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We propose a new class of risk measures which satisfy convexity and monotonicity, two well-accepted
axioms a reasonable and realistic risk measure should satisfy. Through a nonlinear weight function,
the new measure can flexibly reflect the investor’s degree of risk aversion, and can control the fat-tail
phenomenon of the loss distribution. A realistic portfolio selection model with typical market frictions
taken into account is established based on the new measure. Real data from the Chinese stock markets
and American stock markets are used for empirical comparison of the new risk measure with the
expected shortfall risk measure. The in-sample and out-of-sample empirical results show that the new
risk measure and the corresponding portfolio selection model can not only reflect the investor’s risk-
averse attitude and the impact of different trading constraints, but can find robust optimal portfolios,
which are superior to the corresponding optimal portfolios obtained under the expected shortfall risk
measure.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction has been aroused since the appearance of this new definition.
Risk is an asymmetric concept related to downside outcomes,
and any realistic way of measuring risk should consider upside
and downside results differently. Meanwhile, risk-averse investors
mainly concern the large losses. Due to these facts, there has been
a great momentum in research on quantile-based risk measures in
the last decade since the introduction of the value-at-risk (VaR).
Unfortunately, VaR often produces overly prudent market risk
assessments (Pérignon and Smith 2010a,b). VaR, when calculated
using scenarios, is often non-convex, non-smooth as a function of
investment positions and is, therefore, difficult to optimize. For
these reasons, VaR is said to be seductive but dangerous (Bender,
1995).

To provide a consistent measure of risk, Artzner et al. (1999)
introduces the notion of coherent risk measure, which is further
extended by Delbaen (2002) and Artzner et al. (2007) to more gen-
eral setups. A measure is called a coherent risk measure only if it
satisfies the following four axioms: subadditivity, positive homo-
geneity, monotonicity and translation invariance. It is easy to dem-
onstrate that VaR does not provide coherency. Extensive research
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Typical measures of this class include the expected shortfall (ES)
defined in Acerbi and Tasche (2002) and the conditional value-
at-risk (CVaR) developed in Rockafellar and Uryasev (2002). The
most general theoretical result about this kind of measures is a
complete space of coherent measures spectrally generated in
Acerbi (2002).

Although extensive motivation has been given in Artzner et al.
(1999) and Delbaen (2002), ‘‘coherency’’ has not fully taken hold
in the community concerned with applications. The main obstacle
arises from the axioms required in the definition of coherent risk
measure. Positive homogeneity assumes that the risk grows in pro-
portion to the volume of the portfolio. Nevertheless, a number of
papers (Ding et al., 2009; Chung and Hrazdil, 2010) have recently
shown that financial portfolios that experience positive liquidity
shocks generally outperform those that experience negative liquid-
ity shocks, that is to say, if liquidity cannot be assured in the mar-
ket (which is often the situation in stock markets), the risk of a
financial portfolio might increase in a nonlinear way with respect
to the volume of the portfolio. Meanwhile, positive homogeneity
is not necessarily desirable because it corresponds to the linear
utility and a rational investor will not accept this kind of utility
functions. Actually, laboratory experiments (Bosch-Domènech
and Silvestre, 2006) have indicated that investors become more
risk averse in face of large investment loss. All these facts suggest
that the axiom of positive homogeneity should be relaxed. The cor-
responding notion of convex risk measures is thus introduced in
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Föllmer and Schied (2002) by replacing positive homogeneity and
subadditivity with the weaker property of convexity. Convex risk
measures have become a powerful tool in financial risk manage-
ment (Lüthi and Doege, 2005).

