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a  b  s  t  r  a  c  t

To  predict  the outbreak  time  of  algal  blooms  and  its  duration  in an  actual  body  of  water,  this  paper
developed  a  directed  complex  networks  (CNs)  model  of  algal  blooms.  This  new  model  was  based  on the
characteristics  of  CNs  theory  and  the  primary  factors  that influenced  algal  blooms.  By  calculating  the
shortest  path  and  proposing  a key  degree  node  model,  the  role  of  each  influencing  factor  during algal
blooms  was  evaluated.  Based  on  years  of  on-site  monitoring  data  (collected  from  1992  to 2000)  con-
cerning  the  Han  River,  a statistical  characteristic  function  G  that  reflected  the  relationship  between  the
statistical  characteristics  of  dominant  algae  blooming  and  the degree  of algal  blooms  pollution  was  pro-
posed.  The  results  indicate  that  the  proposed  function  G is capable  of  effectively  and  semi-quantitatively
characterizing  the  outbreak  time  and  the  duration  of  algal  blooms.  If the  value  of  G  in  a  body  of  water is
less  than  32.6,  the  body  of water  will  outbreak  an  algal  bloom.  An  increasingly  smaller  of  G value  indicates
a  greater  degree  of algal  blooms  pollution  and  longer  bloom  duration.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

A  persistent view, called the ‘global spreading hypothesis’,
maintains that the frequency, magnitude and geographical extent
of harmful algal blooms have increased in recent decades (Jordan
and Wyatt, 2006). The apparent increasing worldwide occurrence
and impact of harmful algal blooms (HABs) events have commonly
been directly or indirectly attributed to an increased incidence of
eutrophication (Hallegraeff, 1993; Anderson et al., 2002; Glibert
et al., 2005a,b; Glibert and Burkholder, 2006; GEOHAB, 2006).
Such blooms invariably induced serious public health risks because
most blooming algae produced toxins, including hepatotoxins and
neurotoxins, and malodorous compounds, such as geosmin and 2-
methylisoborneol (MIB) (De Figueiredo et al., 2004). On the basis
of water quality monitoring data and relevant water environmen-
tal material data that have been gathered over many years, it is
possible to investigate the dynamic mechanism of algal blooms
thoroughly and clearly. Vollenweider (1975) explored the ele-
mentary mass balance and export models that were relevant to
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phosphorus- and nitrogen-induced eutrophication. Additionally,
Kuo et al. (2006) developed a combined neural network and genetic
algorithm (GA) for water quality management. Large amount of
investigations of the effects of upwelling on harmful algal blooms
(HABs) off the west coast of Florida (Lanerolle et al., 2006) was
developed into a useful tool for predicting the onset of HABs and
examining their dynamics due to upwelling. And the Spatially
Referenced Regressions on Watersheds (SPARROW) model was
extensively used in the USA to estimate nutrient loads to receiv-
ing waters, such as in the Gulf of Mexico (Robertson et al., 2009;
Hoos and McMahon, 2009). In the SPARROW model, statistical rela-
tionships were employed to relate water quality monitoring data to
upstream sources and watershed characteristics that affected the
fate and transport of nutrients (Glibert et al., 2010).

A water body during algal blooms is an open system of nonlinear
complex dynamics with characteristics of multi-factor interac-
tion and multi-dimensional cooperation (Zhan et al., 2009). It is
impossible to describe and elucidate the inner evolutions of algal
blooms completely quantitatively by using contemporary research
methods and theories. For example, although fluid dynamics and
neural network algorithms could capture the trends of algal dynam-
ics, the results usually exhibited solution divergence, and they
fell into local optima (Lee et al., 2003; Huisman and Sommeijer,
2002). Biochemical theories and experiments could forecast future
algal composition and abundance accurately, but researchers were
unable to reasonably explain or predict the time that an algal
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blooms will explode or subside, including the pollution distribution
and scale therein (Salacinska et al., 2010).

