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Abstract: The type III secretion system (T3SS) is a specialised protein 
delivery system that plays an important role in pathogenic bacteria. However, 
the secretion mechanism has not been fully understood yet. Especially, the 
identification of type III secreted effectors is a notoriously challenging problem 
which has attracted a lot of research interests in recent years. In this paper, we 
introduce a machine learning method using amino acid sequence features for 
predicting T3SEs. We use a topic model called HMM-LDA to select useful 
features, and conduct experiments on Pseudomonas syringae as well as some 
other bacterial genomes. The cross-validation results on P. syringae data set 
show an improved prediction accuracy with the reduced feature set. The 
experimental results on the test sets also demonstrate that the accuracy of the 
proposed method is comparable to or better than the accuracies achieved by 
other available T3SE prediction tools. 
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1 Introduction 

The type III secretion system (T3SS) is among the most complex secretion systems in 
Gram-negative bacteria (Galán and Collmer, 1999), which is indispensable for the 
pathogenesis of a large variety of plant and animal pathogens, such as Pseudomonas, 
Erwinia, Xanthomonas, Ralstonia, Salmonella, Yersinia, Shigella and Escherichia, etc. 
(He et al., 2004; Cornelis, 2006). Using T3SS, these pathogens inject virulence proteins, 
so-called type III secreted effectors (T3SEs), directly into the host cells. These T3SEs are 
transported across the two membranes of the Gram-negative bacteria and the membrane 
of the host cell through a needle-like apparatus. Then they target their specific host 
substrates and promote disease development in the host cell. Recently, T3SS and T3SEs 
are also found in non-pathogenic bacteria, such as the microsymbiont rhizobia (Viprey  
et al., 1998). 

Researchers have been exploring the working principle and mechanism of T3SS for 
over a decade. Although the structure of T3SS apparatus has been uncovered, the precise 
mechanism underlying the secretion process has not been fully understood yet. In recent 
years, more and more emphases have been put on the studies of T3SEs. It is not only 
because of their important functions for the virulence of pathogens, but also because they 
could provide hints in discovering the working principle and mechanism of TTSS. These 
effector proteins must have some unique characteristics that could be recognised by the 
T3SS and trigger the secretion process. However, there is no defined secretion signal that 
has been found in the known effectors. Moreover, the number of T3SEs that have been 
confirmed is only several hundreds. The plant pathogen Pseudomonas syringae has been 
a model organism for the study of type III effectors. Thus far, over two hundreds of 
T3SEs have been identified and confirmed in P. syringae strains, more than the total 
number of effectors identified from all other bacterial species. Therefore, we conjecture 
that a large portion of T3SEs in other bacteria remain unknown. 

A lot of efforts have been dedicated to identifying novel T3SEs and searching the 
secretion signal both by wet-bench and computational methods. The wet-bench methods, 
e.g., functional screen and protein secretion assay (Guttman et al., 2002), are accurate but 
labor-intensive, which cannot deal with high-throughput screening. As the sequencing 
techniques have gained breakthrough for the past decade, and a large number of 
sequenced genomes for plant and animal pathogens became available, bioinformatics 
approaches are in great demand for accelerating the verification of T3SEs. Some 
computational tools for the prediction of T3SEs have been developed. (Vinatzer et al., 
2005; Arnold et al., 2009; Löwer and Schneider, 2009; Yang et al., 2010; Wang et al., 
2011; Sato et al., 2011) The ultimate goal of a prediction system is to produce an 
accurate effector candidate list that could help increase the efficiency of wet-bench 
experimental verification and discover the signals that direct the secretion. 

The computational methods typically follow two trends: domain knowledge-based 
and sequence-based. The domain knowledge-based methods utilise biological features 
(Yip et al., 2009; Jin et al., 2008; Huang and Pavlovic, 2008), including searching 
conserved regulatory motifs in the promoters (Ferreira et al., 2006) (e.g., P. syringae has 
a motif called the hrp box), identifying genes in vicinity to chaperone homologues 
(Panina et al., 2005), predicting unstability of N-terminus and non-optimal codon usage 
(Sato et al., 2011), etc. These methods have some limitations: a) Not all genes preceded  
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by the TTSS-related regulatory motif are T3SEs, and some effectors do not have the  
promoters at all; b) Some effectors function without a chaperone, or are encoded at 
separate loci; c) The domain knowledge is usually not available but needs to be 
calculated by computational tools, which can not provide accurate information. In this 
paper, we focus on the sequence-based methods. 

