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Abstract

In this paper we have generalized the abc conjecture for integers and extended
Mason’s theorem to polynomials in Cm by use of Nevanlinna’s value distribution
theory. c© 2002 Wiley Periodicals, Inc.

1 Introduction

Mason [12, 13, 14] started a recent trend of studies by discovering a new rela-
tion among polynomials as follows: Let f (z) be a polynomial with coefficients in
an algebraically closed field κ of characteristic 0, and let n(1/ f ) denote the number
of distinct zeros of f .

THEOREM 1.1 (Mason’s Theorem) [11] Let a(z), b(z), and c(z) be relatively
prime polynomials in κ , and not all constants, such that a + b = c. Then

max{deg(a), deg(b), deg(c)} ≤ n
(

1
abc

)

− 1 .

Let a be a nonzero integer. Define the radical of a to be the product of the
distinct prime factors of a:

n
(

1
a

)

=
∏

p|a

p .

There is a classical analogy between polynomials and integers. Although Osgood
[17] did notice a similarity between the two in the Nevanlinna defect relation and in
Roth’s theorem, Vojta gave a much deeper analysis of the situation and compared
the theory of heights in number theory with the second main theorem of Nevanlinna
theory. Under that analogy, n(1/ f ) of a polynomial f corresponds to log n(1/a)

of an integer a. Influenced by Mason’s theorem and considerations of Szpiro and
Frey, Masser and Oesterlé formulated the so-called abc conjecture for integers as
follows:
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CONJECTURE 1.2 Given ε > 0, there exists a number C(ε) having the following
property: For any nonzero relatively prime integers a, b, and c such that a +b = c,

max{|a|, |b|, |c|} ≤ C(ε)n
(

1
abc

)1+ε

.

This conjecture is a consequence of Vojta’s conjecture [23]. In this paper, we
first extend Mason’s theorem as follows:

THEOREM 1.3 Let f1, f2, . . . , fn (n ≥ 2) be linearly independent polynomials in
Cm . Put f0 = f1 + f2 + · · · + fn and assume that dim I ≤ m − 2, where

I =
{

z ∈ Cm : f0(z) = f1(z) = · · · = fn(z) = 0
}

.

Then the inequalities

max
0≤ j≤n

{deg( f j )} ≤
n

∑

k=0

nw

(

1
fk

)

− l ,(1.1)

max
0≤ j≤n

{deg( f j )} ≤ nl

(

1
f0 f1 · · · fn

)

− l ,(1.2)

hold, where l and w denote the index and the Wronskian degree of f1, f2, . . . , fn ,
respectively.

For the symbols and notation, please refer to Section 2. When m = 1 and
k = 2, our result reduces to Mason’s theorem. A non-Archimedean version of
Theorem 1.3 with a stronger hypothesis is given by Hu and Yang [9].

Let a be a nonzero integer. Then

(1.3) a = ±pi1
1 pi2

2 · · · pis
s

holds for distinct primes p1, p2, . . . , ps and positive integers i1, i2, . . . , is . Define

nk

(

1
a

)

=
s

∏

ν=1

pmin{iν ,k}
ν .

Then Theorem 1.3 can be translated into a problem in number theory.

CONJECTURE 1.4 Let aj ( j = 0, 1, . . . , n) be nonzero integers with n ≥ 2 such
that the greatest common divisor of a0, a1, . . . , an is 1,

(1.4) a1 + a2 + · · · + an = a0 ,

and no proper subsum of the left-hand side of (1.4) is equal to 0. Then for ε > 0,
there exists a number C = C(n, ε) such that

max
0≤ j≤n

{|aj |} ≤ C
( n

∏

i=0

nw

(

1
ai

))1+ε

,(1.5)

max
0≤ j≤n

{|aj |} ≤ Cnl

(

1
a0a1 · · · an

)1+ε

(1.6)
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hold for w = n − 1 and l = n(n − 1)/2.

