . . , Un then repeating arguments from corollary 3.2

we can find a countable closed set K ′
β ⊂⋃n

i=1 Ui such that 0 = hB(T , K ′
β), htop(T , K ′

β) = β

and K ′
β ∩ Ui �= ∅ for all i. We can also assume that K ′

α ⊂ U1.
Denote K = K ′

α ∪ K ′
β and observe that K is a closed set such that K ∩ Ui �= ∅ for all i

and K ⊂⋃n
i=1 Ui . Additionally hB(T , K) = max{hB(T , K ′

α), hB(T , K ′
β)} = α and similarly

htop(T , K) = β. This shows that the set Yβ
α is dense in 2X. �

Remark 3.5. There is a large class of systems that fulfil assumptions of corollary 3.4. It
includes some extensions of odometers [9] or Chacón flow [3].

4. Relative topological entropy

The main aim of this paper is to prove the following theorem:

Theorem 4.1. Let π : (X, T ) → (Y, S) be a factor map between dynamical systems and
K ⊆ X. If both X, Y are compact and additionally Y is a Hausdorff space then

hB(S, π(K)) � hB(T , K) � hB(S, π(K)) + sup
y∈Y

hB(T , π−1(y)). (4.1)

We believe that in general in (4.1) one cannot replace supy∈Y hB(T , π−1(y)) by
supy∈π(K) hB(T , π−1(y)), whereas, up to now we fail to prove or disprove it even in the
setting of factor map of dynamical systems on compact metric spaces.

Intuitively, the reader may hope that (4.1) is true, since there is a well-known theorem by
Bowen [4, theorem 17] which states (in the setting of compact metric spaces) that

htop(T , X) � htop(S, Y ) + sup
y∈Y

htop(T , π−1(y)). (4.2)

Later this inequality was generalized to the following formula working for any K ⊆ X (see [15,
theorem 7.3]):

htop(S, π(K)) � htop(T , K) � htop(S, π(K)) + sup
y∈Y

htop(T , π−1(y)). (4.3)
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We once again highlight the fact that it is not obvious that htop can be replaced by hB in the
above formula (even when X is a compact metric space), since as we already demonstrated
in section 3 for a given dynamical system on a compact metric space X values of functions
htop(T , ·) and hB(T , ·) can differ on a dense subset of the hyperspace 2X.

Before we go any further, let us recall some definitions which follow more modern
terminology than that of [4], that is, let us express the above formulae in terms of relative
entropy.

Let π : (X, T ) → (Y, S) be a factor map between dynamical systems and U ∈ Co
X. Note

that

an = sup
y∈Y

log N(U n−1
0 , π−1(y))

is a sub-additive sequence and so the following limit always exists:

htop(T , U |π) = lim
n→+∞

1

n
sup
y∈Y

log N(U n−1
0 , π−1(y)). (4.4)

We call the above defined quantity htop(T , U |π) ∈ [0, ∞) the topological entropy of U
relative to π . The relative topological entropy of π is defined by

htop(T |π) = sup
U∈Co

X

htop(T , U |π).

It is known that for any dynamical system on compact metric space (see [11, theorem 3])
the following condition holds (it is true in a little wider context; we will show it later for
completeness)

htop(T |π) = sup
y∈Y

htop(T , π−1(y)).

In this section, we are going to prove the following theorem.

Theorem 4.2. Let π : (X, T ) → (Y, S) be a factor map between dynamical systems on
compact spaces X, Y and K ⊆ X. If additionally Y is a Hausdorff space then

hB(S, π(K)) � hB(T , K) � hB(S, π(K)) + htop(T |π).

However, before we can complete this task, we need some auxiliary lemmas.

Lemma 4.3. Let π : (X, T ) → (Y, S) be a factor map between dynamical systems on compact
spaces, let K ⊆ X and U ∈ Co

Y . Then hB
U (S, π(K)) � hB

π−1(U )
(T , K).

Proof. Let λ ∈ R and V ∈ C(K), i.e. V is a countable family of non-empty subsets of X

with ∪V ⊇ K . We denote C = π−1(U ) and observe that nT,C (E) = nS,U (π(E)) for each
E ∈ V . Then m(T , C , V , λ) = m(S, U , π(V ), λ), where π(V ) = {π(E) : E ∈ V }. Fix
any δ > 0 and let ε > 0 be so that if V ∈ Cε(K) then π(V ) ∈ Cδ(π(K)). Then we have the
following:

mT,C (K, λ, ε) = inf
V ∈Cε(K)

m(T , C , V , λ) = inf
V ∈Cε(K)

m(S, U , π(V ), λ)

� inf
V ∈Cδ(π(K))

m(S, U , V , λ) = mS,U (π(K), λ, δ).