The sequence-based methods mainly study the amino acid or nucleotide sequences 
(Dong et al., 2010; Haddow et al., 2011). Comparisons of the amino acid sequences of 
known T3SEs show great sequence diversity. This is because they evolve fast in order to 
adapt to different hosts and respond to the resistance from the host immune systems (Ma 
and Guttman, 2008). Researchers have detected amino acid composition biases in T3SEs, 
especially in the N-terminus, such as an overall amphipathic amino acid composition, an 
over-representation of serine and glutamine, and the absence of acidic residues (Petnicki-
Ocwieja et al., 2002). A typical type III effector usually contains a secretion/translocation 
signal in the N-terminus and a functional domain in the C-terminus. The secretion signal 
is believed to be contained in the first 50 or 100 amino acids (Schechter et al., 2004; 
Lloyd et al., 2002; Wang et al., 2011). Actually, the first 15 amino acids are most 
essential. However, these features are not accurate enough to identify new effectors 
because some effectors do not possess these features at all (Schechter et al., 2006). 
Besides, many known effectors are identified by homology search, which fails to find 
novel type of effectors. Recently, some machine learning methods have been proposed 
for the prediction of T3SEs (Arnold et al., 2009; Löwer and Schneider, 2009; Yang et al., 
2010; Wang et al., 2011). They attempt to extract features from protein sequences and 
perform prediction based on these features. Arnold et al. (2009) used the frequencies of 
amino acids as well as the frequencies from two reduced alphabets, i.e., they mapped 
amino acids to groups according to the amino acid properties. They also computed the 
frequencies of di- and tri-peptides from each of the alphabets. Löwer and Schneider 
(2009) used sliding-window technique to extract features. Yang et al. (2010), Yang 
(2011) used amino acid composition, k-mer composition, as well as SSE-ACC method 
(amino acid composition in terms of their different secondary structures and solvent 
accessibility states). Wang et al. (2011) proposed a position-specific feature extraction. 
The position-specific occurrence time of each amino acid is recorded, and then the profile 
is analysed to compose features. All of these methods aim to represent the amino acid 
composition, order and position information as feature vectors. 

In this paper, we regard the protein sequences as text written in a certain kind of 
biological language. The residues and peptides, i.e., k-mers (k-tuple amino acid 
sequences) are the words composing the text. Since the number of k-mers would be very 
large when k increases, we conduct feature reduction instead of using all the k-mers as 
features. In order to eliminate the noisy words effectively, we adopt a topic model, 
HMM-LDA, whose advantage over other LDA models is that it introduces both syntax 
states and topics. We have carried out in-depth exploration on selecting informative 
words, and conducted a series of experiments to examine their discriminative ability. The 
experiments on P. syringae data set show an improved prediction accuracy with the 
reduced feature set. Furthermore, we have applied the method to a variety of bacterial 
genomes. The results demonstrate that the new method has comparable or better 
performance than the existing T3SE prediction tools. 
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2 Methods 

In this paper, we model the protein sequences as a kind of biological language, which is 
composed of words without any space or punctuation in between the words. Considering 
each single amino acid is the smallest unit in protein sequence, we assume each amino 
acid as a single-character word, and k-mers can be regarded as multi-word lexemes in 
natural language. Similar to Chinese text, in which segmentation is an important and 
basic step for text processing, we first perform a segmentation process on the amino acid 
sequences in order to separate the character strings into meaningful words or phrases. 

Obviously, there are many differences between natural languages and protein 
sequences. Protein sequences have a smaller alphabet, but are much longer than text 
sentences. In text, words are minimal independent and meaningful language units, and 
natural languages usually have predefined dictionaries. However, protein sequences are 
written in an unknown language to us at the present state, whose words are not 
delineated. Any combination of letters with arbitrary length may be a word. So we first 
need to build a dictionary, which is the basis of segmentation. Therefore, our method 
consists of four steps: 1) Construct a dictionary, i.e., word set; 2) Segment the protein 
sequences by matching the words in the dictionary; 3) Run HMM-LDA model on the 
segmented sequences and select informative words from the dictionary; 4) Create feature 
vectors and conduct the classification. Figure 1 shows the pipeline of our method. In the 
following, we describe the four steps respectively in details. 