If n = 2, this corresponds to the well-known abc conjecture. Some special
cases of Conjecture 1.4 are given in [8, 9, 10]. Moreover, as noted by Cherry [4],
Conjecture 1.4 might have some relation to the following conjecture due to Votja
[24] (or see [23]).

CONJECTURE 1.5 Let X be a smooth complete variety over a global field k of
characteristic 0, let D be a normal crossing divisor on X, let K denote the canon-
ical line sheaf on X, let A be a big line sheaf on X, let r ∈ Z>0, and let ε > 0.
Then there exists a proper Zariski-closed subset Z $ X such that

hK(P) + m(D, P) ≤ dk(P) + ε hA(P) + O(1)

for all P ∈ X (k̄) \ Z with [k(P) : k] ≤ r .

Furthermore, Vojta showed in [24] that the above conjecture can be used to
derive the following conjecture:

CONJECTURE 1.6 If a0, a1, . . . , an are nonzero integers such that a1 + a2 + · · · +
an = a0 and the greatest common divisor of a0, a1, . . . , an is 1, then

max{|a0|, |a1|, . . . , |an|} ≤ Cn
(

1
a0a1 · · · an

)1+ε

for all a0, a1, . . . , an as above outside a proper Zariski-closed subset of the hyper-
plane x1 + · · · + xn = x0 in Pn .

2 Preliminaries

We will apply Nevanlinna theory to prove Theorem 1.3. Some notation and
terminology will be needed. Let Z+ be the set of nonnegative integers. Let z =
(z1, z2, . . . , zm) be the natural coordinate system of Cm . For a multi-index ν =
(i1, i2, . . . , im) ∈ Zm

+, write

|ν| = i1 + i2 + · · · + im and ∂z j =
∂

∂z j
, ∂ν = (∂z1)

i1(∂z2)
i2 · · · (∂zm )im .

Fix multi-indices νi ∈ Zm
+ with |νi | > 0 (i = 1, 2, . . . , n). Denote the Wronski

determinant of the meromorphic functions f0, f1, . . . , fn in Cm with respect to
these multi-indices by

W( f0, f1, . . . , fn) = Wν1ν2···νn ( f0, f1, . . . , fn) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

f0 f1 · · · fn

∂ν1 f0 ∂ν1 f1 · · · ∂ν1 fn
...

...
. . .

...

∂νn f0 ∂νn f1 · · · ∂νn fn

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

and define

S( f0, f1, . . . , fn) = Sν1ν2···νn ( f0, f1, . . . , fn) =
W( f0, f1, . . . , fn)

f0 f1 · · · fn
.
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LEMMA 2.1 Let f0, f1, . . . , fn be linearly independent meromorphic functions in
Cm . Write f = ( f0, f1, . . . , fn). Then for i = 1, 2, . . . , n, there are multi-indices
νi ∈ Zm

+, 0 < |νi | ≤ i , such that f, ∂ν1 f, ∂ν2 f, . . . , ∂νn f are C-linearly indepen-
dent, and for each ν ∈ Zm

+ satisfying |ν| < max1≤i≤n |νi |,

∂ν f ∈ C f +
∑

|νi |≤|ν|

C∂νi f ;

that is, ∂ν f lies in the C-span of f and the νi -order partial derivatives of f of no
higher order. For such multi-indices, then

W(h f0, h f1, . . . , h fn) = hn+1W( f0, f1, . . . , fn)

holds for any nonzero meromorphic function h on Cm .