This immediately gives mT,C (K, λ) � mS,U (π(K), λ), which implies hB
U (S, π(K)) �

hB
C (T , K) and so the proof is finished. �
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Lemma 4.4. Let π : (X, T ) → (Y, S) be a factor map between dynamical systems on compact
spaces X, Y and K ⊆ X. If additionally Y is a Hausdorff space then for every U ∈ Co

X the
following condition is satisfied:

hB
U (T , K) � hB(S, π(K)) + sup

y∈Y

log N(U , π−1(y)).

Proof. Note that each continuous map from a compact space to a Hausdorff space must be a
closed map (e.g. see [19]). Fix any y ∈ Y and let U = ∪Ui where the sum is taken over all sets
Ui ∈ U such that Ui ∩ π−1(y) �= ∅. Note that there is an open neighbourhood y ∈ V such
that π−1(V ) ⊂ U as otherwise we can find a sequence yn ∈ Y such that y ∈ {yn : n ∈ N}
and π−1(yn) \U �= ∅. Then if we denote W = {xn : n ∈ N} for some xn ∈ π−1(yn) \U then
W ∩ U = ∅ while π(W) is closed, in particular y ∈ π(W). Such a situation is impossible
by the definition of U . Thus using compactness of Y we can find points y1, . . . , yn ∈ Y their
open neighbourhoods V = {V1, . . . , Vn} ∈ Co

Y (i.e. yi ∈ Vi) so that for any fixed subcover
Ui ⊆ U with #Ui = N(U , π−1(yi)) we have π−1(Vi) ⊆ ∪Ui .

Now we aim to prove the conclusion by showing that (when K �= ∅)

hB
U (T , K) � hB

V (S, π(K)) + a, where a = sup
y∈Y

log N(U , π−1(y)). (4.5)

Fix any λ � 0, ε > 0 and put p = [ 1
ε
] + 1. By (2.1), it is enough to show that

mT,U (K, λ + a, ε) � inf

∑
j∈J

e−λnj : {(Aj , nj ) : j ∈ J } ∈ M(S, V , π(K), p)

 . (4.6)

Fix any {(Aj , nj ) : j ∈ J } ∈ M(S, V , π(K), p). If j ∈ J then by the definition

Aj ∈ V
nj −1

0 and so there are s(j, 0), · · · , s(j, nj − 1) ∈ {1, · · · , n} such that

Aj =
nj −1⋂
k=0

S−k(Vs(j,k)).

For each j ∈ J we define

Cj =


nj −1⋂
k=0

T −k(Uk) : Uk ∈ Us(j,k), 0 � k � nj − 1


and consider the following family of subsets of X:

C =
⋃
j∈J

Cj = {E : E ∈ Cj for some j ∈ J }.

Each set Cj is finite, so C is at most countable. Additionally, observe that

π−1(S−k(Vs(j,k))) = (Sk ◦ π)−1(Vs(j,k)) = (π ◦ T k)−1(Vs(j,k))

= T −k(π−1(Vs(j,k))) ⊂ T −k(∪Us(j,k))

which in turn implies that C ∈ C(K), because⋃
j∈J

∪Ci ⊃
⋃
j∈J

∪
nj −1⋂
k=0

T −k(π−1(Vs(j,k)))

⊃ π−1

(⋃
j∈J

Aj

)
⊃ π−1(π(K)) ⊇ K.

Simply by the definition, if E ∈ Cj for some j ∈ J , then nT,U (E) � nj � p.
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Additionally, note that

max
1�i�n

#Ui = max
1�i�n

N(U , π−1(yi)) � sup
y∈Y

N(U , π−1(y)),

which immediately leads to the following inequalities:

m(T , U , C , λ + a) �
∑
j∈J

e−nj (λ+a)#Cj

�
∑
j∈J

e−nj (λ+a)

(
max

1�i�n
#Ui

)nj

�
∑
j∈J

e−nj (λ+a)(ea)nj =
∑
j∈J

e−nj λ.

Since {(Aj , nj ) : j ∈ J } was arbitrary, we obtain (4.6), which ends the proof. �

Proof of theorem 4.2. By lemma 4.3 we obtain hB(S, π(K)) � hB(T , K).
For the proof of the second inequality, fix any n ∈ N and observe that by the application

of lemma 4.4 to U n−1
0 and π : (X, T n) → (Y, Sn) we obtain

1

n
hB

U n−1
0

(T n, K) � 1

n
hB(Sn, π(K)) +

1

n
sup
y∈Y

log N(U n−1
0 , π−1(y)).

This by proposition 2.3 gives

hB
U (T , K) � hB(S, π(K)) +

1

n
sup
y∈Y

log N(U n−1
0 , π−1(y)).

The proof is finished by letting n → +∞. �

5. Relative dimensional entropy

As we mentioned earlier, we always have hB(T , K) � htop(T , K) and sometimes this
inequality is strict. In particular, we have supy∈Y hB(T , π−1(y)) � htop(T |π); however, it
is not immediately clear if these two quantities are equal. If it is the case, then we can express
the statement of theorem 4.2 using only hB obtaining a condition analogous to that mentioned
earlier [15]. This is the main aim of this section.