Coherent risk measures and convex risk measures are not
widely accepted in the practical finance and insurance community
due to the translation invariance axiom required in both risk mea-
sures. Translation invariance deals with the effect of adding a con-
stant to the random loss. This axiom has been questioned by many
researchers. The problem with this axiom may lie in the confusion
over the definition of loss. In Artzner et al. (1999), a loss refers to a
negative outcome in terms of the cash flow or wealth of the port-
folio; whereas it is assumed by many practitioners that a loss is the
negative return rates of a portfolio, or a shortfall relative to some
pre-specified target. Therefore, when the practitioners discuss the
risk measure in terms of return rates, they have difficulty giving
translation invariance a reasonable explanation. On the other hand,
as demonstrated in Dhaene et al. (2003), translation invariance
means that the way in which we allocate the economic capital
among sub-companies within a financial conglomerate is irrele-
vant. Apparently, all the practical work done nowadays on capital
allocation assumes incoherent risk measures. For these reasons,
Rockafellar et al. (2006) stipulates an alternative class of risk func-
tionals, called deviation measures, which do not require the trans-
lation invariance axiom. In addition, some recent downside risk
measures with promising practical effects, such as the power CVaR
(PCVaR) and the one-sided risk measures used in new-type perfor-
mance ratios (Farinelli et al., 2008), do not require translation
invariance, either.

Then, what necessary conditions should a reasonable risk mea-
sure satisfy? The reasonable risk measure here does not mean the
‘‘perfect’’ measure. In fact, a perfect measure does not exist in real-
ity. Based on the above review and the ‘‘best practice’’ rules in fi-
nance and insurance (Dhaene et al., 2003), we assume that any
reasonable, realistic risk measure should satisfy two axioms:
convexity and monotonicity. These two axioms have been well-
accepted by both academicians and practitioners. Based on this
assumption, we propose in this paper a new risk measure which
is convex and monotone. As a further extension to the current con-
vex risk measures, the new measure can suitably describe the
investor’s degree of risk aversion and can be used to find robust
optimal portfolios in practice.

In the following, we use a simple example to explain the moti-
vation of our new risk measure. The discrete return rates and cor-
responding probabilities of stocks A and B in the example are given
in Table 1.

A short calculation shows that E(A) = E(B) = 0.0166 and
ES0.05(A) = ES0.05(B), where E stands for the expectation operator,
ESa stands for the ES measure at the confidence level 1 � a. These
results tell us that it is impossible to distinguish between A and B
under ESa. However, the highly risk-averse investor will select
stock B since the risk-averse investor refuses to invest on the
stocks with large losses rather than those with relatively small
losses (Hwang and Satchell, 2010). Most existing coherent risk
measures, such as ES and CVaR, cannot reflect this character since
they treat all the losses beyond VaR equally and only take into
Table 1
Return rates and corresponding probabilities of stocks A and B.

Return rate of A Probability of A Return rate of B Probability of B

�2.00 0.03 �1.505 0.04
�0.02 0.02 �0.02 0.01

0.03 0.90 0.03 0.90
1.00 0.05 1.00 0.05
account the linear probability weighting combination of those losses.
In order to reflect the investor’s risk profile, different weights
should be assigned to different losses. This suggests that we should
introduce a suitable weight function to subtly reflect the investor’s
attitudes toward investment losses. Meanwhile, if a risk measure is
to be used in the portfolio selection, the investor’s main interest
should be in its consistency with his/her preference. Inspired by
the above analyses and considerations, a class of nonlinear weight
functions are introduced in our new risk measure.

Most existing theoretical papers about risk measures (Acerbi,
2002; Fischer, 2003; Rockafellar et al., 2006) fail to consider the
application of the risk measures in making optimal investment
decision, needless to say the realistic portfolio selection problem
with multiple market frictions taken into account. For real applica-
tions, what we mainly concern with is the practicality of the pro-
posed risk measure in finding robust and efficient portfolios. In
this application-oriented research, we will show a concrete way
to compute our new measure and to use it to find the optimal port-
folio. Especially, we will establish a portfolio selection model with
multiple market friction constraints and use it to find robust port-
folios in a real application.

This paper is organized as follows: Section 2 gives the definition
of the new risk measure and studies its properties; in Section 3,
two methods are presented to estimate the risk measure and the
stabilities of the two methods are compared; based on the pro-
posed measure, a realistic portfolio optimization model including
typical market frictions is established in Section 4; theoretical re-
sults are then illustrated in Section 5 by using empirical inputs
from Chinese stock markets and American stock markets; Section
6 presents our conclusions.

