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Space-time uncertainty relation from quantum and gravitational principles

Yi-Xin Chen∗ and Yong Xiao†

Zhejiang Institute of Modern Physics and

Zhejiang University, Hangzhou 310027, China

By collecting both quantum and gravitational principles, a space-time uncertainty relation
(δt)(δr)3 > πr2l2p is derived. It can be used to facilitate the discussion of several profound ques-
tions, such as computational capacity and thermodynamic properties of the universe and the origin
of holographic dark energy. The universality and validity of the proposed relation are illustrated via
these examples.
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I. INTRODUCTION

Any physical system in the quantum world is under-
going quantum fluctuations, which introduce space and
time uncertainties to the system. Interestingly, general
relativity (GR) conspired with quantum mechanics (QM)
have determined the severity of these space-time uncer-
tainties.

We firstly start from a theoretical question: What is
the maximal spatial resolution when using photons uni-
formly spread in a box of size l for observation. Statis-
tical mechanics tells that the photon gas has the energy

E ∼
k4

B

c3h3 l3T 4. To insure that the system will not col-
lapse to form a black hole, there must be a GR limitation

that E ∼
k4

B

c3h3 l3T 4 6 Ebh ∼
c4

G l, where Ebh is the energy
of a black hole of the same size. This limitation leads

to kBT 6
(

c7h3

G

)1/4

l−1/2. The corresponding thermal

wavelength is thus λ = hc
kBT > l1/2

(

hG
c3

)1/4
= l1/2l

1/2
p ,

where lp ≡

(

hG
c3

)1/2
is the Planck length. It gives the

uncertainties in the positions of the photons themselves,
so one can not detect the system by virtue of these pho-
tons with more precision than their shortest wavelength

l1/2l
1/2
p . Such a limitation is firstly given by ’t Hooft

in [1]. Since the size of a physical system should be

larger than lp, there is δl > l1/2l
1/2
p > lp. It implies that

when limited to a smaller region, one can always employ
higher energy photons and detect finer structures until
the Planck scale.

The corresponding resolution of the system with δl >

l1/2l
1/2
p reaches l3

(δl)3
∼ A3/4, where A is the boundary

area of the system. To find a holographic resolution [2, 3]

which is proportional to the area, namely l3

(δl)3
∼ A, we

have to require δl > l1/3l
2/3
p . The latter uncertainty is

consistent with holographic principle and related to the
unknown details of black hole physics [9]. And it is dif-
ferent from the uncertainties of radiation systems which
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are described by local quantum field theory (LQFT).

Notice that both the two uncertainty relation δl >

l1/2l
1/2
p and δl > l1/3l

2/3
p have spread in the literature

with various derivations and applications [1, 4, 5, 6, 8, 9,
10]. Firstly the two relations can be written with a form
of ultraviolet-infrared (UV-IR) relations. Cohen et al [5]
have proposed that the UV-IR relation for LQFT systems
and for holographic systems are respectively l3Λ4 6 l and
l3Λ3 6 l2, or written as Λ 6 l−1/2 and Λ 6 l−1/3. (Here-
after we shall set G, ~, c, kB = 1 and not write lp or mp

explicitly.) Since the UV cutoff Λ determines the minimal

detectable lengths, that is Λ = (δl)
−1

, they directly cor-
respond to the two uncertainty relations above. Again,
the different UV-IR relations play an important role in
the strict verification of the entropy gap between LQFT
and holographic systems, from A3/4 to A [33].

On the other hand, the two type of uncertainties could
be understood as the uncertainties in the measurement
of a distance l. Realizing such distance measurements
through Gedanken experiments using clocks and light
signals, by carefully evaluating the quantum and gravi-
tational corrections to the measurement procedure, both
δl > l1/2 and δl > l1/3 can be derived consistently [34]
[8]. Obviously, which δl should be applied depends on
which tools one use for observation or transmitting sig-
nals: conventional photons or some unknown holographic
“particles”.