Strictly speaking we are going to prove the following result, and then combined with
theorem 4.2 from it we obtain directly theorem 4.1.

Theorem 5.1. Let π : (X, T ) → (Y, S) be a factor map between dynamical systems acting
on compact topological spaces and let U ∈ Co

X. If Y is a Hausdorff space then

htop(T , U |π) = sup
y∈Y

hU (T , π−1(y)) = sup
y∈Y

hB
U (T , π−1(y)).

Before proving theorem 5.1, we need the following.

Lemma 5.2. Let π : (X, T ) → (Y, S) be a factor map between dynamical systems acting on
compact topological spaces and let U ∈ Co

X. If Y is a Hausdorff space then

htop(T , U |π) � sup
y∈Y

hB
U (T , π−1(y)).
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Proof. It is sufficient to show that when λ > 0 is such that mT,U (π−1(y), λ) = 0 for every
y ∈ Y then htop(T , U |π) � λ.

To see that indeed it is the case, fix any λ > 0 such that each y ∈ Y satisfies the condition
mT,U (π−1(y), λ) = 0.

Now, if we fix any y ∈ Y then, since mT,U (π−1(y), λ) = 0, by (2.1) there exists a family
{(Ei(y), n(Ei(y)))}∞i=1 ∈ M(T , U , π−1(y), 1) such that

∞∑
i=1

e−λn(Ei(y)) < 1.

Note that for every i ∈ N we have n(Ei(y)) � 1 and Ei(y) ∈ U n(Ei(y))−1
0 (in particular,

Ei(y) is an open subset of X).
Observe that by compactness of π−1(y) there is N(y) ∈ N such that π−1(y) ⊂ ∪{Ei(y) :

i = 1, · · · , N(y)}. Using the assumption that Y is a Hausdorff space, we can repeat
arguments from the proof of lemma 4.4 obtaining an open neighbourhood U(y) � y such
that ∪{Ei(y) : i = 1, · · · , N(y)} ⊇ π−1(U(y)).

By compactness of Y there are points z1, · · · , zp ∈ Y with {U(zj ) : j = 1, · · · , p} ∈ Co
Y .

For every y ∈ Y fix a number φ(y) ∈ {1, · · · , p} such that y ∈ U(zφ(y)). Then
N(zφ(y))⋃

i=1

Ei(zφ(y)) ⊇ π−1(U(zφ(y))) ⊇ π−1(y).

Our aim is to find an estimate of N(U n−1
0 , π−1(y)) for every y ∈ Y .

To do so, we need some more notation. Fix any y ∈ Y , t ∈ N and a sequence
(j1, · · · , jt ) ⊆ N and next, for q = 1, 2, · · · , t + 1 put a(1) = 0 and a(q) = a(q − 1) +
n(Ejq−1(zφ(Sa(q−1)(y)))) when q > 1. Obviously a(q) depends on the choice of y as well as on
the choice of corresponding tuple.

If 1 � jq � N(zφ(Sa(q)y)) for every q ∈ {1, · · · , t} then we say that the tuple (j1, · · · , jt )

is admissible (for y). For an admissible tuple we define

C(y, j1, · · · , jt ) = π−1(y) ∩
t⋂

q=1

T −a(q)Ejq
(zφ(Sa(q)y)).

Observe that if (j1, · · · , jt ) is admissible then

C(y, j1, · · · , jt ) ≺ U a(t+1)−1
0 . (5.1)

For each n ∈ N and y denote by In(y) the collection of all tuples (j1, · · · , jt ) such that
(j1, · · · , jt ) is admissible and a(t) < n � a(t + 1).

We claim that the following inclusion holds

∪ {C(y, j1, · · · , jt ) : (j1, · · · , jt ) ∈ In(y)} ⊇ π−1(y). (5.2)

For the proof of the claim fix any x ∈ π−1(y). Then there exists j1 ∈ {1, · · · , N(zφ(y))}
with x ∈ Ej1(zφ(y)). Obviously x ∈ C(y, j1). Next, if x ∈ C(y, j1, · · · , jt ) for some
admissible tuple (j1, · · · , jt ). Observe that there exists jt+1 ∈ {1, · · · , N(zφ(Sa(t+1)(y)))} such
that T a(t+1)(x) ∈ Ejt+1(zφ(Sa(t+1)(y))), because

T a(t+1)(x) ∈ T a(t+1)(π−1(y)) ⊆ π−1(Sa(t+1)(y))

⊆
N(z

φ(Sa(t+1)(y))
)⋃

i=1

Ei(zφ(Sa(t+1)(y))).

Note that (j1, · · · , jt , jt+1) is still an admissible tuple. By the above inductive procedure we
can define an admissible tuple of arbitrary length. But since n is fixed, after finitely many steps
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we will obtain a(t + 1) � n. This means that eventually we find that (j1, · · · , jt ) ∈ In(y) and
by the method of construction also x ∈ C(y, j1, · · · , jt ). This ends the proof of the claim.