Watts and Strogatz (WS) (1998) proposed a model that inter-
polated between a regular ring lattice and a random graph. Since
then, the study of complex networks (CNs) gradually coalesced
into a complete independent discipline called the “new science
of networks” (Watts, 2004). The new theory of CNs has perme-
ated into the life sciences, engineering sciences, social sciences and
other different fields (Elgazzar, 2003; Tatem and Hay, 2007; Galvao
and Miranda, 2008). With further investigation, the main proper-
ties of CNs have attracted significant attention in recent years. For
example, Allesina and Bodini (2004) used the topological structures
theory of CNs to investigate the problem of secondary extinction in
food webs. Chatlines in the framework of social networks have been
studied using the dynamics of CNs (Guazzini et al., 2010). In addi-
tion, both the robustness and vulnerability of CNs were discussed
in the field of power grids (e.g., Sole et al., 2008; Mishkovski et al.,
2011).

According to graph theory and statistical patterns, CNs can be
used to process and resolve numerous problems that occur in com-
plex systems based on the following points such as overall behavior,
synchronic effects, statistical characteristics, transitivity and small-
world effect (Watts, 2004; Allesina and Bodini, 2004; Guazzini
et al., 2010). Unfortunately, the study of algal blooms using CNs
has received sparse attention, and there is little available data. A
paper that was relevant to this research was published by Zhan
(Zhan et al., 2009), who is a member of our team, in Acta Scientiae
Circumstantiae, China. Therein, the synchronization of CNs theory
used to judge whether algal blooms outbreaks can be used to char-
acterize the state of pollution in the Three Gorges Reservoir Area of
the Yangtze River.

In this study, an algal blooms statistical characteristics func-
tion G is formulated by constructing a directed CNs model of algal
blooms and a series of statistical characteristics calculations. This
function can be used to predict the time and duration of the out-
break in an actual body of water.

2. Materials and methods

2.1. Directed CNs of an algal blooms

Supposing that an actual body of water can be abstracted as a
complex networks (CNs) consisting of a set of nodes, we  take poten-
tial factor that influenced algal blooms as a node in the CNs, which,
together, constitute a set of points V (V = {v1, v2, . . .,  vn}). The edges
that represent the interactions among the nodes are abstracted as
a set of edges E (E = {e1, e2, . . .,  em}). Then, the graph G = (V, E),
which is composed of V and E, can reflect the actual state of the
algal blooms waters, and we denote the number of nodes and the
number of edges as n = |V| and m = |E|, respectively (Newman, 2003;
Wang et al., 2006). Each edge in E has a corresponding pair of nodes.
A directed complex networks, as defined by Newman (2003), is a
complex network that composed of directed edges.

Many factors regulate changes in water ecosystems (Kagalou
et al., 2008). Generally, the algal blooms process is considered to
be a response to nutrient loading, such as total nitrogen (TN) and
total phosphorus (TP), and a response to hydrological factors, such
as water temperature (T), flow velocity (v), pH, dissolved oxygen
(DO), light intensity (I), algae density (�), and species of algae (N)
(Glibert and Bronk, 1994; Glibert et al., 2005a,b; Kemp et al., 2005;
Liu et al., 2005a,b, 2006, 2007; Glibert and Burkholder, 2006; Hood
et al., 2006; Heisler et al., 2008; Liu and Zhang, 2008; Zhan et al.,
2009; Long et al., 2011). As the size of the diversity of an investi-
gated system increases, more information will be available that can
be used to understand the interactions of the influencing factors.

Fig. 1. The directed CNs model of algal blooms with n = 9 nodes and m = 27 edges.
TN, total nitrogen; TP, total phosphorus; T, water temperature; v, flow velocity; DO,
dissolved oxygen; I, light intensity; N, species of algae; �, algae density.

Thus, it is important to find out the potentially influential factors
and build a directed CNs model in order to evaluate algal blooms
processes, including algal blooms outbreak time, the degree of algal
blooms pollution, and algal blooms duration and scale. To build
a directed CNs model of algal blooms in this study, we  took nine
influencing factors into account, and each influencing factor was
abstracted as a node in the model. The edge between two  nodes
was described as the interaction of two influencing factors. Fig. 1
depicts the directed CNs model of algal blooms.

According to the direct effects and appearances of the influenc-
ing factors on algal blooms processes, we  classify the nine factors
into three levels, as follows:

(1) TN, TP, T, v and I are established as the first influencing fac-
tor level (basic), for the five factors are most easily affected by
outside influences.

(2) pH, DO, and N are affected by both external influences and the
functions of nutrients in the water; hence, these factors are
established as second level factors.

(3) Because the visual appearance of an algal blooms is directly
a function of the rapid proliferation and growth of algae, � is
established as a third level, which represents the terminal of
the directed CNs.