Under the conditions of Lemma 2.1, A. Vitter [22] proved earlier that there exist
multi-indices νi ∈ Zm

+ (1 ≤ i ≤ n) such that

Wν1ν2···νn ( f0, f1, . . . , fn) 6≡ 0 ,

and a complete proof of the lemma was then proved by H. Fujimoto [5]. For the
readers’ interests, we also refer to Ye [26] for a simpler and more direct proof of
the lemma. For the multi-indices νi ∈ Zm

+ in Lemma 2.1, the integers

l = |ν1| + |ν2| + · · · + |νn|

and w = |νn| will be called the (Wronskian) index and the Wronskian degree of the
family { f0, f1, . . . , fn}, respectively. Obviously, the numbers w and l satisfy the
following properties:

(2.1) 1 ≤ w ≤ n ≤ l ≤
n(n + 1)

2
, w = n, l =

n(n + 1)

2
(if m = 1) .

Let z = (z1, z2, . . . , zm) be the natural coordinate system in Cm and set

τ(z) = ‖z‖2 =
m

∑

j=1

|z j |2 , υ = ddcτ, σ = dc log τ ∧ (ddc log τ)m−1 ,

where dc =
√

−1
4π

(∂̄ − ∂). If A ⊆ Cm and if r ≥ 0, define

A[r ] = {x ∈ A : τ(x) ≤ r 2} , A〈r〉 = {x ∈ A : τ(x) = r 2} .

Let µ be a function on Cm such that dim S ≤ m − 1, where S = supp µ. Fix a
number r0 > 0 and write

nµ(t) = t2−2m
∫

S[t]

µυm−1dt , t > 0 ,

Nµ(r) =
∫ r

r0

nµ(t)
dt
t

, r > r0 > 0 ,

if the integrals exist.
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Let f be a meromorphic function on Cm , and let µa
f be the a-valued multiplicity

of f for a point a ∈ P1; see [21]. Then the valence function of f for a is defined by

N
(

r,
1

f − a

)

= Nµa
f
(r) ,

where here and from now on we denote 1
f −a by f if a = ∞. Also define the

truncated multiplicity µa
f,k(k ∈ Z+) by

µa
f,k = min{k, µa

f } .

Write

nk

(

r,
1

f − a

)

= nµa
f,k

(r) , Nk

(

r,
1

f − a

)

= Nµa
f,k

(r) ,

and as usual denote

n
(

r,
1

f − a

)

= n1

(

r,
1

f − a

)

, N
(

r,
1

f − a

)

= N1

(

r,
1

f − a

)

.

Then we have

nk

(

∞,
1

f − a

)

= lim
r→∞

nk

(

r,
1

f − a

)

= lim
r→∞

Nk
(

r, 1
f −a

)

log r
.

If there is no confusion, we will abbreviate

nk

(

1
f − a

)

:= nk

(

∞,
1

f − a

)

, n
(

1
f − a

)

:= n1

(

∞,
1

f − a

)

.

For x ≥ 0, we set

x+ = max{1, x} , log+ x = log x+ ;
then the compensation function of f for a is defined by

m
(

r,
1

f − a

)

=
∫

Cm 〈r〉

log+ 1
| f − a|

σ .

The Nevanlinna characteristic function of f is defined by

T (r, f ) = N (r, f ) + m(r, f ) ,

which is increasing for r . Then f is nonconstant if and only if T (r, f ) → ∞ as
r → ∞, and rational if and only if

lim
r→∞

T (r, f )

log r
< ∞ .

If f 6≡ 0, the Jensen formula

(2.2) N
(

r,
1
f

)

− N (r, f ) =
∫

Cm 〈r〉

log | f |σ −
∫

Cm 〈r0〉

log | f |σ

holds; cf. Stoll [21]. A deeper result in value distribution theory (or Nevanlinna
theory) is the second main theorem:
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THEOREM 2.2 Let f be a nonconstant meromorphic function in Cm and let a1, a2,

. . . , aq be distinct values in the Riemannian sphere P1. Then

(q − 2)T (r, f ) ≤
q

∑

j=1

N
(

r,
1

f − aj

)

− Nram(r, f )

+ log
{(

ρ

r

)2m−1 T (R, f )

ρ − r

}

+ O(1)

holds for any r0 < r < ρ < R, where Nram(r, f ) is the valence function of the
ramification divisor of f .