Let us continue with the proof of the theorem. Note that for any admissible tuple
(j1, · · · , jt ) we have a(t) = a(t + 1)−n(Ejt

(zφ(Sa(t)(y)))) and a(t) < n � a(t + 1), which gives

n − a(t) = n − a(t + 1) + n(Ejt
(zφ(Sa(t)(y)))). (5.3)

Put

α = max{n(Ek(zj )) : 1 � j � p, 1 � k � N(zj )},

β = max
1�j�p

∞∑
i=1

e−λn(Ei(zj )),

and observe that 1 � α < +∞ and 0 � β < 1. By (5.1), (5.2) and (5.3) we obtain

N(U n−1
0 , π−1(y)) � #In(y)

�
∑
t�1

∑
(j1,···,jt )∈In(y)

eλ(n−a(t))

=
∑
t�1

∑
(j1,···,jt )∈In(y)

eλ(n−a(t+1)+n(Ejt (zφ(Sa(t)(y))
)))

� eλ(n+α)
∑
t�1

∑
(j1,···,jt )∈In(y)

e−λa(t+1)

= eλ(n+α)
∑
t�1

∑
(j1,···,jt )∈In(y)

∏
1�q�t

e−λn(Ejq (z
φ(Sa(q)(y))

))
. (5.4)

Now observe that for any given t ∈ N, if (j1, · · · , jt ) is admissible then consider the set 


consisting of all admissible tuples (j1, · · · , jt , jt+1), then all these tuples from 
 generate the
same values of a(1), · · · , a(t + 1), and so∑

(j1,···,jt ,jt+1)∈


∏
1�q�t+1

e−λn(Ejq (z
φ(Sa(q)(y))

))

�

N(z
φ(Sa(t+1)(y))

)∑
i=1

e−λn(Ei(zφ(Sa(t+1)(y))
))

 ∏
1�q�t

e−λn(Ejq (z
φ(Sa(q)(y))

))

� β
∏

1�q�t

e−λn(Ejq (z
φ(Sa(q)(y))

))
,

which implies that ∑
(j1,···,jt ,jt+1) is admissible

∏
1�q�t+1

e−λn(Ejq (z
φ(Sa(q)(y))

))

� β
∑

(j1,···,jt ) is admissible

∏
1�q�t

e−λn(Ejq (z
φ(Sa(q)(y))

))

� · · · � βt
∑

(j1) is admissible

e−λn(Ej1 (z
φ(Sa(1)(y))

))

= βt
∑

(j1) is admissible

e−λn(Ej1 (zφ(y))) � βt+1. (5.5)
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Combining (5.4) with (5.5) we finally obtain that

N(U n−1
0 , π−1(y)) � eλ(n+α)

∑
t�1

∑
(j1,···,jt ) is admissible

∏
1�q�t

e−λn(Ejq (z
φ(Sa(q)(y))

))

� eλ(n+α)
∑
t�1

βt

= eλ(n+α) β

1 − β
. (5.6)

Note that 0 < β < 1 is a constant and the expression in (5.6) is independent of the
selection of y ∈ Y , so directly from the definition we find that htop(T , U |π) � λ, which
completes the proof. �

Proof of theorem 5.1. Combining proposition 2.3 and lemma 5.2 we have

sup
y∈Y

lim inf
n→∞

1

n
log N(U n−1

0 , π−1(y)) � sup
y∈Y

hU (T , π−1(y))

� lim sup
n→∞

1

n
sup
y∈Y

log N(U n−1
0 , π−1(y))

= htop(T , U |π)

� sup
y∈Y

hB
U (T , π−1(y))

� sup
y∈Y

lim inf
n→∞

1

n
log N(U n−1

0 , π−1(y)).

The proof is finished. �

As a direct consequence of theorem 4.1, we also obtain the following theorem (note that
as shown in [26] while topological entropy of a countable set can be strictly positive, its
dimensional entropy hB is always zero).

Theorem 5.3. Let π : (X, T ) → (Y, S) be a factor map between dynamical systems on
compact topological spaces. If Y is a Hausdorff space and each fibre π−1(y), y ∈ Y is at most
countable then htop(T |π) = 0 (and so π preserves topological entropy).

With the additional assumption that #π−1(y) < +∞ and that (X, T ), (Y, S) are dynamical
systems on compact metric spaces, the above fact follows directly from the well-known Bowen
formula (see also (4.3)) proved first in [4] (see also [6, theorem 7.1]), estimating topological
entropy of factors (the proof strongly uses the fact that Lebesgue number is well defined).