2. Definition and properties of the new risk measure

Generally speaking, risk measurement can be thought of as
quantification of the characteristics of the future investment
uncertainty. Risk in the static framework can be treated as a real-
valued random variable X on some probability space ðX;F ; PÞ. X
can represent the uncertain wealth, the rate of return, or the short-
fall relative to the expectation or a benchmark in the future. In this
paper, X denotes the random return rate of some asset or portfolio
at a future point of time. Empirical research strongly supports that
asymmetry and fat tails exist in the financial asset return distribu-
tion in real financial markets (Leland, 1999). We assume that the
investor’s main interest is in the lower tail of the loss distribution.
Therefore, it is assumed throughout this paper that the a-quantile
(of X) xa 6 0 while a� 0.5.

To overcome the drawbacks of the existing measures discussed
in the previous section, we introduce a class of risk measures by
nonlinearly penalizing large negative returns. Our new measure
can flexibly reflect the investor’s risk aversion level, and it is con-
vex and monotonic. These properties are of vital importance for
reasonably measuring the investment risk and for finding robust
portfolios. At a tail probability level a 2 (0,1), which in practical
applications is something like a = 0.01 or 0.05, our new risk mea-
sure is defined as follows.

Definition 1. (Weighted expected shortfall, WES for short). For the
real random return rate X with E[X�] <1, the new risk measure,
called the weighted expected shortfall at a given tail level a, is
defined as

WESaðXÞ ¼ a�1ðwðxaÞxaðP½X 6 xa� � aÞ � E½wðXÞX1fX6xag�Þ;

where xa = inf{x 2 R:P[X 6 x] P a}, and w(x) is a monotonically non-
increasing function of x. Moreover, w(x) is positive and convex for
x 6 0, and non-negative and concave for x > 0.

sunny
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Obviously, if w(X) � 1, WESa(X) = ESa(X). Therefore, WESa gener-
alizes the construction of ESa. That’s why we call the new risk mea-
sure weighted expected shortfall.

WESa improves ESa by treating different losses below VaRa indi-
vidually, it enables that a large loss will contribute more to the va-
lue of WESa than a comparatively small loss. On the other hand,
through the selection of the weight function w(x), WESa treats
small losses and large losses below VaRa in an asymmetric manner.
The more convex the w(x) is when x 6 0, the more risk-averse the
investor is. Meanwhile, the more concave the w(x) is when x > 0,
the less the investor cares about earnings. Therefore, the choice
of w(x) depends on the investor’s attitude towards risk. The four
typical weight functions satisfying requirements in Definition 1
are w(x) = exp(�kx)(k P 0), exp(�(1 + x)), (1 � x)b and (b � x)b

(b > 1) for x 6 0, and w(x) = 0 for x > 0.
The term w(xa)xa(P[X 6 xa] � a) in Definition 1 can be inter-

preted as the ‘‘exceeding’’ part to be subtracted from the expected
value E½wðXÞX1fX6xag� when X has a discontinuous distribution or
has a jump at xa. In this case, the total probability for outcomes
with X 6 xa is probably larger than a. If the distribution of X is con-
tinuous, then P[X 6 xa] = a, and the term w(xa)xa(P[X 6 xa] � a)
vanishes.

In the following, we explain and illustrate the advantage of our
risk measure by using the example given in Table 1. If we select
w(x) = exp(�0.01x) for x 6 0, and w(x) = 0 for x > 0, we get WE-
S0.05(A) = 1.2322 > WES0.05(B) = 1.2263. Therefore, the investor
would prefer B to A under WESa. This is consistent with risk-averse
investors’ risk intuition: the stock that brings in large negative re-
turns with high probability is easier to be rejected than otherwise.
WESa can thus characterize the investor’s risk-averse attitude more
elaborately than ESa.

To demonstrate the favorable features of WESa, we first intro-
duce the following notation:

1a
fX6xg ¼

1fX6xg; P½X ¼ x� ¼ 0

1fX6xg þ a�P½X6x�
P½X¼x� 1fX¼xg; P½X ¼ x� > 0

(
for any x 2 R. It is not difficult to see that 1a

fX6xag 2 ½0;1� and

E 1a
fX6xag

h i
¼ a; ð1Þ

a�1E wðXÞX1a
fX6xag

h i
¼ �xðaÞ: ð2Þ

Therefore, we can rewrite WESa(X) as

WESaðXÞ ¼ �
1
a

E wðXÞX1a
fX6xag

h i
: ð3Þ

The following proposition shows that WESa(X) is convex with re-
spect to X.