Theorem 2.2 was first obtained by R. Nevanlinna [16] for meromorphic func-
tions of one variable and extended to the case of holomorphic curves into a higher-
dimensional complex projective space Pn by H. Cartan [3]. W. Stoll [20, 21] unified
Nevanlinna and Cartan theory by proving the second main theorem for meromor-
phic mappings of several variables into Pn . The refined estimate of the error term
in the above theorem was proved by Z. Ye [26].

LEMMA 2.3 Suppose that f1(z), f2(z), . . . , fn(z) are linearly independent mero-
morphic functions in Cm such that

(2.3) f1 + f2 + · · · + fn ≡ 1 .

Then for 1 ≤ j ≤ n, R > ρ > r > r0,

T (r, f j ) ≤ N (r, f j ) +
n

∑

k=1

{

N
(

r,
1
fk

)

− N (r, fk)

}

+ N (r, W) − N
(

r,
1
W

)

+ l log
{(

ρ

r

)2m−1 T (R)

ρ − r

}

+ O(1) ,

(2.4)

where W = Wν1ν2···νn−1( f1, f2, . . . , fn) 6≡ 0 is the Wronskian determinant,

n − 1 ≤ l = |ν1| + |ν2| + · · · + |νn−1| ≤
n(n − 1)

2
,

and where

T (r) = max
1≤k≤n

{T (r, fk)} .

Lemma 2.3 is due to Nevanlinna [16] for the case of one variable. For the case
of several variables, see Hu and Yang [6, 7]. Here we used the refined estimates
of the error terms of the second main theorem obtained by Z. Ye [26]. Take ε > 0
and put

(2.5) R = r +
r

(log T (r))1+ε
, ρ =

R + r
2

= r +
r

2(log T (r))1+ε
.
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By applying a well-known lemma of calculus due to Borel (cf. [26]), there is a
constant C > 1 such that

(2.6) ‖ T (R) = T
(

r +
r

(log T (r))1+ε

)

≤ CT (r) ,

where the symbol ‖ at the front of an inequality means that the inequality holds as
r → ∞ except for a possible set of finite linear measure. On the other hand, for all
large r ,

(2.7)
ρ

r
= O(1) ,

1
ρ − r

=
2(log T (r))1+ε

r
.

Hence one obtains the estimate

(2.8) ‖ log
{(

ρ

r

)2m−1 T (R)

ρ − r

}

< log T (r)+(1+ε) log log T (r)−log r+O(1) .

THEOREM 2.4 Let f1, f2, . . . , fn be linearly independent entire functions in Cm .
Put f0 = f1 + f2 + · · · + fn and assume that dim I ≤ m − 2, where

I = {z ∈ Cm : f0(z) = f1(z) = · · · = fn(z) = 0} .

Then for j = 1, 2, . . . , n, the inequalities

T
(

r,
f j

f0

)

<

n
∑

i=0

Nw

(

r,
1
fi

)

− Nµ( f0, f j )
(r) + l log

{(

ρ

r

)2m−1 T (R)

ρ − r

}

+ O(1) ,

T
(

r,
f j

f0

)

< Nl

(

r,
1

f0 . . . fn

)

− Nµ( f0, f j )
(r) + l log

{(

ρ

r

)2m−1 T (R)

ρ − r

}

+ O(1) ,

hold for r0 < r < ρ < R, where l and w are, respectively, the index and the
Wronskian degree of the family { f1, f2, . . . , fn}, µ( f0, f j ) is the multiplicity of the
zero divisor D( f0, f j ) of ( f0, f j ), and

T (r) = max
1≤i≤n

{

T
(

r,
fi

f0

)}

.