We should emphasize here one important fact (which seems to be well known for many
years, but hardly found in the literature until [10]). In the case of a factor map between
dynamical systems on compact metric spaces, it is possible to prove even more than stated in
theorem 5.3. First, if (X, T ) is µ-ergodic (not necessarily invertible) and hµ(T |π) > 0 then
for almost every y the fibre π−1(y) is uncountable [10, theorem 4.1.15]. In particular, using the
variational principle concerning relative entropy [11, theorem 5] we find that at least one fibre
must be uncountable (it can also be deduced from some other results, e.g. [27, theorem 4.2]).
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6. More on entropies over fibres

Throughout this whole section all spaces will be compact metric spaces. We will use this
assumption without any further reference.

As a direct corollary of theorem 5.1, we have that in quite a general setting

sup
y∈Y

hB(T , π−1(y)) = sup
y∈Y

htop(T , π−1(y)).

In the context of invertible dynamical systems on compact metric spaces we can say even more.
Namely, we could prove the following result.

Theorem 6.1. Let π : (X, T ) → (Y, S) be a factor map between invertible dynamical systems
and ν ∈ M (Y, S). Then hB(T , π−1(y)) = htop(T , π−1(y)) for ν-a.e. y ∈ Y .

In fact, it is just a direct corollary of the following theorem.

Theorem 6.2. Let π : (X, T ) → (Y, S) be a factor map and let ν ∈ M (Y, S). Then

sup
µ∈M (X,T ),πµ=ν

hµ(T |π) =
∫

Y

htop(T , π−1(y)) dν(y) =
∫

Y

hB(T , π−1(y)) dν(y).

Before proceeding, first we prove:

Theorem 6.3. Let π : (X, T ) → (Y, S) be a factor map between dynamical systems and let
U ∈ Co

X. Then the following functions are Borel measurable:

ĥB
U : Y � y �→ hB

U (T , π−1(y)) ∈ [0, +∞),

ĥB : Y � y �→ hB(T , π−1(y)) ∈ [0, +∞].

Proof. First of all, by corollary 2.4 image of ĥB
U is indeed bounded. We will prove its Borel

measurability.
Let λ > 0, n ∈ N, y0 ∈ Y and δ > 0 with mT,U (π−1(y0), λ, 1

n
) < δ. There exists a

countable family V ∈ C1/n(π−1(y0)) such that m(T , U , V , λ) < δ. But let K ⊂ X and
η > 0 given any cover in W ∈ Cη(K) and any ξ > 0 we can replace its elements by open
sets in such a way that new family W ′ ∈ Cη(K) has the following properties: W ≺ W ′ and
|m(T , U , W , λ) − m(T , U , W ′, λ)| < ξ . Thus, without loss of generality we may assume
that V consists of open sets.

There is an open neighbourhood V � y0 such that ∪V ⊇ π−1(V ), thus V ∈ C1/n(π−1(y))

for each y ∈ V . In particular

mT,U

(
π−1(y), λ,

1

n

)
� m(T , U , V , λ) < δ.

This shows that {y ∈ Y : mT,U (π−1(y), λ, 1
n
) < δ} is an open subset of Y . Next note that if

mT,U (π−1(y), λ) > t then there is n such that mT,U (π−1(y), λ, 1
n
) > t and vice-versa. Thus,

for each t � 0 we have

{y ∈ Y : mT,U (π−1(y), λ) > t} =
∞⋃

n=1

{
y ∈ Y : mT,U (π−1(y), λ,

1

n
) > t

}
and so the function y �→ mT,U (π−1(y), λ) is Borel measurable. Similarly,

{y ∈ Y : hB
U (T , π−1(y)) > t} =

⋃
m∈N

{
y ∈ Y : mT,U

(
π−1(y), t +

1

m

)
> 0

}
for each t � 0, which shows that ĥB

U is a Borel measurable function.
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Fix any {Un}n∈N ⊆ Co
X with limn→∞ mesh(Un) = 0. Then obviously ĥB(y) =

limn→+∞ ĥB
Un

(y) and so given any y ∈ Y and t ∈ R we see that ĥB(y) > t if and only if

ĥB
Un

(y) > t for some n. This shows that ĥB is also Borel measurable. �
We also need the following result (see [15, theorem 4.1 and proposition 4.2]).

Theorem 6.4. Let π : (X, T ) → (Y, S) be a factor map between invertible dynamical systems,
α ∈ PX, µ ∈ M (X, T ) and ν = πµ ∈ M (Y, S) with µ = ∫

Y
µy dν(y) the disintegration of

µ over ν. Then there exists f ∈ L1(ν) such that
∫
Y

f (y) dν(y) = hµ(T , α|π) and if U ∈ CX

satisfies that each element of U has a non-empty intersection with at most M ∈ N elements of
α, then hB

U (T , Zy) � f (y) − log M for ν-a.e. y ∈ Y and for any Borel subset Zy ⊆ X with
µy(Zy) > 0.