Proposition 1 (Convexity of WES). Given any c 2 [0,1] and two
random return rates X and Y on ðX;F ; PÞ with E[X�] <1 and
E[Y�] <1, respectively, we have

WESaðcX þ ð1� cÞYÞ 6 cWESaðXÞ þ ð1� cÞWESaðYÞ:
Table 2
Return rates and corresponding probabilities of stocks A and B in different cases.

Event Return rate of A Return rate of B Probability

Event 1 �0.29 0.01 0.03
Event 2 �0.09 0.01 0.02
Event 3 0.01 �0.29 0.03
Event 4 0.01 �0.09 0.02
Event 5 0.01 0.01 0.90
Proof. Since the investor mainly concerns with the left tail distri-
bution of random return rates and a� 0.50, we have xa 6 0 and
ya 6 0. Let Z = cX + (1 � c)Y, we can derive from (1) and (3) that

aðcWESaðXÞ þ ð1� cÞWESaðYÞ �WESaðZÞÞ

¼ E wðZÞZ1a
fZ6zag � cwðXÞX1a

fX6xag � ð1� cÞwðYÞY1a
fY6yag

h i
P E ðcwðXÞ þ ð1� cÞwðYÞÞðcX þ ð1� cÞYÞ1a

fZ6zag

h
� cwðXÞX1a

fX6xag � ð1� cÞwðYÞY1a
fY6yag

i

¼ E cXwðXÞ 1a
fZ6zag � 1a

fX6xag

h i
þ ð1� cÞYwðYÞ 1a

fZ6zag � 1a
fY6yag

h in o
þ E ½cð1� cÞðX � YÞðwðYÞ �wðXÞÞ�1a

fZ6zag

n o
P E cXwðXÞ 1a

fZ6zag � 1a
fX6xag

h i
þ ð1� cÞYwðYÞ 1a

fZ6zag � 1a
fY6yag

h in o
P E cxawðxaÞ 1a

fZ6zag � 1a
fX6xag

h in
þ 1� cÞyawðyaÞ 1a

fZ6zag � 1a
fY6yag

h i� o
¼ cxawðxaÞða� aÞ þ ð1� cÞyawðyaÞða� aÞ ¼ 0:

The first inequality can be illustrated as follows. For any x 2X, if
Z(x) 6 za,

wðZðxÞÞZðxÞP ðcwðXðxÞÞþ ð1�cÞwðYðxÞÞÞðcXðxÞþ ð1�cÞYðxÞÞ

because w(�) is convex if Z(x) 6 0 and is concave if Z(x) > 0. On the
other hand, 1a

fZðxÞ6zag ¼ 0 if Z(x) > za. Therefore, for all x 2X, we
have

ðwðZðxÞÞZðxÞÞ1a
fZðxÞ6zag P ðcwðXðxÞÞ þ ð1� cÞwðYðxÞÞÞðcXðxÞ

þ ð1� cÞYðxÞÞ1a
fZðxÞ6zag:

The second inequality holds because the monotonic and non-
increasing properties of w(�) ensure that (X � Y)(w(Y) � w(X)) P 0.

The third inequality relies on the non-negative, monotonically
non-increasing properties of w(�) and the following two formulae:

1a
fZ6zag � 1a

fX6xag P 0; X > xa

1a
fZ6zag � 1a

fX6xag 6 0; X 6 xa

(
and

1a
fZ6zag � 1a

fY6yag P 0; Y > ya;

1a
fZ6zag � 1a

fY6yag 6 0; Y 6 ya:

(
In fact, it can be easily deduced from xa 6 0 that: for every x 2X,
xaw(xa) 6 X(x)w(X(x)) if X(x) > xa, and X(x)w(X(x)) 6 xaw(xa) if
X(x) 6 xa. So, for all x 2X, we have

XðxÞwðXðxÞÞ 1a
fZðxÞ6zag �1a

fXðxÞ6xag

h i
P xawðxaÞ 1a

fZðxÞ6zag �1a
fXðxÞ6xag

h i
:

Similarly, we can prove that

YðxÞwðYðxÞÞ 1a
fZðxÞ6zag �1a

fYðxÞ6yag

h i
P yawðyaÞ 1a

fZðxÞ6zag �1a
fYðxÞ6yag

h i
:

By now, we have shown that WESa(cX + (1 � c)Y) 6 cWESa(X) +
(1 � c)WESa(Y), that is, WESa(X) is convex with respect to X. h

As an illustration to Proposition 1, we consider a simple exam-
ple of two stocks. The discrete return rates of stocks A and B and
their corresponding probabilities in different cases are given in Ta-
ble 2.