PROOF: Applying Theorem 2.3 to f1/ f0, f2/ f0, . . . , fn/ f0, for 1 ≤ j ≤ n, we
obtain

T
(

r,
f j

f0

)

≤
n

∑

k=1

N
(

r,
f0

fk

)

−
∑

k 6= j

N
(

r,
fk

f0

)

+ N (r, W)

− N
(

r,
1
W

)

+ l log
{(

ρ

r

)2m−1 T (R)

ρ − r

}

+ O(1) ,

where W = W( f1/ f0, f2/ f0, . . . , fn/ f0) is the Wronskian of f1/ f0, f2/ f0, . . . ,

fn/ f0. Note that

W = W
(

f1

f0
,

f2

f0
, . . . ,

fn

f0

)

=
W( f1, f2, . . . , fn)

f n
0

.
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Abbreviate W1 = W( f1, f2, . . . , fn). By Jensen’s formula, we obtain easily

N
(

r,
f0

fk

)

− N
(

r,
fk

f0

)

= N
(

r,
1
fk

)

− N
(

r,
1
f0

)

,

N (r, W) − N
(

r,
1
W

)

= nN
(

r,
1
f0

)

− N
(

r,
1

W1

)

,

and hence, for 1 ≤ j ≤ n, we obtain

T
(

r,
f j

f0

)

≤
n

∑

k=0

N
(

r,
1
fk

)

− N
(

r,
1

W1

)

+ N
(

r,
f0

f j

)

− N
(

r,
1
f j

)

+ l log
{(

ρ

r

)2m−1 T (R)

ρ − r

}

+ O(1) .

(2.9)

By simple observation, we find

(2.10) N
(

r,
1
f j

)

− N
(

r,
f0

f j

)

= Nµ( f0, f j )
(r) .

Thus Theorem 2.4 follows from (2.9), (2.10), and the following estimates:
n

∑

k=0

µ0
fk

− µ0
W1

≤
n

∑

k=0

µ0
fk ,w

,(2.11)

n
∑

k=0

µ0
fk

− µ0
W1

≤ µ0
f0... fn ,l .(2.12)

To prove (2.11), it is sufficient to show that (2.11) holds for any z0 ∈ Cm − I . Then
µ0

fi
(z0) = 0 for some i ∈ {0, 1, . . . , n}. Note that

W1 = W( f1, f2, . . . , fi−1, f0, fi+1, . . . , fn) .

Hence expanding the determinant shows that for k 6= i , 1 ≤ j ≤ n − 1,

µ0
∂

νj fk
(z0) ≥ µ0

fk
(z0) − µ0

fk ,|νj |(z0) ≥ µ0
fk
(z0) − µ0

fk ,w
(z0) ,

and, hence,
µ0

W1
(z0) ≥

∑

k 6=i

{

µ0
fk
(z0) − µ0

fk ,w
(z0)

}

;

that is,
n

∑

k=0

µ0
fk
(z0) − µ0

W1
(z0) =

∑

k 6=i

µ0
fk
(z0) − µ0

W1
(z0)

≤
∑

k 6=i

µ0
fk ,w

(z0) =
n

∑

k=0

µ0
fk ,w

(z0) .

Inequality (2.12) can be obtained similarly by comparing the zero multiplicity of
f0 f1 . . . fn and W1. �
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3 Proof of Theorem 1.3

Let P be a nonconstant polynomial in Cm . We can easily prove the following
relation:

(3.1) T (r, P) = deg(P) log r + O(1) .

If Q is another nonconstant polynomial in Cm such that P and Q are coprime, we
can also prove that

(3.2) T
(

r,
P
Q

)

= max{deg(P), deg(Q)} log r + O(1)

holds. An effective divisor D on Cm is said to be algebraic if D is the zero divisor
of a polynomial. For the multiplicity ν of an effective divisor on Cm , define

nν(∞) = lim
r→∞

nν(r) = lim
r→∞

Nν(r)

log r
.

The following fact is proven in Rutishauser [18] and Stoll [20].