Moreover, Ng has treated these uncertainties from a
viewpoint called quantum foam [9, 10]. That is treating
the space-time geometry as undergoing quantum fluctu-
ations which manifest themselves by the accuracy with
which one can measure a distance l, generally written as
δl > lαl1−α

p with α = 1
2 and α = 1

3 as its special cases.

The two type of quantum fluctuations also find appli-
cations in cosmology to establish dark energy models. It
has been found that both of them can yield an energy
density of the form ρΛ ∼ l−2. Choosing the IR cutoff l to
be a proper cosmological scale such as the size of cosmo-
logical horizons, the energy density of this type defines
the so-called “holographic dark energy (HDE)” models
[20, 21, 22, 23, 24, 25].

Generally speaking, different systems are subjected
to different quantum fluctuations, up to what they are
composed of. The characteristic quantum fluctuation
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δl > l1/2 is applicable to LQFT systems with entropy
bound A3/4, while δl > l1/3 is applicable to strongly
gravitational systems like black holes with holographic
entropy. Meanwhile, δl not only characterizes the quan-
tum fluctuations and then the space-time uncertainties
within the interior of a physical system, but also charac-
terizes the measurement error to the size l of the entire
system.

In this Letter, we devote ourselves to gain more in-
sights into the significance of the quantum uncertain-
ties rooted in a system. In Section II, from a quantum
computational perspective, combining principles from
GR and QM, we find a space-time uncertainty relation
(δt) (δr)

3
> πr2, with δt and δr representing the sever-

ity of space-time fluctuations of the constituents of the
system at small scales. We find the relation could be
very useful in the cases where the analysis of fundamen-
tal degrees of freedom plays an essential role. Several ex-
amples of this kind will be included in Section III. The
main physical characteristics of them are extracted di-
rectly through the space-time uncertainty relation and
compared to the known results in the literature.

II. SPACE-TIME UNCERTAINTY RELATION

A physical system could always be reduced to inde-
pendent degrees of freedom doing Boolean calculations.
The shift of states on these self-governed quantum bits
leads to the evolvement of the entire system. In this sec-
tion, we shall start from such a quantum computational
perspective and derive a space-time uncertainty relation.

Without loss of generality, we consider a globular com-
puter of radius r. Assume the computer is made up

of r3

(δr)3 = r3Λ3 independent functional units which are

employed to store information and execute instructions,
with δr ≡ Λ−1 representing the size of a single functional
unit. Every unit has an energy ε for executing operations.
GR requires that the computer as a whole cannot has an
energy exceeding the mass of a black hole of the same
size. Thus

εr3Λ3 6 Ebh = r/2. (1)

For any independent degree of freedom or a quantum bit,
the Margolus-Levitin theorem [11, 12, 13, 14] determines
the minimal time it takes to finish an operation (a shift of
states) is δt = π

2ε , where ε is the energy distributed in this
degree of freedom for it to execute Boolean calculations.
Together with Eq.(1), we find a space-time uncertainty
relation

(δt)(δr)3 > πr2. (2)

The above derivation to Eq.(2) is a heuristic one. Actu-
ally the simplified picture above is closely related to real-
istic physical systems. Taking the photon gas for exam-
ple, the photons within have an uncertainty in position
which is δr > r1/2, as we have shown at the beginning of

this Letter. In addition, none of these A3/4 uncorrelated
photons (without wave-packet overlapped) is fixed and
permanently unchangeable. Actually every of them is de-
scribed by a quantum state evolving with time according
to the QM laws, specifically Margolus-Levitin theorem
here. The time interval it takes for a quantum bit or
an independent photon here evolving from one state to
its orthogonal states is typically δt > r1/2. Obviously, it
characterizes the uncertainty or randomness of the quan-
tum states of an isolated photon in time direction. δr
and δt together conform to Eq.(2). They characterize the
quantum uncertainties of the constituents of the system
within the space-time, but not directly the fluctuations of
the space-time itself, unless one has introduced some mi-
croscopic mechanism of quantum gravity and then deals
with a bulk of gravitons.