2.1.1. The characteristics of CNs
In recent years, numerous concepts and methods have been pro-

posed and used to depict the characteristics of CNs. These studies
primarily focused on the average path length (L), clustering coeffi-
cient (C), and degree (ki) in CNs (Wang et al., 2006). In addition, to
better reflect the circulation of data between any two  nodes when
calculating the shortest path, this paper took the betweenness (Bi)
into account.

2.1.2. The average path length (L)
The average path length (L) is the average geodesic distance

between any two nodes, and it is also the shortest distance that
links two nodes at one time (Wang et al., 2006). The essence of L
involves the probability statistics that interact in an entire network.
The calculation of L between node vi and node vj is:

L = 1
(1/2)N(N − 1)

∑
i≥j

dij (1)

where N is the number of nodes, and dij is the geodesic distance
from node vi to node vj.
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Table 1
The correlation coefficients of influencing factors during algal blooms. The data is processed with the software of SPSS16.0.

No. Influencing factors TN TP T v pH DO I N �

1 TN 1 0 0.295 0.12 0.036 0 0 0.1962 0.249
2  TP 1 0.131 0.19 0.506 0 0 0.0573 0.863
3 T 1  0 0.218 0.275 1 0.0083 0.187
4  v 1 0.15 0.51 0 0.0064 0.771
5 pH  1 0.828 0 0.0079 0.640
6  DO 1 0 0.0170 0.732
7  I 1 0.0413 0.164
8  N 1 0.992
9 � 1

2.1.3. Degree (ki)
The degree ki of a node vi is the number of edges that are inci-

dent with others. There is the idea of out-degree and in-degree in
directed CNs, wherein the out-degree of a node vi is the number of
edges from node vi to others. The in-degree of vi is the number of
edges from other nodes to vi. The greater the degree of a node, the
more important the role it plays in the entire network (Wang et al.,
2006).

2.1.4. Clustering coefficient (Ci)
For each node, the clustering coefficient Ci is defined as the ratio

of the number of edges (Ei) among the nodes within its neighbor-
hood divided by the total number of edges (ki(ki − 1)/2) that could
possibly exist among them (Newman, 2003). It can be quantified
by defining a clustering coefficient Ci as follows:

Ci = 2Ei

ki( ki − 1)
(2)

where ki is the number of edges of a node that connect to other
nodes. Then, the clustering coefficient C within the entire network
is the average of Ci over all of the nodes. By definition, we know
that 0 ≤ Ci ≤ 1 and 0 ≤ C ≤ 1.

2.1.5. Betweenness (Bi)
Betweenness (Bi) is the number of times that node vi is passed

when calculating the shortest path in CNs (Freeman, 1977, 1979).
In general, a sparse CNs has a low betweenness, whereas a dense
CNs has a high betweenness.

According to the characteristics of CNs, the interaction of any
two factors can be expressed by the average path length. The clus-
tering coefficient is mapped by the degree of interaction among
factors. The contribution rate of each node is mapped to a key
degree, and the betweenness can be understood as the number of
times that node vi is passed when calculating the shortest path in a
CNs. Therefore, the complex interactions and degrees in nonlinear
factor influences can be completely delineated.

2.2. Numerical computation

2.2.1. Correlation analysis and edge distances
Correlation (relevance) analysis is a common statistical method

to study the relationship between two  or more variables, and cor-
relation coefficient is a value of measuring the closeness of them
(Mizzaro, 1997). The correlation coefficients of the influencing fac-
tors are calculated on the basis of actual winter and spring algal
blooms values in the Daning River, which is a tributary of the Three
Gorges Reservoir Area (Cao et al., 2009). Table 1 depicts the calcu-
lating results of correlation coefficients.

In Table 1, the correlation coefficients between � and the first
influencing lever factors (TN, TP, T, v, and I) are 0.249, 0.863, 0.187,
0.771, and 0.164, respectively. These data means that the effects of
nutrients on � is larger than the geography factors (T, v, and I), and
the influence of TP to � outweigh TN’s. The correlation coefficient
between N and � is 0.992, which is the greatest value in the second
level factors, and that means that they are closely related.

In this study, each influencing factor is regarded as a node in a
CNs, and set rij is the correlation coefficient between nodes vi and
Bj. We can obtain the edge distances Wij (i, j = 1, 2, . . .,  9) between
each two  nodes via the normalization method [Xiao et al., 2005,
Eq. (5.3.2)]. And the calculation results of the edge distances were
shown in Table 2.