PROPOSITION 3.1 An effective divisor D on Cm is algebraic if and only if the
counting function nν(r) of multiplicity ν of D is bounded. Moreover, if nν(∞) =
n < ∞, then D is the divisor of a polynomial of degree n.

PROOF OF THEOREM 1.3: Combining Theorem 2.4 with the estimates of the
error term in Section 2 implies

‖ T
(

r,
f j

f0

)

<

n
∑

k=0

Nw

(

r,
1
fk

)

− Nµ( f0, f j )
(r)

+ O(log+ T (r)) − l log r + O(1)

(3.3)

holds for j = 1, 2, . . . , n, where

T (r) = max
1≤ j≤n

{

T
(

r,
f j

f0

)}

= O(log r) .

We can choose polynomials f j0, f0 j , and h j such that f j0 and f0 j are coprime, and

f j = h j f j0 , f0 = h j f0 j .

Note that µ( f0, f j ) = µ0
h j

. Thus (3.3) and (3.2) imply

(3.4) max{deg( f j0), deg( f0 j )} ≤
n

∑

k=0

nw

(

∞,
1
fk

)

− n
(

∞,
1
h j

)

− l .

By Proposition 3.1, we have

(3.5) n
(

∞,
1
h j

)

= deg(h j ) .
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Hence by (3.4) and (3.5), we obtain

(3.6) max{deg( f j ), deg( f0)} ≤
n

∑

k=0

nw

(

∞,
1
fk

)

− l , j = 1, 2, . . . , n .

Then (1.1) follows from (3.6), and (1.2) can be proven similarly. �

4 Notes on Theorem 1.3

If m = 1 and n = 2, Theorem 1.3 yields a theorem of Mason; see [11, 13, 23].
For 0 ≤ i < j ≤ n, set

ξi j = (ξi j,1, ξi j,2, . . . , ξi j,n−1) = ( f0, f1, . . . , fi−1, fi+1, . . . , f j−1, f j+1, . . . , fn) ,

ξ ′
i j =











∂z1ξi j,1 ∂z1ξi j,2 . . . ∂z1ξi j,n−1
∂z2ξi j,1 ∂z2ξi j,2 . . . ∂z2ξi j,n−1

...
...

. . .
...

∂zm ξi j,1 ∂zm ξi j,2 . . . ∂zm ξi j,n−1











,

γ = max
z∈Cm

max
0≤i< j≤n

rank
(

ξ ′
i j (z)

)

.(4.1)

If γ = n − 1, then we can take w = 1 and l = n − 1 in Theorem 1.3. Generally,
we have

(4.2) 1 ≤ w ≤ n − γ, n − 1 ≤ l ≤ γ +
(n − γ − 1)(n − γ + 2)

2
.

For any positive integer k, a ∈ P1, and any meromorphic function f on Cm ,
note that

nk

(

1
f − a

)

≤ kn
(

1
f − a

)

.

Theorem 1.3 immediately yields the following fact:

COROLLARY 4.1 Let f1, f2, . . . , fn , n ≥ 2, be linearly independent polynomials
in Cm . Put f0 = f1 + f2 + · · · + fn and assume that dim I ≤ m − 2, where

I = {z ∈ Cm : f0(z) = f1(z) = · · · = fn(z) = 0} .

Then the following inequalities hold:

max
0≤ j≤n

{deg( f j )} ≤ w

n
∑

k=0

n
(

1
fk

)

− l ,(4.3)

max
0≤ j≤n

{deg( f j )} ≤ ln
(

1
f0 f1 . . . fn

)

− l ,(4.4)

where l and w denote the index and the Wronskian degree of f1, f2, . . . , fn , re-
spectively.
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For the case m = 1, the inequality (4.4) was obtained independently by J. F. Vo-
loch [25] and by W. D. Brownawell and D. Masser [2]. Earlier R. C. Mason [15]
derived this estimate with l = 1

2 n(n − 1) replaced by l = 4n−1. J. Browkin and
J. Brzeziński [1] conjectured that the sharp value of l in (4.4) is 2n − 3.