2.1 Dictionary construction 

In natural languages, words are generally the combinations of characters that frequently 
appear in the text. Thus in our study, the occurrence time of each k-mer in the data set is 
recorded and the frequent ones are put into the dictionary. To avoid encountering 
unknown words, all 20 amino acids should be included in the dictionary. For the k-mers 
(k > 1), we only preserve a certain portion for each value of k according to their 
occurrence times. 

Figure 1 Flowchart of the new method (see online version for colours) 

 

2.2 Segmentation 

Segmentation is the process of matching sequences with words in the dictionary. In this 
step, we use the segmentation method proposed in (Yang et al., 2008). We first consider 
the segmentations which generate the least number of segments, i.e., long words are 
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preferred to be matched. This is based on the consideration that longer strings contain 
more sequence information. The idea is similar to the maximum match (MM) algorithm 
(Wong and Chan, 1996) widely used in Chinese word segmentation. It is not enough to  
consider solely the number of segments, because there are still multiple ways of  
segmentation with the same number of segments. Then we assign a weight for each word  
in the dictionary and add a maximum weight product criterion to ensure the unique best 
segmentation. For any given sequence, the segmentation which has the biggest weight 
product is selected. 

2.3 HMM-LDA and feature reduction 

At this stage, we already have built a dictionary, but not all of the words in the dictionary 
are necessary to be the features, like the auxiliary words in language text, e.g., “in”, 
“some”, “however”. Therefore, we need to further condense the feature set. In this step, 
by using the topic model, we introduce a latent topic layer into the original segmented 
sequences. 

The topic model is a kind of statistical model in the realm of machine learning and 
natural language processing. It is able to discover the implicit topic information in  
the document. Over the last decade, topic models have been researched extensively. 
Besides in text automatic classification, information retrieval and other related 
applications of natural language processing, they have also been successfully applied in 
image segmentation and classification, social network analysis, etc. In the realm of 
bioinformatics, some researchers have used topic models and obtained good results. For 
example, in the study of protein remote homology detection, Liu et al. (2008) used latent 
semantic indexing model, and Yeh and Chen (2010) used latent topic vector model. Their 
topic models have higher accuracies than word-based models. 

The latent Dirichlet allocation (LDA) (Blei et al., 2003), perhaps the most common 
topic model currently in use, describes each document in a corpus as generated from a 
mixture of topics, and each topic is characterised by a word distribution. The HMM-LDA 
model further extends this topic mixture model by separating syntactic words from 
content words whose distributions depend primarily on local context and document topic, 
respectively. The major difference between LDA and HMM-LDA is that each word is 
generated independently in LDA model, while there is local dependencies between 
nearby words in HMM-LDA model. We have experimented both original LDA and 
HMM-LDA models, and the latter one performs better (See Section 3.5). That may be 
because the HMM-LDA model discovers both syntactic classes and semantic topics in 
the document, and it is more helpful to eliminate the noisy words, thus we used HMM-
LDA in our study. 

After building the HMM-LDA model over the segmented protein sequences, we 
obtain latent topic information of the words, which can be utilised for feature selection, 
i.e., we would like to select the informative words as features. 

Intuitively, two types of words can be removed from the feature set, unusual words 
and widespread words. We have proposed an algorithm (Qi et al., 2011) to eliminate 
these two kinds of words by setting two key parameters. One is a lower bound of word 
frequency used to eliminate the unusual words, and the other is a lower bound for 
frequency difference, which is used to remove the words that appear nearly equally on 
multiple topics. Specifically, this algorithm aims to search the words specific to some 
topics, i.e., to keep the words which are assigned to some topics with high probability but 
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do not pervasively assigned to many topics. This algorithm obtains better accuracy 
compared with the method using the feature set without this feature reduction step, but 
the criterion of selecting word is a little rigorous. 

Here we introduce a simpler but more effective algorithm, shown in Algorithm 1, 
which mainly considers the rare topics and unusual words. First, the appearance time  
of the most popular word of each topic (nt = max nw,t, where nw,t is the number of times 
that word w has been assigned to topic t) is recorded. Then all the topics are sorted 
according to nt. Some rare topics, i.e., the topics with low ranks, can be discarded.  
The parameter m is used to determine the number of topics to be considered. The third 
step, also the major step, is selecting words whose occurrence times exceed a certain 
value, the parameter x. Since the HMM-LDA model has already distinguished syntax 
words and topic words, and most widespread used or equally distributed words are 
syntax words, we use Algorithm 1 in this paper and the experimental results also 
demonstrate its efficacy. 