Then we have

Theorem 6.5. Let π : (X, T ) → (Y, S) be a factor map between invertible dynamical systems,
α ∈ PX, U ∈ Co

X and µ ∈ M (X, T ). Assume that each element of U has a non-empty
intersection with at most M ∈ N elements of α. Then

hµ(T , α|π) �
∫

Y

hB
U (T , π−1(y))d(πµ)(y) + log M

�
∫

Y

hB(T , π−1(y))d(πµ)(y) + log M.

Proof. It is a direct corollary of theorems 6.3 and 6.4. Simply,

hB(T , π−1(y)) + log M � hB
U (T , π−1(y)) + log M � f (y)

for ν-a.e. y ∈ Y (as µy(π
−1y) = 1 for ν-a.e. y ∈ Y ) and both functions ĥB

U
.= hB

U (T , π−1(·))
and ĥB .= hB(T , π−1(·)) are Borel measurable. �

Let us also recall three important lemmas proved first by Bowen (see [5]).

Lemma 6.6. Let X be a topological space and α ∈ PX, p ∈ N. Assume that at most p ∈ N

elements of α can have a point in the intersection of their closures. Then there exists U ∈ Co
X

such that each element of U has a non-empty intersection with at most p elements of α.

Proof. Let α be the partition from the assumptions and say α = {A1, · · · , An} for some
n ∈ N. If n � p then any U ∈ Co

X satisfies the conclusion. Hence, now assume that
n > p. Denote by S the set of all subsets {l1 < · · · < ln−p} ⊆ {1, · · · , n}. Additionally, if
{l1 < · · · < ln−p} is such a subset then denote by U the set of all points which are not contained
in Aj , j = l1, · · · , ln−p. Now let U to be the family of all such U as above (i.e. defined by
different sequences lj ). We claim that U has the required property. It suffices to prove that
the family U covers X. But if x ∈ X then by assumption there exists {l1 < · · · < ln−p} ∈ S

such that x /∈ Aj for each j = l1, · · · , ln−p, which implies that x must be contained in some
element of the constructed U . This finishes our proof. �

Lemma 6.7 ( [5, lemma 2]). Let (X, T ) be a dynamical system, µ ∈ M (X, T ) and U ∈ Co
X.

Then for every n > 0 there is αn ∈ PX such that αn ≺ U n−1
0 and any x ∈ X is in the closure

of at most n#U > 0 elements of α.

Lemma 6.8 ( [5, lemma 3]). Let (X, T ) be a dynamical system and µ ∈ M (X, T ). Given
β ∈ PX and ε > 0 there is U ∈ Co

X such that Hµ(β|α) < ε for every α ∈ PX such that
α ≺ U .
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Now we are to prove theorem 6.2.

Proof of theorem 6.2. First, let us recall that similar to ĥB in theorem 6.3, the function
Y � y �→ htop(T , π−1(y)) ∈ [0, +∞] is also Borel measurable (e.g. see [20, lemma 3.3]) so
both integrals above are well defined. The first equality was established in [20, theorem 2.1]
so we only need to prove the second one.

By proposition 2.3, hB
U (T , π−1(y)) � hU (T , π−1(y)) for any y ∈ Y and so∫

Y
h(T , π−1(y)) dν(y) �

∫
Y

hB(T , π−1(y)) dν(y). Then it is sufficient to prove∫
Y

hB(T , π−1(y)) dν(y) � sup
µ∈M (X,T ),πµ=ν

hµ(T |π).

Let µ ∈ M (X, T ), β ∈ PX and ε > 0 be fixed. By lemma 6.8 there exists U ∈ Co
X such

that if α ∈ PX satisfies α ≺ U then Hµ(β|α) < ε/2. Now by lemma 6.7 for each n ∈ N there
exists αn ∈ PX such that αn ≺ U n−1

0 and at most n#U elements of αn can have a point in the
intersection of their closures. Moreover, by lemma 6.6 there exists Un ∈ Co

X such that each
element of Un has a non-empty intersection with at most n#U elements of αn.

Using basic facts collected in lemma 2.5 we obtain that for any W , V ∈ PX,

Hµ(W n−1
0 |π) � Hµ(V n−1

0 |π) + Hµ(W n−1
0 |V n−1

0 )

� Hµ(V n−1
0 |π) +

n−1∑
i=0

Hµ(T −i (W )|T −i (V ))

= Hµ(V n−1
0 |π) + nHµ(W |V ).

Then directly from the definition of measure-theoretic entropy we obtain estimate

hµ(T , U |π) � hµ(T , W |π) + Hµ(U |W ).

In our setting, the above fact together with theorem 6.5 gives

hµ(T , β|π) = 1

n
hµ(T n, βn−1

0 |π)

� 1

n
hµ(T n, αn|π) +

1

n
Hµ(βn−1

0 |αn)

� 1

n

(∫
Y

hB
Un

(T n, π−1(y)) d(πµ)(y) + log(n#U )

)
+

1

n
Hµ(βn−1

0 |αn)

� 1

n

(∫
Y

hB(T n, π−1(y)) d(πµ)(y) + log(n#U )

)
+

1

n

n−1∑
i=0

Hµ(T −iβ|αn).