Now we remove the restriction on the linear independence of polynomials f1,

f2, . . . , fn . In what follows, we will use the notation

(4.5) fi ≡ 0 mod { fi1, fi2, . . . , fisi
}

to denote that {i1, i2, . . . , isi } ⊂ {0, 1, . . . , n} − {i} are distinct, fi1, fi2, . . . , fisi
linearly independent, and

fi =
si

∑

α=1

cα fiα , cα ∈ C − {0} (1 ≤ α ≤ si ) .

Define
Ii =

{

z ∈ Cm : fi (z) = fi1(z) = · · · = fisi
(z) = 0

}

.

COROLLARY 4.2 For a fixed integer n ≥ 1, let f j ( j = 0, 1, . . . , n) be nonzero
polynomials on Cm such that f1 + f2 + · · ·+ fn = f0. Assume also that not all the
f j are constants, and that the f j are pairwise relatively prime. Then

(4.6) max
0≤ j≤n

{deg( f j )} ≤ (d − 1)

(

n
(

1
f0 f1 · · · fn

)

− 1
)

,

where d is the dimension of the vector space spanned by the f i over C.

PROOF: The proof of Corollary 4.2 proceeds by induction on n. For n = 1 it is
obviously true since if f0 = f1 and f0 and f1 are relatively prime, then they both
are constants. Assume the corollary is true for all cases n ′ with 2 ≤ n′ < n, and
consider the case of n + 1 polynomials. By the assumptions in Corollary 4.2, at
least two of the fi are nonconstant. Note that if two of the fi are constants, then we
may either eliminate them if their sum is zero or replace them by their sum when
it is not zero. Then the inductive hypothesis could be applied to yield the desired
result. Thus we may assume that at most one of the f i is a constant. For each
i ∈ {0, 1, . . . , n}, it is easy to show that

fi ≡ 0 mod { fi1, fi2, . . . , fisi
}

for some i1, i2, . . . , isi . Obviously, d ≥ si ≥ 2 and dim Ii ≤ m − 2 since the f j are
pairwise relatively prime. So by Corollary 4.1, we have

(4.7) max
0≤α≤si

{deg( fiα )} ≤ wi

si
∑

α=0

n
(

1
fiα

)

− li ,

where i0 = i , and li and wi denote the index and the Wronskian degree of f i1, fi2,

. . . , fisi
, respectively. Note that

1 ≤ wi ≤ si − 1 ≤ d − 1 , li ≥ si − 1 .
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Therefore, we obtain

max
0≤α≤si

{deg( fiα )} ≤ wi

si
∑

α=0

n
(

1
fiα

)

− li

≤ (si − 1)

( si
∑

α=0

n
(

1
fiα

)

− 1
)

≤ (d − 1)

( n
∑

k=0

n
(

1
fk

)

− 1
)

= (d − 1)

(

n
(

1
f0 f1 · · · fn

)

− 1
)

;

that is, for each i ∈ {0, 1, . . . , n},

deg( fi ) ≤ (d − 1)

(

n
(

1
f0 f1 · · · fn

)

− 1
)

.

Hence Corollary 4.2 is proven. �

Let deg∗( fk) be the sum of the degrees of all distinct irreducible factors of fk .
Proposition 3.1 implies

n
(

1
fk

)

≤ deg∗( fk).

Thus the following theorem of Shapiro and Sparer follows from Corollary 4.2.

THEOREM 4.3 [19] For fixed integer n ≥ 2, let f j , j = 0, 1, . . . , n, be polynomials
on Cm such that f1+ f2+· · ·+ fn = f0. Assume also that the f j are not all constant,
and that the f j are relatively prime by pairs. Then

(4.8) max
0≤ j≤n

{deg( f j )} ≤ (n − 1)

(

deg∗

( n
∏

k=0

fk

)

− 1
)

.