Whatever, it should be emphasized that Eq.(2) is not
a space-time uncertainty relation of usual type. Though
the physical system is composed of a large amount of
fundamental units or degrees of freedom, in determin-
ing their uncertainties within space-time, GR has to be
employed to limit the energy of the system as a whole.
Thus Eq.(2) can only be applied to the cases taking a
global viewpoint of measurement on the system, that is
simultaneously taking all of its fundamental units into
consideration. Furthermore, the deduced uncertainties
δr and δt are relevant to the size l of the entire system.
Actually it means that the combination of GR an QM
principles would inevitably cause an unusual correlation
between the global and local properties of a system like
the UV-IR relations [5]. For general discussions about
the limit on space-time measurements, one may refer to
[8, 16] and references therein.

For LQFT systems like the conventional matter and
radiation, one usually require the space and time are
treated equally [9, 10]. Combining with the relation (2),
the uncertainties of δr ∼ δt > r1/2 can be easily obtained.
It can also be gained by directly comparing the energy
formula E ∼ r3T 4

∼ T
(

r3T 3
)

for the photon gas system
with Eq.(1). By contrast, to count the holographic de-
grees of freedom or entropy that is applicable to “black
hole computers”[15], we have δr ∼ r1/3 and thus δt ∼ r.
The corresponding UV cutoffs of these systems are ob-
tained from Λ = (δr)−1.

UV cutoff Λ: 0
LQFT

−−−−−→

S6A3/4

(rlp)
−1/2 New physics?

−−−−−−−−→
S6A

(

rl2p
)−1/3

As argued by Cohen et al, the physics with energy below
the UV cutoff Λ 6 r−1/2 is well-described by LQFT. It
was also pointed out by Hsu [22] that when Λ > r−1/2,
the gravitational corrections to the energy of a LQFT
system will be too large and lead it to undergo gravita-
tional collapse, which makes a LQFT description invalid.
The physics beyond LQFT from Λ ∼ r−1/2 to Λ ∼ r−1/3

is still obscure now. It might be some new physics con-
stituting a necessary part of quantum gravity.

Note that the entropy bound A3/4 is for conventional
matter configurations, while A is for the back holes of the
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same energy and is considered as the maximum entropy
contained in the region in the spirit of holographic prin-
ciple. Consider a system or a star composed of conven-
tional matter with lesser entropy undergoes gravitational
collapse to form a black hole with the area entropy A. It
involves a drastic change in its interior metric from near-
flat to an extreme one. What happens in such a collapse
process in the context of quantum gravity? And what
could fill such an entropy gap between A3/4 and A? They
are both interesting but difficult questions to be further
explored and are beyond the scope of this Letter. It is
worth to note that the so-called “monster configurations”
which originated from a curved space consideration seem
to be a candidate for filling up the gap between A3/4 and
A. See the original works of Hsu et al [18, 19] for details.

III. EXAMPLES

A. Universe as a supercomputer

Lloyd has investigated the universe from a quantum
computational viewpoint in [12, 13]. It was found that
the universe has performed about 10120 “ops” or “ticks
and clicks” since the big bang. In this section, we shall
explain and clarify this idea using the space-time uncer-
tainty relation (2).

Since a computer has r3

(δr)3
working bits with each re-

sponding t
δt times within a time interval t. Thus the

total number of operations that can be performed in a
supercomputer of radius r over time t, in other words,
the number of events that can occur in this volume of
space-time is

♯ ≡
r3

(δr)3
t

(δt)
6

rt

π
. (3)

The universe, like any computer produced in human fac-
tories, is obeying GR and QM and should be restricted
by the above quantum-gravitational limit. It is a rather
huge number when completed as rt

πl2p
and will be able to

support any miracle that has happened in the history of
the universe. This computational limit was obtained by
Lloyd [14] from ♯ = t

π/(2Etotal)
6 rt

π . The equivalence

of our derivation to this one is easily proved, by notic-

ing that Etotal = ε r3

(δr)3
. The derivation in [14] is directly

based on the energy limitation from GR. By contrast, our
derivation reveals more subtleties on this issue, making
one compare easily the differences between LQFT sys-
tems and holographic systems in computational aspect.
That is, LQFT systems have at most A3/4 computational
units with each processing at a rate r−1/2, while holo-
graphic objects like black holes have A units processing
at the rate r−1. Though these systems as whole are sub-
ject to the same bound on the information processing
rate, which is A3/4r−1/2

∼ Ar−1
∼ r as found in [17],

a single quantum bit of a LQFT system runs more effi-
ciently than these in holographic systems.