Algorithm 1  

Input: Word set   

Output: Reduced word set ’  

   Set ’ =  

   Sort t   in descending order according to nt, where ,max .t w t
w

n n





 

   Let L be the list of sorted topics.  
for each topic t that ranks top-m of L do  
   for each word w do 

       if nw,t > x, and w is not in  then 

          Add w to ’.  

       end if  
   end for  
end for 

2.4 Classification 

After the feature reduction procedure, we calculate the appearance time of each word in 
the feature set (based on the segmentation result and HMM-LDA model), thus construct 
the feature vectors. We use the support vector machines (SVMs) as the classifiers, which 
are widely used in bioinformatics because of their excellent and stable performance in the 
classification tasks. Here, we used the RBF kernel function. A grid search in logarithmic 
space was performed to find optimal values for the complexity parameters C and . 

3 Results and discussions 

3.1 Data set 

Pseudomonas syringae is a model organism in plant pathology and has by far the largest 
number of putative and confirmed effectors. We have collected a total of 283 confirmed 
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Pseudomonas effectors from databases and literatures, belonging to three strains,  
P. syringae pv. tomato strain DC3000, P. syringae pv. syringae strain B728a and  
P. syringae pv. phaseolicola strain 1448A. Since homology search has been a major  
means to discover putative effectors, the sequence similarity of this data set is very high. 
Considering that the redundancy of the data set would result in overestimation on the 
accuracy of the classifier, we clustered these effectors with sequence similarity over 60% 
and kept only the representative sequence of each cluster in our data set, leaving 108 
positive samples. 

The negative data set was extracted from the genome of P. syringae pv. tomato strain 
DC3000 because it has been intensively investigated for the research of TTSS. We 
excluded all the proteins related to T3SS, as well as the hypothetical proteins. (Note that 
this set may still contain some unknown effectors.) And then we selected randomly from 
the remaining samples to constitute the negative set, which has 760 samples, thus there is 
a total of 868 samples of this data set. 

In order to examine the generalisation ability of the prediction system, we prepared 
test sets of other bacterial genomes. The first test set is composed of type III effectors 
from rhizobia. The type III secretion system has been shown to play an important role 
during the nodulation process of several rhizobial species. As multiple rhizobial species 
have the T3SS apparatus, the function and mechanism of T3SS in nodulation  
have received a lot of attention in the research field of plant-microbe interactions (Marie 
et al., 2003). However, only a few rhizobial T3SEs have been confirmed. Therefore, 
computational tools are in great demand to detect novel secreted proteins in rhizobia. 
Although the biological effects of T3SS are different in rhizobia and P. syringae, we 
have discovered that they have similar secretion mechanisms (Yang et al., 2010).  
12 confirmed T3SEs were collected from four rhizobial strains for test.  

The second test set consists of confirmed effectors from multiple species including 
both plant pathogens and animal pathogens, such as Salmonella enterica, Yersinieae, 
Shigella and Escherichia coli. Although the TTSS mechanism has great diversity among 
different species, we want to check the universality of our prediction system. This test set 
is mainly consisted of a T3SE database we have maintained before as well as the data 
used in Wang et al. (2011) and Sato et al. (2011), including a total of 194 samples. 

As mentioned before, the secretion signal is believed to be contained in the first 50 or 
100 amino acids. The N-terminal 100 amino acids have been demonstrated useful for the 
identification of effectors (Yang et al., 2010; Wang et al., 2011). Thus in this study, the 
first 100 amino acids are used for feature creation. 