Wij =
∑n

i,j=1rij

rij
and i, j = 1, 2, . . . , n; n = 9. (3)

The results of Table 2 demonstrate that these nodes between
TN and T, T and DO, v and DO, TN and N, and TP and v have high
probabilities of being passed through when calculating the short-
est paths, because the edge distances between them are obviously
smaller than others. In other words, these interactions contribute
greatly to the algal density. The values of edges that are marked as
either “0” or “∞” in Table 2 indicate that the directed path between
a pair of nodes does not exist in the CNs.

2.2.2. Numerical computation of the characteristics
In this paper, the Floyd algorithm was used to calculate the

shortest distances and specific paths between each pair of nodes

Table 2
The edge distances of the directed CNs model of algal blooms.

No. Influencing factors TN TP T v pH DO I N �

1 TN 0 ∞ 1.4 3.5 48.3 ∞ ∞ 1.7 20
2  TP ∞ 0 2.5 1.7 3.4 ∞ ∞ 5.9 5.3
3  T 1.4 2.5 0 ∞ 8.0 1.4 1 33.3 25
4  v 3.5 1.7 ∞ 0 11.6 1.5 ∞ 50 5.9
5  pH 48.3 3.4 8.0 11.6 0 2.1 ∞ 50 7.1
6 DO  ∞ ∞ 1.4 1.5 2.1 0 ∞ 20 6.3
7  I ∞ ∞ 1 ∞ ∞ ∞ 0 8.3 25
8 N  1.7 5.9 33.3 50 50 20 8.3 0 4.8
9  � 20 5.3 25 5.9 7.1 6.3 25 4.8 0
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Table  3
The shortest distances of the directed CNs model of algal blooms.

No. Influencing factors TN TP T v pH DO I N �

1 TN 0 – – – 48.3 – – 1.7 6.5
2 TP – 0 – – 3.4 – – 5.9 5.3
3 T  1.4 2.5 0 – 5.0 2.9 – 3.1 7.8
4  v 3.5 1.7 – 0 3.6 1.5 – 5.2 5.9
5 pH  – – – – 0 – – 50 7.1
6  DO – – – – 2.1 0 – 20 6.3
7  I 2.4 3.5 1.0 – 6.0 3.9 0 4.1 8.8
8  N – – – – – – – 0 4.8
9 � – – – – – – – – 0

within the CNs (Tsai et al., 2004). The calculations are given in
Tables 3 and 4.

In Table 4, we can depict the nodes that can directly reach node
v9, which include TP, v and the second level factors (pH, DO and N).
This table indicates that these nodes cannot affect other factors;
however, these nodes can directly impact � and change it, ulti-
mately resulting in algal blooms. Furthermore, according to Table 4,
it can be observed that TN could indirectly affect � by influenc-
ing the species of the dominant algae (N). In addition, the water
temperature (T) influences the algal blooms through TP, for T can
change the form of phosphorus existing in water body (Liu et al.,
2006; Liu and Zhang, 2008). Light intensity (I) indirectly affects algal
blooms through the nodes of T and TP. In summary, we can obtain
the shortest path from node I (v7) to node � (v9): I → T → TP → �.
The detailed paths that each node arrives at on the end [the algae
density (�)] are summarized in Fig. 2 according to the results of
Tables 3 and 4.

2.3. Key degree node model

To better depict the role of each node in the modeled algal
blooms, we propose another parameter: the key degree node model
�i (Wang et al., 2006), as shown in Eq. (4):

�i = �+
i

× �−
i

dmin
× Bi (4)

Fig. 2. The shortest paths of the influencing factors of algal blooms.

where �+
i

and �−
i

represent the in-degree and out-degree of node
vi, respectively. The parameter dmin represents the shortest dis-
tance from node vi to node v9, and Bi represents the betweenness
of node vi. In the paper, we set the in-degrees of v and I as 1. Because
the parameter �i takes the shortest distance, the betweenness and
directed characteristics of node vi into account, it is able to repre-
sent the role of node vi in CNs. Notably, the higher the value of �i,
the more important role node vi plays in the entire algal blooms
CNs.