If we choose w(x) = exp(�0.01x) for x 6 0 and w(x) = 0 for x > 0,
the values of WES0.05 for stocks A, B and the portfolio 1

3 Aþ 2
3 B are

0.21, 0.21 and 0.15, respectively. This shows that the risk of the
considered portfolio is smaller than the risk of each of its compo-
nent stocks. That is, WES0.05 captures the notion of diversification.
As the most characteristic feature of a risk measure, the convexity
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of WESa is not only essential for investment strategy selection in
stock markets, but also useful for the financial accounting manage-
ment in banks and insurance companies. For instance, in the case
of internal capital budget, since WESa satisfies convexity, the head
office can be sure that, when they set a risk limit to each individual
company division, the risk of the whole company should not ex-
ceed the total of the individual risk limits. With this understanding,
the head office is able to decentralize the risk constraint and con-
trol the risk with ease. Convexity of a risk measure also plays a role
in the portfolio optimization. This advantage of WESa and its prac-
ticability will be illustrated in Sections 4 and 5.

We further consider the following example to examine the
properties of WESa. The logarithms of the return rates X and Y
of stocks A and B follow the Student t-distributions with degrees
of freedom being 2 and 10, respectively. Suppose that a = 0.05
and the weight function is chosen as w(x) = exp(�10x) if x 6 0
and w(x) = 0 if x > 0, we can easily get WES0.05(X) = 1.83E+04,
WES0.05(2X) = 1.6698E+008 – 2WES0.05(X), WES0.05(Y) = 7.92E+03,
and WES0.05(X + Y) = 2.30E+07 > WES0.05(X) + WES0.05(Y). These results
show that WESa is neither subadditive nor positive homogeneous.

The monotonicity of WESa is demonstrated by Proposition 2 as
follows.

Proposition 2 (Monotonicity of WES). WESa is a monotonic and
non-increasing function. That is, given two random return rates X and
Y on ðX;F ; PÞwith E[X�] <1 and E[Y�] <1, we have
WESa(Y) 6WESa(X) if X 6 Y.

The economic interpretation of this property is straightforward.
By monotonicity, we mean that if the return rate of a portfolio Y is
always at least as high as that of X, Y cannot be riskier than X.
Therefore, the financial position with higher returns should be less
risky than the corresponding positions with lower returns. The
monotonicity of WESa is certainly a reasonable feature.

Another self-evident property of WESa related to Proposition 2
is its monotonicity with respect to a. That is, the smaller a is, the
greater the risk is.

In the financial industry, there is a growing demand to deal
with random returns with discontinuous distributions, such as
portfolios of non-traded loans (purely discrete distributions) or
portfolios containing derivatives (mixture of continuous and dis-
crete distributions). One trouble with most existing tail risk
measures, such as VaR, tail conditional expectation and worst
conditional expectation (Artzner et al., 1999), is that when applied
to discontinuous distributions, these tail risk measures are extre-
mely sensitive to the small changes in the confidence level. In
other words, they are not continuous with respect to the confi-
dence level. In contrast, WESa is continuous with respect to a.
Hence, regardless of the underlying return distribution, one can
be sure that the risk measured by WESa will not change dramati-
cally when there is a switch in the confidence level 1 � a by, say,
some base points. In order to establish this property, we first
derive an alternatively integral representation of WESa. By using
the argument similarly to that in Acerbi and Tasche (2002), we
can easily prove Proposition 3.