3.2 Experimental settings and evaluation criteria 

In the experiments, we used HMM-LDA model from the Matlab Topic Modeling 
Toolbox 1.4 (Steyvers and Griffiths, 2011). As in LDA, the number of topics has great 
impact on the performance of HMM-LDA. The optimum number of topics was searched 
in the range from 5 to 95. We found that the highest precision (72.2%) was obtained 
when the number of topics is 55 on the validation dataset. The other parameters used in 
the HMM-LDA model is set to be default, i.e., number of syntactic states is 12,  = 50/T 
(T is the number of topics), and  = 0.01.The parameter m is set to be 50. x is set to  
be nt/10, which is a relatively small threshold to alow keeping more words. 
(See Algorithm 1 for the calculation of nt.) 
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Our implementation of the support vector machines adopted LibSVM version 2.8 
(Chang and Lin, 2001). The kernel parameter  and C are set as 2–5 and 24, respectively. 

In order to provide reliable predictions for future wet bench analysis, we used three 
metrics to evaluate the performance of the proposed method, including precision (P), 
recall (R) and total accuracy (TA). The precision is the ratio of the samples correctly 
classified into the positive class compared to the total number of samples classified into 
the positive class. And the recall measures ratio of samples classified as positive among 
all positive examples. These two metrics are used to measure the prediction quality of 
effectors, and TA is used to measure the overall prediction quality, i.e., the ratio of the 
test samples the system classifies correctly. They can be defined in terms of the number 
of true positives (TP), the number of false positives (FP), and the number of false 
negatives (FN) as follows. 

P
TP

TP FP



 (1) 

TP
R

TP FN



 (2) 

.
TP TN

TA
TP FP TN FN




  
 (3) 

3.3 Cross-validation results on Pseudomonas syringae 

The first 100 N-terminal amino acid residues were retrieved from effectors and non-
effectors, and converted to feature vectors. We conducted five-fold cross-validation on 
the 868 samples from P. syringae. 

In our method, dictionary construction, the first step, directly influences the 
segmentation result in the second step. Besides, the size of the dictionary also influences 
the feature reduction procedure in the third step and the size of the final feature set. 
Therefore, in the experiments, we need to estimate the proper size of the dictionary. 
Firstly, a maximum word length MaxLen should be set, which specifies the set of k-mers 
from which words are selected. In our previous studies on the prediction of T3SEs, we 
found that due to the diversity of the effector sequences, long k-mers could not improve 
the prediction performance. In fact, k-mers (k > 4) has little help on improving accuracy 
but largely increases the computational complexity. Therefore, we only include single 
amino acids, di-mers and tri-mers in the dictionary. All 20 amino acids, the basic unit of 
the biological language, are included in the dictionary to avoid encountering unknown 
words. Di-mers and tri-mers are selected according to their appearance times. We have 
conducted a series of experiments to search the proper number of di-mers and tri-mers. 
The numbers of di-mers and tri-mers are searched from 50 to 350, respectively. Figure 2 
shows the precisions of different combinations of numbers of di-mers and tri-mers using 
Algorithm 1. 

From Figure 2, we can find that di-mers play a more important role in the prediction 
than tri-mers. Adding a few number of tri-mers (about 50) can improve the prediction 
accuracy. However, as the number of tri-mers increases, the accuracy decreases. 
Moreover, not all the di-mers are useful. Obviously, when the number of di-mers exceeds 
250, we can not get a satisfying precision. 
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Figure 2 Cross validation results with different number of words 

 

 

Table 1 Cross validation results obtained using different number of words 

# Words in Dictionary P (%) R (%) TA (%) # words selected 

70 (20+50+0) 70.3 77.5 94.0 70 (20+50+0) 

120 (20+50+50) 72.2 76.5 93.8 70 (20+45+5) 

170 (20+100+50) 72.2 70.3 92.7 125 (20+90+15) 

220 (20+100+100) 71.3 70.6 92.7 135 (20+93+22) 

170 (20+150+0) 71.2 73.5 92.8 161 (20+141+0) 

220 (20+150+50) 72.2 83.9 94.8 176 (20+142+14) 

470 (20+250+200) 70.4 72.4 93.0 308 (17+238+53) 

The first column and last column show the dimensions of feature vectors before and after 
feature reduction, and the three numbers in the parentheses are the numbers of single 
amino acids, di-mers and tri-mers, respectively. 