Table 4
The shortest paths of the directed CNs model of algal blooms. These figures in this table represent different nodes/factors: (1) TN (total nitrogen), (2) TP (total phosphorus),
(3)  T (water temperature), (4) v  (flow velocity), (5) pH, (6) DO (dissolved oxygen), (7) I (light intensity), (8) N (species of algae), and (9) � (algae density).

No. Influencing factors TN TP T v pH DO I N �

1 TN 1 – – – 5 – – 8 8
2  TP – 2 – – 5 – – 8 9
3  T 1 2 3 – 6 6 – 1 2
4  v 1 2 – 4 6 6 – 1 9
5  pH – – – – 5 – – 8 9
6  DO – – – – 5 6 – 8 9
7  I 3 3 3 – 3 3 7 3 3
8  N – – – – – – – 8 9
9 �  – – – – – – – – 9

Table 5
Parameters of the directed CNs model of algal blooms.

Node Clustering coefficient (Ci) Node degree Betweenness (Bi) Key degree model (� i)

In-degree (�+
i

) Out-degree (�−
i

)

TN 0.1389 2 3 5 4.62
TP  0.1389 2 3 4 4.53
T  0.1944 1 6 8 6.15
v  0.1667 1 6 1 1.02
pH  0.1944 5 2 4 5.63
DO  0.1389 2 3 5 4.76
I  0.0833 1 3 1 0.34
N 0.2222 7 1 6 8.75
Clustering coefficient of the whole CNs 0.1667
Average path length 8.16
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Table 6
Local monitoring data of Feb. and Mar. in the Han River from 1992 to 2000. The Hanjiang River is 1570 km long, covers an area of 159,000 km2. It is the second largest branch
of  the Yangtze River, China.

Year TN (mg  L−1) TP (mg  L−1) T (◦C) v (m s−1)

1992 1.216 0.0807 11.0 0.213
1993 1.329 0.0882 7.6 0.583
1994  0.973 0.0949 7.8 0.410
1995  1.085 0.0983 7.2 0.319
1996  1.246 0.0737 6.9 0.396
1997  1.336 0.0994 6.8 0.479
1998 1.653 0.1962 11.5 0.130
1999 1.494 0.1589 7.2 0.414
2000  1.354 0.1318 11.5 0.168

Table 7
Computing values under different hydrologic conditions and relative functions in Han River.

Year G Relative duration The degree of algal blooms pollution

1993–1997, 1999 40.38–43.83 None Not occurred, although sometimes have a higher degree eutrophication
1992  32.6 Short Occurred, but quickly disappeared
2000 31.24 Long Occurred, had a certain intensity
1998 30.71 Longer Occurred, and the intensity is larger

Table 5 illustrates the parameters �i of the directed CNs model of
algal blooms. The degrees of the influencing factors on algal blooms
processes (see Table 5) can be ranked as N (8.75) > T (6.15) > pH
(5.63) > DO (4.76) > TN (4.62) > TP (4.53) > v (1.02) > I (0.34).

3. Results and discussion

3.1. Building the algal blooms statistical characteristics function G

Although the parameters ci, ki, Bi and �i can describe many char-
acteristics of the entire algal blooms CNs, they fail to assess the
situation and degree of algal blooms. Based on an overall consid-
eration of various factors (a clustering coefficient, the key degree
node, the shortest distance), we build a statistical function of the
algal blooms directed CNs, as shown in Eq. (5):

G = � ′
1d1 + � ′

2d2 + � ′
3d3 + � ′

4d4 + �5d5 + �6d6 + �7d7 + �8d8

8
(5)

where G is the statistical function of the directed CNs model, di
denotes the shortest distance between node vi and node v9 (dmin)
and �i represents the key degree model of a node. In this study, we
modified four parameters, TN, TP, T and v, for their contents change
greater than others’ in a body of water in a year. The modified
equations are:

� ′
TN = coTN

cTN
�TN (6)

� ′
TP = coTP

cTP
�TP (7)

� ′
T = Toi

Ti
�T (8)

� ′
v = Vi

vopt
�v (9)

where ci denotes the actual concentrations of the primary influenc-
ing factors that affect vi, whereas Ti is the water temperature and Vi
is the water flow velocity. Considering eutrophication from a single
nutrient, it is generally believed that algal bloom is possible, when
the contents of nitrogen (TN) and phosphorus (TP) exceed a certain
critical concentration limit (the TP and TN concentrations, respec-
tively, are 0.02 mg  L−1 and 0.2 mg  L−1), an algal blooming event is
possible (Zhan et al., 2009). Correspondingly, the value of coTN is
0.2 mg  L−1 and coTP is 0.2 mg  L−1. Because vopt = 0.1 m s−1 is the opti-
mal  velocity of algal growth in a calm flowing river (Zhan et al.,
2009), this study establishes voi as 0.1 m s−1. When nutrient levels
and other conditions are suitable, a water temperature of 28 ± 1 ◦C
could promote algal blooms growth (Huang et al., 2009; Long et al.,
2011) hence, we selected 28 ◦C as the value of Toi.