Now consider a spatial-flat universe which is homoge-
neous and isotropic and is described by the FRW metric.
The corresponding Friedmann equations read

3

(

ȧ

a

)2

= 8πρ, (4)

ρ̇ + 3 (1 + w)
ȧ

a
ρ = 0. (5)

Here w is defined by the effective equation of state (EoS)
of the constituents of the universe, p = wρ.

The first Friedmann equation (4) can be written as
ρ = 3

8π r−2
a , where ra is the radius of the dynamical ap-

parent horizon of the universe. It is equal to the Hubble
radius rh ≡ ( ȧ

a )−1 in the flat universe. Without confusion
we shall write them both as r. The total energy confined
within the apparent horizon is thus ρ(4π

3 r3) = r
2 , as the

same amount as the critical energy to form a black hole
of the same size. Since the apparent horizon is argued to
be a causal horizon [30], it is natural to view the FRW
universe as a supercomputer of radius r which is running
at its ceiling running speed determined by GR and QM.
It is easy to compute out the number of “ops” performed
by the universe since the big bang, through the formula
♯ = 1

πl2p

∫

r(t)dt. From the Friedmann equations, the en-

ergy used to execute computations is just these spreading
in the universe: radiation, dusts, dark energy, or others.
Thus we know the universe keeps doing computations
and what it computes is just the dynamical evolution of
itself and its constituents [13]. Only little amount of its
energy is employed by human beings to perform digital
computations. For more details of the computational as-
pects of the universe, see [10, 13]. A point worthy of
remark is that the EoS of the constituent greatly affects
the calculation of the “ops” numbers executed by the uni-
verse, since it determines the behavior of r(t) by virtue of
ṙ (t) = 3

2 (1 + w) which can be derived from the Friedman
equations.

Knowing Etotal = r
2 for the universe, the space-time

uncertainty relation is saturated as

(δt) (δr)3 = πr2. (6)

It characterizes the quantum fluctuations of the con-
stituents uniformly distributed in the universe. We gen-
erally write δr = crα, δt = c−3r2−3α obeying the relation,
where c is a parameter of order 1. Different constituents
of the universe such as local quantum fields or some un-
known holographic contents shall involve different type
of space-time fluctuations, with the choice of α = 1

2 for

radiation and α = 1
3 for holographic constituents [9].

To the universe as a supercomputer, the size of any
functional cell must be smaller than the whole size r of
the supercomputer, thus there is δr 6 r. Meanwhile, QM
requires the lowest definable energy for an independent
degree of freedom of the system confined in a box is the
IR cutoff energy r−1, thus ε > r−1. The two limitations
lead to the upper and lower bound on the space-time un-
certainties. By applying Eq.(6), we determine the range
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of the parameter as α ∈ [13 , 1]. The total information

storage capacity r3

(δr)3
∼ r3−3α of the computer can only

range from 1 to A, as expected by the holographic prin-
ciple. Furthermore, Eq.(6) directly reveals a space-time
noncommutative property usually emerging in quantum-
gravitational models [26]. An evidence is that the spatial
size δr of an independent operational unit of the system
increases with its energy ε ∼ (δt)−1, which is a typical
sign of the space-time noncommutativity.