Proposition 3. If X is a random variable of the return rate on
ðX;F ; PÞ with E[X�] <1, and a 2 (0,1) is fixed, then

WESaðXÞ ¼ �
1
a

Z a

0
wðxuÞxu du;

where xu is defined as that in Definition 1.
Remark. From this expression, we can establish the strictly mono-
tonically decreasing property of WESa. For any two random return
rates X and Y, we have xu 6 0 and yu 6 0 almost surely for 0 6 u 6 a
since a� 0.5. Consequently, if X < Y almost surely, for any positive
weight function w(�), we have the expression xuw(xu) < yuw(yu) for
any 0 6 u 6 a. This expression and the expression in Proposition 3
clearly show that WESa(Y) < WESa(X).

Moreover, the following desired continuity result can be easily
obtained from the expression in Proposition 3.

Corollary 4. If X is the random return rate with E[X�] <1, the
mapping a ´ WESa is continuous on (0,1).

What is more important, from the practical point of view, is that
the weighted summation of our new risk measures is still a risk
measure satisfying convexity and monotonicity. The following
proposition explains this argument.

Proposition 5. Suppose that qi, i = 1,2, . . . ,n, are a group of risk
measures defined by formula (3) with specific weight functions and
probability levels, then for any 0 6 ai 6 1,i = 1,2, . . . ,n, withPn

i¼1ai ¼ 1;q ¼
Pn

i¼1aiqi is still a risk measure which satisfies
convexity and monotonicity.

Proposition 5 shows that the convex combination of WESas with
different a and/or w(x) can also be adopted as a risk measure. As a
result of this, the distribution characteristics of X can be reflected
more comprehensively, and the advantages of different WESas
can be utilized simultaneously.

Last but not least, we demonstrate the differentiability of WESa
with respect to the portfolio weight vector. For this purpose, sup-
pose that there are n risky stocks whose random return rates are
ri, 1 6 i 6 n. Let r = (r1,r2, . . . ,rn)T be the return rate vector and
x = (x1,x2, . . . ,xn)T be the corresponding portfolio weight vector,
here and in the following, we use the superscript T to denote the
transpose of a vector. Then.

Proposition 6. If the joint distribution of return rates has a contin-
uous and positive density, then

rxWESaðxÞ ¼ �
1
a

E½ðrxwðrT xÞrT xþwðrT xÞrÞ1frT x6qaðrT xÞg�: ð4Þ

This proposition is helpful for us to choose a proper algorithm for
solving the derived portfolio selection problem, where WESa is
adopted to control the investment risk. We will explain this point
in Sections 4 and 5.
3. Estimation of WESa

Two methods used to estimate WESa are discussed in this sec-
tion. Their efficiency and stability are examined through simula-
tion and empirical comparisons.

3.1. The historical method

The complete distribution information of X is extremely difficult
to obtain in practice. The distribution of X is usually approximated
through its discrete samples or scenarios. Nowadays, a popular
way to estimate ESa is by L-statistics, which satisfy important
asymptotic properties as shown in Pflug and Wozabal (2010). In-
spired by this characteristic of L-statistics, we consider here how
to estimate WESa using L-statistics.

Suppose that M return rate samples of X are denoted by
X1,X2, . . . , and XM. Sort Xm(1 6m 6M) in the increasing order:

Xð1Þ 6 Xð2Þ 6 � � � 6 XðMÞ;

where X(m) is the mth order statistic of X1,X2, . . . ,XM.
If aM is an integer, that is, aM 2 N, WESa can be directly esti-

mated by the weighted mean of worst aM return samples accord-
ing to Definition 1. That is,
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WbESaðXÞ ¼ �
1

aM

XaM

m¼1

wðXðmÞÞXðmÞ

 !
:

If aM R N, according to the definition of WESa, we estimate that

WbESaðXÞ

¼ � 1
aM

X½aM�

m¼1

wðXðmÞÞXðmÞ þ ðaM � ½aM�ÞwðXð½aM�þ1ÞÞXð½aM�þ1Þ

 !
;

ð5Þ

where [y] denotes the lower integer part of the real number y. The
term (aM � [aM])X[aM]+1w(X[aM]+1) represents a fraction of the
([aM] + 1)th smallest return sample. Obviously, this term plays a
minor role when M is extremely large.

As we know, the consistency is an essential cornerstone to sup-
port the actual application of any estimation method. Fortunately,
we can establish the strong consistency of the estimation (5) as
follows.