5 Notes on Conjecture 1.4

For integers, it is natural to ask how to define the number γ similar to (4.1).
Here we approach this question as follows. Express a nonzero integer a in the
form (1.3) and regard a as a polynomial of several variables p1, p2, . . . , ps so that
for a prime p, we can define

(5.1) ∂pa =

{

±piα−1
α

∏

ν 6=α piν
ν , p = pα, 1 ≤ α ≤ s ,

0 , p 6∈ {p1, p2, . . . , ps} .

If there are primes, say p1, p2, . . . , pm, satisfying the properties

p - aj , j = 0, 1, . . . , n, p 6∈ {p1, p2, . . . , pm} ,
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in (4.1), replacing f, z1, z2, . . . , zm , respectively, by a, p1, p2, . . . , pm, we obtain
the required number γ . If the number is equal to n − 1, we might take w = 1 and
l = n − 1 in Conjecture 1.4.

Here we study the example due to J. Browkin and J. Brzeziński [1]. For every
k ≥ 0, define a polynomial of positive integral coefficients by

(5.2) fk(z) =
k

∏

j=1

(z + 2 − 2 cos αj ) =
k

∑

j=0

sj z j , αj =
2π j

2k + 1
,

which satisfies (cf. [1])

(5.3)
x2k+1 − 1

x − 1
= xk fk

(

(x − 1)2

x

)

.

If in (5.3) we put k = n − 2 and x = −b/a, then, in view of (5.2), one gets

(5.4) a2n−3 + b2n−3 −
n−2
∑

j=0

sj (a + b)2 j+1(−ab)n−2− j = 0 .

If we choose a = 2i , where i > n − 2, and b = −1, then we have

a1 + a2 + · · · + an = a0 ,

where

aj+1 = sj (2i − 1)2 j+12i(n−2− j) (0 ≤ j ≤ n − 2) , an = 1 , a0 = 2i(2n−3) .

Obviously, there is no proper subsum equal to zero. Since an = 1, the greatest
common divisor of all aj is 1. Therefore, the conditions in Conjecture 1.4 are
satisfied. Now we have

Mn = max
0≤ j≤n

{|aj |} = a0 = 2i(2n−3) .

A positive integer χn ≥ 2n − 3 exists such that

Ln :=
n

∏

i=0

nn−1

(

1
ai

)

= 2n−2
n−2
∏

j=0

nn−1

(

1
sj (2i − 1)2 j+12i(n−2− j)

)

≥ 2(n−2)(n−2)

n−2
∏

j=0

nn−1

(

1
(2i − 1)2 j+1

)

= 2(n−2)(n−2)(2i − 1)χn .

Since there are infinitely many i > n −2 such that the numbers 2i −1 are relatively
prime (e.g., all prime i > n − 2), there exists a positive constant C(n) that is
independent of i such that

2i(2n−3)

2(n−2)(n−2)(2i − 1)χn
≤ C(n) ,
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that is, Mn ≤ C(n)Ln . We can also show that

Mn ≤ C(n)n n(n−1)
2

(

1
a0a1 · · · an

)

holds for some constant C(n). Thus Conjecture 1.4 holds for such a j .
J. Browkin and J. Brzeziński [1] conjectured as follows:

CONJECTURE 5.1 Let aj ( j = 0, 1, . . . , n) be nonzero integers with n ≥ 2 such
that the greatest common divisor of a0, a1, . . . , an is 1,

(5.5) a1 + a2 + · · · + an = a0 ,

and no proper subsum of (5.5) is equal to 0. Then for ε > 0, there exists a number
C = C(n, ε) such that

(5.6) max
0≤ j≤n

{|aj |} ≤ Cn
(

1
a0a1 · · · an

)2n−3+ε

.

Further, Browkin and Brzeziński use the above example to show that the num-
ber 2n − 3 is a sharp lower bound.
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