B. Thermodynamics properties of the universe

In this section, we show that when employing the
space-time relation (6), some of the thermodynamics
properties of the universe can be extracted directly. Bar-
row [7] has investigated in detail the cosmological coun-
terpart of the entropy gap between matter and radia-
tion entropies and the Bekenstein-Hawking entropy. We
implement such a cosmological entropy gap in our con-
sideration. Both the radiation-dominated universe with
information storage capacity A3/4 and the holographic
universe are referred to. More interestingly, when limited
to the holographic case, the deduced expressions have a
similar form with these in [31, 32], which aimed to ex-
plore the profound physical connections between thermo-
dynamics and gravity.

Consider a spatial-flat FRW universe filled with a per-
fect fluid with EoS p = wρ. The energy-momentum ten-
sor of the fluid is of the form

Tab = (ρ + p)uaub + pgab, (7)

where ua satisfies uaua = −1. The energy U is the inte-
gral of the energy density over the volume enveloped by
the apparent horizon

U ≡

∫

Tabu
aubdV =

∫

ρdV. (8)

From the Friedmann equation (4), we find U = r
2 and

dU = 1
2dr = 1

3ρdV . This relation is different from the
conventional one dU = ρdV , due to the fact that the en-
ergy here is not proportional to the 3-dimensional volume
of the system, but to its radius. On the other hand, the
entropy of the universe is evaluated as

S = r3 (δr)−3 = c−3r3−3α. (9)

Having energy U and entropy S, the temperature can be
obtained from the thermodynamical law dU = TdS −

pdV , that is [35]

T =
dU + pdV

dS
=

1

3 − 3α
(1 + 3w)

1

2
c3r−2+3α. (10)

Combining Eq.(9) and Eq.(10), we find TS = 1+3w
3−3α U .

Write it in a more general form

TS =
1

3 − 3α

∫

(ρ + 3p)dV

=
2

3 − 3α

∫
(

Tab −
1

2
T c

cgab

)

uaubdV.

(11)

Then the free energy of the system is given by

F = U − TS =
1

3 − 3α

∫

[
1

8π
R + (1 − 3α)Tabu

aub]dV.

(12)

Here the Einstein equation has been used.

Now we consider a radiation-dominate universe. Ra-
diation has the EoS w = 1

3 . Together with its charac-

teristic parameter α = 1
2 and the formula above Eq.(11),

we obtain TS = 1+3w
3−3α U = 4

3U . So the free energy is

F = U − TS = −
1
3U , exactly consistent with the ther-

modynamical property of photon gas. This observation is
interesting, since it reveals that the application of α = 1

2

is essential for radiation. Surely, T ∼ r−2+3α
∼ r−1/2

coincides with a familiar temperature-time relation for
the radiation-dominated universe in standard cosmology.
[36] In addition, having the temperature T ∼ r−1/2, the
thermodynamics law dU = TdS − pdV immediately re-
quires the entropy should be A3/4 to make sure that TdS
is comparable to dU = 1

2dr. This gives another defi-
nite illustration that the information storage capacity of
LQFT is A3/4 other than in a holographic form. Obvi-
ously the entropy contained within the apparent horizon
increases with the cosmic expansion.

For a holographic universe with α = 1
3 , the temper-

ature and entropy are respectively T ∼ r−2+3α
∼ r−1

and S ∼ r3−3α
∼ A, the same as the thermodynamics

for the de Sitter universe. Moreover, in this holographic
case the (1 − 3α) term in Eq.(12) vanishes, thus the free
energy becomes an integral of the scalar curvature. We
notice that for this case our formulae (8), (11) and (12)
have similar forms with these in [31, 32], which asserted
that there is a close relationship between thermodynam-
ical variables and geometrical variables, such as entropy
density and gravitational acceleration [37], free energy
density and scalar curvature. Inspired by the black hole
thermodynamics [27, 28], many works have been devoted
to explore more profound physical connections between
thermodynamics and gravity, and to associate the no-
tions of temperature and entropy with the spacetimes
having horizons [29, 30, 31, 32]. Whatever, the discus-
sions in [31, 32] are mainly around static spacetimes and
based on an ansatz for gravitational entropy. So we ex-
pect these expressions of thermodynamical variables here
and in [31, 32] should imply some general properties of
the connections between thermodynamics and gravity.
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C. Holographic dark energy