Now, note that αn ≺ U n−1
0 , T iαn ≺ U for any i = 0, 1, · · · , n − 1, thus

1

n

n−1∑
i=0

Hµ(T −iβ|αn) = 1

n

n−1∑
i=0

Hµ(β|T iαn) < ε/2

and so for n large enough we finally obtain

hµ(T , β|π) �
∫

Y

hB(T , π−1(y)) d(πµ)(y) + ε.

But β and ε were arbitrary, thus directly from the above inequality we obtain

hµ(T |π) �
∫

Y

hB(T , π−1(y)) d(πµ)(y)

which ends the proof. �
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Let π : (X, T ) → (Y, S) be a factor map between dynamical systems, U ∈ Co
X and

ν ∈ M (Y, S). It can be proved that (see [28, section 4.4.2])

sup
µ∈M (X,T ),πµ=ν

hµ(T , U |π) =
∫

Y

hU (T , π−1(y)) dν(y). (6.1)

Then theorem 6.1 leads to the following natural question:

Question 6.9. Does the following condition hold for any U ∈ Co
X:

sup
µ∈M (X,T ),πµ=ν

hµ(T , U |π) =
∫

Y

hB
U (T , π−1(y)) dν(y)? (6.2)

Note that if the above condition holds then we could obtain a local version of theorem 6.1:
hB

U (T , π−1(y)) = hU (T , π−1(y)) for ν-a.e. y ∈ Y .

Appendix

A.1. Distance entropy

Recently motivated by the definition of dimensional entropy Dai and Jiang introduced the
distance entropy of a subset in the setting of separable metric spaces [7].

Let (X, T ) be a dynamical system on a separable metric space (X, d). For any E ⊂ X

denote

lT ,ε(E) = sup
{
n ∈ N0 : diam(T i(E)) < ε for every 0 � i < n

}
.

Note that if lT ,ε(E) = 0 then diam(E) � ε and if lT ,ε(E) = +∞ then diam(T i(E)) < ε for
every i ∈ N0. Denote by C̃ε(K) these V ∈ C(K) so that lT ,U (E) > − log ε for every E ∈ V
(recall the definition of C(K) introduced in previous subsection).

In a way similar to dimensional entropy, for each λ ∈ R, ε > 0 and any V ∈ C(K) we
define (again, applying the rule 00 = 0)

D(T , ε, V , λ) =
∑
E∈V

(
e−lT ,ε(E)

)λ
,

and next

M
λ
T (K, ε) = inf

V ∈C̃ε(K)

D(T , ε, V , λ).

Finally, we define λ-measure (with respect to T ) by

M
λ
T (K) = lim

ε→0+
M

λ
T (K, ε).

Note that for any s < t we have Ms
T (K, ε) � εs−tMt

T (K, ε) and so there is at most one λ

such that Mλ
T (K) ∈ (0, ∞). Similar to dimensional entropy, we define

entH (T , K) = inf
{
λ ∈ R : M

λ
T (K) = 0

}
.

It was proved in [7] that the value of entH does not change if we replace metric d by a uniformly
equivalent metric d ′. In particular, if X is a compact metric space then entH depends only on
the topology (induced by d). It can also be proved that if X is a compact metric space then
entH (T , K) = hB(T , K) for every K ⊂ X (see [7, proposition 1]).
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A.2. Solutions of two questions on distance entropy

In [7, question 5.1] the authors asked the following question:

Question A.1. Let (X, d) be a metric space. If T : X → X is a uniformly continuous and
pointwise periodic map, is hd(T ) = 0?

We recall that a map is pointwise periodic if each x ∈ X is a periodic point, that is,
T nx = x for some n ∈ N. The motivation for this question was [7, propositions 8 and 9]
which can be summarized as follows.

Remark A.2. If X is a topological space and T is pointwise periodic then hB(T ) = 0. If
additionally X is a separable metric space then also entH (T ) = 0.

Even if we add the assumption that X is separable to the above question, the answer is
still negative as shown by the following example.

Example A.3. Consider any transitive dynamical system on compact metric spaces with
dense periodic points, let say, full shift on two symbols (X, σ ) (i.e. X = {0, 1}Z and
σ(x)i = xi+1) equipped with a metric ρ compatible with the Tikhonov topology. Let hρ denote
the entropy calculated using (n, ε)-separated sets (in metric ρ) as introduced by Bowen [4]
(since this definition is quite standard and we use it only in this example, we do not recall
this definition). It is well known that hρ(σ, X) = log 2 and that hρ(σ, K) = hρ(σ, K) for
any subset K , in particular hρ(σ, X) = hρ(σ, Per(σ )), here Per(σ ) denotes the set of all
periodic points of (X, σ ). But σ(Per(σ )) = Per(σ ) so Y = Per(σ ) with metric induced by
ρ together with transformation S = σ |Per(σ ) induces a dynamical system (Y, S) acting on
the separable metric space Y . Obviously S is uniformly continuous, pointwise periodic and
hρ(S) = hρ(σ, Per(σ )) > 0.