3.2. Rating the algal blooms statistical function G

We processed recent monitoring data (shown in Table 6) (Zhan
et al., 2009) of the Han River, which is the second largest branch of
the Yangtze River, China, using Eq. (5),  and the results are depicted
in Table 7.

We  carried out a semi-quantitative classification of the G func-
tion using the aforementioned monitoring data and relevant Three
Gorges Reservoir tributary waters information. The results are as
follows:

G =

⎧⎪⎪⎨⎪⎪⎩
≤ 30.7 large-scale algal blooms
(30.7, 31.3) serious algal blooms
(31.3, 32.6) obvious algal blooms
(32.6, 40.0) slight algal blooms
≥ 40.0 none

Table 8
G  values under different hydrologic conditions and relative parameters in different water areas.

Monitoring sites Year TN (mg  L−1) TP (mg  L−1) T (◦C) v (m s−1) G Relative duration The degree of algal
blooms pollution

Xiantao section of Hang River March, 2000 0.14 2.04 14 0.69 36.94 Short Slight
Xiakou section of Xiangxi River May and June, 2005 2.96 0.52 21 0.009 22.80 Long Occurred and the

intensity is larger
Gaolan section of Xiangxi River June and July, 2008 2.96 0.09 26.5 0.056 22.05 Long Occurred and the

intensity is larger
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3.3. The verification of function G

The data that were obtained from water quality monitoring of
the Xiantao section of the Hang River (Liu et al., 2005a,b), the Xiakou
section of the Xiangxi River (Wang et al., 2007), and the Gaolan
section of the Xiangxi River (Yang et al., 2010) were used to verify
G. Table 8 summaries the calculated G values.

The calculated G value (see Table 8) of the Xiantao section in
March 2000 falls within the range of 32.6–40.0, which indicates that
this section had a slight algal blooms during that time. According to
water quality reports at that time, floating cyanobacteria and large
filamentous algae were observed in the river. According to water
analysis of the Xiakou section, G is equal to 22.80, indicating that
the river experienced a large, strong and lengthy algal blooms in
May and June of 2005, which matches the actual river condition at
that time. A serious algal blooms happened in the Gaolan section in
June and July of 2008, and the resultant G was calculated to be 22.05.
A comparison between the simulated and measured data indicates
that our forecasting results agree well with the actual water quality
monitoring data.

4. Conclusions

From the correlation (relevance) analysis, the effects of nutrients
(TP, TN) on � is larger than the geography factors (T, v, I), which
means that the effects of nutrients on � is larger than the geography
factors. The influence of TP to � outweigh TN’s that explain why  TP
play a key role in algal blooms. The correlation coefficient between
N and � is the greatest in the three levels. That means species of
algae (N) are closely related to algae density (�).

We can come to the conclusion that the nodes of TP, v and the
second level factors (pH, DO and N) could directly reach node v9
(�). And others have to indirectly influence algal blooms by directly
influencing other factors. TN could indirectly affect � by influencing
the species of the dominant algae (N). In addition, the water tem-
perature (T) influences the algal blooms through TP, light intensity
(I) indirectly affects algal blooms through the nodes of T and TP.

This paper presented a new computational model to study algal
blooms processes by using the characteristics of CNs theory and the
interactions of the primary influencing factors contained there. In
addition, we built a key degree node model in order to describe the
role of each influencing factor in algal blooms. Using water quality
monitoring data of the Han River (1992–2000), we established the
statistical characteristics function G as an assessment criterion for
evaluating algal blooms processes. Here, based on a long time and
continuous monitoring of the water body, the proposed function G
can predict the algal blooms outbreak time, degree of algal blooms
pollution, and algal blooms duration and scale. The results indicate
that G can effectively represent the state of algal blooms in a semi-
quantitative way.
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