The quantum fluctuations in our scenario have a close
relation with previous HDE models [20, 21, 22, 23, 24,
25]. Both the LQFT type and holographic type of quan-
tum fluctuations have shown up in the derivation of the
energy density behavior ρΛ ∼ r−2 which is essential for
these models. The derivations take the similar forms as

ρΛ ∼
ε

(δr)
3 ∼

(

r−1/2
)4

∼ r−2, (13)

ρΛ ∼
ε

(δr)3
∼

r−1

(r1/3)3
∼ r−2. (14)

It has led to puzzles there why the same density behavior
arises from different derivations [24, 25]. Here we point
out the differences are superficial. Since the maximum
realizable energy of a system is always the critical energy
to form a black hole [38], one always has ρΛ ∼ r/r3

∼

r−2, despite where one starts from. In other words, we
can generally compute the energy density associated with
the space-time uncertainty relation as

ρΛ ∼
ε

(δr)
3 ∼

1

(δt) (δr)
3 ∼ r−2. (15)

Obviously, according to Eq.(6), the derivation to this
type of energy density is independent of certain choices
of δr and δt.

One may find ρΛ is of the same order of the totoal
energy density ρ = 3

8π r−2 of the universe, and thus
think it may account for the density of dark energy. Ac-
tually, directly taking such an ρΛ as dark energy will
lead to problems. Since ρΛ/ρ is a constant, due to
d ln ρΛ

ρ = −3 (wΛ − w) d ln a, the EoS of the constituent

Λ will always trace the behavior of the effective EoS of
the entire universe. As pointed out by Hsu [22], there is
wΛ = 0 in a matter-dominated universe, thus Λ cannot
lead to an accelerating universe. To solve this problem
and get a dark energy model having wΛ < −

1
3 , after-

wards infrared cutoffs other than the size of apparent
horizon are widely suggested, such as the size of future
event horizon [20], the age of the universe [24, 25] or even
a mixture of them [21].

For the rest, though we have shown the derivation of
ρΛ ∼ r−2 is independent of certain type of quantum fluc-
tuations, it should be pointed out that Ng [9, 10] sug-
gested it should be the holographic type of fluctuations

δr ∼ r1/3 responsible for the unconventional dark en-
ergy/matter, because it is different from these of conven-
tional matter and radiation. This kind of dark energy
can be called “holographic”, for that it is related to the
holographic entropy. Ng has considered the data from
Hubble Space Telescope to test the existence of such an
unconventional holographic space-time fluctuation.

IV. CONCLUSION AND IMPLICATIONS

By combining GR and QM, the space-time uncertainty
relation (δt)(δr)3 > πr2 has been derived from a quan-
tum computational perspective. The case of δr > r1/2

describes the distant fluctuations related to the well-
established LQFT. By contrast, the case of δr > r1/3

leads to the holographic entropy and is attached with
some unknown microscopic physics of gravitational sys-
tems. Thought it could be introduced by various ap-
proaches, and Ng has tried to suggest it to account for
the unconventional dark energy/matter, this type of fluc-
tuations has not yet been understood at a deep lever. The
holographic entropy is a special property attached with
the space-times having horizons. And we also have shown
its induced free energy is relevant to the integral of scalar
curvature without matter term present, like that in [31]
which aimed to explore the possible thermodynamical
properties of gravity. Does δr > r1/3 really characterize
the quantum fluctuations of gravitons or say space-time
itself? The question is surely worthy of further study.

We give several examples where the space-time uncer-
tainty can be used, including the information storage and
computational capacity of the universe, the thermody-
namics properties of the universe, and the origin of holo-
graphic dark energy. Each topic is of interest in itself.
Here we don’t intend to discuss the details of them, but
only focus on extracting typical characteristics of these
topics by virtue of the space-time uncertainty relation
and comparing them with the known results there. The
universality and validity of the proposed relation are thus
exemplified.
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