There are 7 combinations which obtain precisions higher than 70%. In Table 1, we 
list the detailed precisions, recalls, total accuracies, and the numbers of dimensions 
before and after feature selectiong (using HMM-LDA) of the 7 combinations for a 
comprehensive comparison. It can be observed that the best accuracy is obtained when 
the numbers of single amino acids, di-mers and tri-mers are 20, 150 and 50, respectively. 
For all these 7 groups, the numbers of tri-mers have been greatly reduced, while there is 
only a little decrease in the numbers of di-mers. This result further illustrates that long  
k-mers don’t have the expected effect in the classification. We have performed a further 
analysis on the tri-mers. The occurrence times of all the tri-mers from the dictionary are 
recorded in the N-terminal 100 amino acids of the positive and negative sets respectively. 
The ratio of these two values ranges from 0 to 0.47. We sort the ratios in ascending order, 
and find that the top 10 and last 8 values are all from the removed tri-mers, while the 
selected tri-mers’ ratios are distributed in the interval from 0.03 to 0.14. More 
specifically, both the tri-mers that appear zero or only one time in the effector sets are 
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discarded, and the tri-mers that appear frequently both in the positive and negative sets 
are also discarded. How the selected k-mers relate with the secretion signals is under 
further investigation. 

3.4 Performance on other bacterial genomes 

In order to evaluate the generalisation ability and universality of the prediction system, 
we conducted prediction on other bacterial genomes that encode T3SSs. The training data 
consist of 868 proteins from Pseudomonas syringae used in the cross validation. The two 
test sets are described in Section 3.1. 

In the first test set, all the effectors are from rhizobia. Our method correctly identifies 
10 of the 12 effectors, generating an accuracy of 83.3%. The second test set is composed 
of multiple bacterial species. The type III secreted effectors exhibit great diversity and 
have a wide variety of functions across strains and species. Thus the cross-species 
prediction is a difficult job. The prediction system obtains a recall of 43.8% by 
recognising 85 of the 194 effectors. This result suggests that although the secreted 
proteins are diverse across species, there are common patterns on N-terminal amino acid 
sequences. 

Table 2 Result Comparison on Pseudomonas syringae using five-fold cross-validation 

Method Dimension TA (%) P (%) R (%) 

di-mer 400 93.2 65.7 76.3 

tri-mer 8000 91.6 32.4 100 

frequency 220 93.7 72.2 75.7 

LDA 197 94.2 71.3 80.2 

HMM-LDA 176 94.8 72.2 83.9 

3.5 Performance comparison with other methods 

We examined the performance of the new method by comparing the prediction 
accuracies of multiple methods. Table 2 lists the number of dimensions, total accuracy 
(TA), precision and recall of five methods, respectively. The first and second methods 
use all the di/tri-mers without feature reduction. The feature vectors are created by 
counting the occurrence times of all the di/tri-mers overlapingly. The third method 
records the occurrence times of all the dictionary words as features, i.e., which has the 
initial step of feature reduction by k-mer frequency. And the last two methods utilise 
LDA and HMM-LDA for feature selection respectively on the basis of the dictionary, 
i.e., feature set condensed by the frequency criterion. 

Table 2 clearly shows that the reduced feature set achieves good performance. The 
tri-mer method has the biggest number of dimensions, but its performance is the worst. 
The reason why the tri-mer method has such high recall and low precision is that the 
number of false negative is zero while the number of false positive is very big. We also 
conducted experiments using k-mers with k > 3, and the accuracy is even worse.  
On the contrary, the HMM-LDA method has only 176 dimensions, but it has the best 
classification performance. 

In addition, we have compared our method with two publicly available computational 
tools for T3SE prediction, EffectiveT3 and BPBAac. EffectiveT3 (Arnold et al., 2009), 
the first universal in silico prediction program for the identification of novel TTSS 
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effectors, which takes into account frequencies of amino acids and short peptides  
(di-mers and tri-mers) as features and uses Naive Bayesian Classifier. Another SVM-
based computational T3SE prediction model called BPBAac (Wang et al., 2011), which 
has been newly developed and has high prediction accuracy. The result comparison is 
shown in Table 3, in which the thresholds are set to be default, i.e., 0.99 for NB classifier 
in EffectiveT3 and 0.5 for SVMs in BPBAac and our methods. 

Our method has the highest accuracy in predicting rhizobial effectors, while BPBAac 
performs the best in prediction of the hybrid data set. Overall, our method has a 
comparable performance with other available computational tools for T3SE prediction. 