Now, let us turn to [7, question 2.1] which was left as another problem for further research.
The question (rewritten in suitable terminology) is as follows.

Question A.4. Let (Y, S) be a dynamical system acting on a compact metric space and let
(X, T ) be a dynamical system acting on a separable metric space X. If (Y, S) is a factor of
(X, T ) via a factor map π then does the following condition hold:

entH (T ) � entH (S) + sup
y∈Y

entH (T , π−1(y))?

As shown by theorem 4.1 the answer to the above question is positive when considering
a factor map between dynamical systems on compact metric spaces. Whereas, in general the
answer is negative as shown below.

Example A.5. There exists a dynamical system (Y, S), where Y is a compact metric space, a
uniformly continuous map T : X → X acting on a separable metric space and a factor map
π : (X, T ) → (Y, S), such that

entH (T ) = log 4 > log 2 = entH (S) + sup
y∈Y

entH (T , π−1(y)). (A.1)

Proof. Let X = R
2 \ {0} and let T : X � (x1, x2) �→ (2x1, 2x2) ∈ X. We also denote

Y = {(x1, x2) ∈ R
2: x2

1 + x2
2 = 1}, and put S: Y � (x1, x2) �→ (x1, x2) ∈ Y . We endow both

X, Y with a metric induced by the Euclidean metric in R
2.

We will now calculate the value of all terms appearing in (A.1). First note that
entH (S, Y ) = hB(S, Y ) = 0.
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Now, if we consider the map T̃ : R
2 � (x1, x2) �→ (2x1, 2x2) ∈ R

2 with a Euclidean
metric, then by [7, corollary 8 ] we find that entH (T̃ ) = 2 log 2. Additionally, by [7, theorem
2.1.(2)] distance entropy is stable under countable sums, in particular

entH (T̃ ) = max
{
entH (T̃ , {0}), entH (T̃ , R

2 \ {0})}
= entH (T̃ , R

2 \ {0}).
But if E ⊂ R

2 \ {0} then lT ,ε(E) = lT̃ ,ε(E) and so entH (T ) = entH (T̃ ) = log 4.
Finally, it was demonstrated in [7, example 2.3] that if we endow Z = (0, ∞) with the

Euclidean metric and consider the map F : Z � x �→ 2x ∈ Z then entH (F ) = log 2. But for any
y ∈ Y the fibre π−1(y) together with restriction of T to that fibre can be isometrically identified
with the dynamical system (Z, F ). Using the fact that every uniformly continuous conjugacy
preserves distance entropy [7, theorem 2.3], we finally obtain that entH (T , π−1(y)) = log 2
for every y ∈ Y . This ends the proof. �

The factor map π in example A.5 is not uniformly continuous (arbitrarily close to 0 we
can find points which project onto antipodal points on Y ), but even this additional assumption
does not make the situation better. It will be demonstrated by next example. While it is a
simple modification of example A.5, it is less transparent and so we decided to present both
of them.

Example A.6. There exists a dynamical system (Y, S) acting on a compact metric space, a
dynamical system (X̂, T̂ ), where T̂ is a uniformly continuous map acting on a separable metric
space, and a uniformly continuous factor map π̂ : (X̂, T̂ ) → (Y, S), such that

entH (T̂ ) = log 4 > log 2 = entH (S) + sup
y∈Y

entH (T̂ , π̂−1(y)). (A.2)

Proof. Let (Y, S) be the map constructed in example A.5. Denote X̂ = {(x1, x2) ∈ R
2 :

x2
1 + x2

2 > 1} and endow it with metric induced by the Euclidean metric on R
2. We define

T̂ : X̂ → X̂, by the formula

(x1, x2) �→

2x1 − x1√
x2

1 + x2
2

, 2x2 − x2√
x2

1 + x2
2


together with the natural projection π̂ : X̂ → Y given by

(x1, x2) �→

 x1√
x2

1 + x2
2

,
x2√

x2
1 + x2

2

 .

We define a map η : X̂ → X as follows

(x1, x2) �→

x1 − x1√
x2

1 + x2
2

, x2 − x2√
x2

1 + x2
2

 ,

where (X, T ) was constructed in example A.5. Note that η is uniformly continuous and X̂ is
uniformly continuous as well. Simple calculations show that η◦T̂ = T ◦η, so using [7, theorem
2.3] we obtain that entH (T̂ , X̂) � entH (T , X) = 2 log 2.

Finally, observe that for any y ∈ Y we have (T̂ , π̂−1(y)) can be isometrically transformed
to the map (1, +∞) � x �→ 2x − 1 ∈ (1, +∞) which in fact is isometric with (Z, F )
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from example A.5. This shows that entH (T̂ , π̂−1(y)) = entH (F ) = log 2 which ends the
proof. �
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