Table 3 Result Comparison on the two test sets  

Method # recognised effectors Accuracy (%) 

 Test set 1 Test set 2 Test set 1 Test set 2 

EffectiveT3 8 84 66.7 43.3 

BPBAac 8 102 66.7 52.6 

Our method 10 85 81.3 43.8 
 

3.6 Discussion 

This paper proposes a new feature selection method, which consists of two key points. 
The first point is to eliminate noisy topics, and the second point is to remove rare words. 

For natural language, a topic is what a text, a paragraph or a sentence is about. It is a 
particular subject that the text write about. Each topic has its symbolic words. In 
Algorithm 1, we sort the topics according to nt in descending order. A topic with a low 
rank means that none of the words has been assigned to it with many times, i.e., the topic 
may have no symbolic word at all. Therefore, we regard such topics as noisy topics. 

As a further illustration, we plot the nt values for the sorted list of all the 55 topics 
used in our experiments in Figure 3. 

Figure 3 nt values of topics in descending order (see online version for colours) 
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We can observe from this figure that nt decreases more slowly at the lower-ranking 
topics. nt values of the last five topics are all less than 100 and nearly equal. Therefore, it 
is a proper choice to consider the first 50 topics for feature selection in the experiments. 

In the word selection step, we removed the words which are not assigned to any topic 
with more than x times. We did not set a constant value for this threshold x, but used 
nt/10 instead. After running the HMM-LDA model, we examined the matrix containing 
the number of times word i has been assigned to topic j. The matrix is very sparse. We 
found that the numbers of times that the words are assigned to high-ranking topics have 
great differences. For example, for the first topic, the most popular word ‘I’ has been 
assigned to the topic over 450 times, while the least frequent word ‘S’ has been assigned 
just once. As for the low-ranking topics, the most popular words have been assigned for a 
little more than 100 times, and the least frequent words have been assigned once or 
several times. Generally, each topic has 5~15 words. The threshold nt/10 can screen the 
rare words and keep the symbolic words for each topic. 

In the present study, the experimental results have demonstrated the effectiveness of 
the selected words. However, given the word set and topic information, it is still difficult 
to determine the specific signal or characteristics that directly relate to the secretion 
process. For protein sequences, the latent layer revealed by the topic models could be 
secondary or spatial structure, function domain or other biochemical properties. The 
association among the symbolic words of the topics and the latent biological 
characteristics are considered for the future study in deciphering the precise secretion 
mechanism. 

4 Conclusion 

In this paper, we use machine learning approaches to predict proteins secreted via the 
type III secretion system. We extract features from the N-terminal amino acid sequences 
by regarding the sequences as text documents and k-mers as words. Firstly, a dictionary 
is constructed according to k-mer frequency. Secondly, the protein sequences are 
segmented into non-overlapping k-mers. Then we model a latent topic layer between the 
document and words. Each protein sequence is a mixture of a number of topics, and each 
word is assigned to a certain topic. The topic model called HMM-LDA is adopted for 
feature selection. At last, by using the state-of-art classifier, support vector machines, we 
constructed the system to distinguish T3SEs and non-T3SEs. 

A five-fold cross-validation was conducted to examine the prediction accuracy on 
Pseudomonas syringae data set. The best accuracy is achieved when there is a total of 
220 words in the dictionary, including 20 amino acids, 150 di-mers and 50 tri-mers. After 
feature selection using HMM-LDA, the number of features reduces to 176. The 
prediction accuracy is much better than using di-mers and tri-mers without sequence 
segmentation, and even better than using the dictionary words (the feature set before the 
feature reduction by HMM-LDA). Besides Pseudomonas syringae, we also conducted 
predictions on two test sets including type III effectors from multiple bacterial genomes. 
Rhizobium is an important kind of bacteria for symbiotic study. Our method successfully 
identifies 10 of 12 confirmed rhizobial effectors, better than two other computational 
tools, EffectiveT3 and BPBAac. As for a hybrid data set including 194 effectors from a 
variety of strains, our method also has a comparable performance with other prediction 
systems. 
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Thus far, a large portion of T3SEs still remain unknown. Bioinformatics tools are of 
great importance for high-throughput recognition of T3SEs and exploration of their 
characteristics. We believe that this new computational method can be widely used for 
efficient prediction of T3SEs in various bacteria species. By modeling the protein 
sequences into a kind of biological language, discovering secretion signals according to 
the selected informative words and latent topic information is a subject for further 
investigation. 
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