Proposition 7. Suppose that a 2 (0,1) is fixed and X is a real-valued
random variable satisfying E[Xw(X)] <1. If (X1,X2, . . . ,XM, . . .) is an
independent sequence of random variables which have the same
distribution function F as that of X, we then have

WbESaðXÞ �WESaðXÞ!a:s:0 as M !1:
Proof. Let Y = Xw(X), and suppose that the distribution function of
Y is F. Then, the empirical distribution function of the correspond-
ing samples Y1,Y2, . . . ,YM is

FMðyÞ �
1
M

XM

m¼1

1ð�1;y�ðYmÞ for �1 < y <1:

Assume that Y(m)(1 6m 6M) is the mth order statistic of
Y1,Y2, . . . ,YM. As argued before, we have xa 6 0. In addition, w(x) is
a non-negative and monotonically non-increasing function of x.
Therefore, we obtain Y(m) = w(X(m))X(m) for 1 6m 6 [aM] + 1 and
Y ðm0 Þ P Y ð½aM�þ1Þ for [aM] + 1 6m0 6M.

According to (5), we have

WbESaðXÞ ¼ �
1

aM

X½aM�

m¼1

Y ðmÞ þ ðaM� ½aM�ÞY ð½aM�þ1Þ

 !

¼ 1
M

X½aM�

m¼1

�1
a

Y ðmÞ

� �
þ ½aM� � aM

a
Y ð½aM�þ1Þ þ

XM

m¼½aM�þ2

0 � Y ðmÞ

 !

¼
Z 1

0
F�1

M ðtÞJMðtÞdt;

where

JMðtÞ ¼
� 1

a ; 0 6 t 6 ½aM�
M ;

½aM��aM
a ; ½aM�

M < t 6 ½aM�þ1
M ;

0; ½aM�þ1
M < t 6 1:

8>><>>:
Meanwhile, according to Proposition 3, we have

WESaðXÞ ¼ �
1
a

Z a

0
wðxuÞxu du ¼

Z a

0
�1

a
yu duþ

Z 1

a
0 � yu du

¼
Z 1

0
F�1ðtÞJðtÞdt;

where

JðtÞ ¼ � 1
a ; 0 6 t 6 a

0; a < t 6 1:

(

The above expressions can easily verify that Proposition 7 is essen-
tially a special case of Theorem 3.1 in Van Zwet (1980) with
0 = t0 < a = t1 < t2 = 1 and p1 = p2 =1. Consequently, the desired
strong consistency of estimation (5) follows from above expressions
for WbESa, WESa and Theorem 3.1 in Van Zwet (1980). h

Estimation (5) does not rely on any distribution assumption
about X, which is extremely important for the practical financial
risk management since estimation (5) can drastically reduce the
mathematical complexity of the problem. Nevertheless, one
might need a large number of samples to estimate ESa in a sta-
ble way. It is shown in Inui and Kijima (2005) that the Richard-
son extrapolation method can speed up the convergence of the
historical method. Therefore, we now combine the historical
method with the Richardson extrapolation method to estimate
WESa.

3.2. The Richardson extrapolation method

We try to enhance the efficiency of the WESa estimation by
using the Richardson extrapolation method. For simplicity, we di-
rectly use the following second-order Richardson extrapolation
formula (Inui and Kijima, 2005) to get a better WESa estimation
result.

tn ¼ 0:5sn � 4:0snþ1 þ 4:5snþ2; ð6Þ

where {sn} is a sequence that converges to the true WESa value.
According to the Richardson extrapolation theory, the sequence
{tn} converges to the true WESa value faster than {sn}.

To test the actual effect of the extrapolation formula (6), we car-
ry out numerical experiments by assuming that X follows the log-
normal distribution and t-distributions with degree of freedom (DF
for short) being 3, 30 and 300, respectively. The smaller the DF is,
the fatter the tail of the distribution will be. Meanwhile, {sn} in (6)
is chosen from the values obtained with the historical method. In
this simulation, we set the probability levels a to be 0.01 and
0.05, respectively. The nonlinear weight function is w(x) =
exp(�kx) with specific k if x 6 0, and w(x) � 0 if x > 0. The results
obtained using (6) are compared with the theoretical values and
the results obtained from the historical method, respectively, to
show the effect of the extrapolation formula (6). Our simulation
procedure is as follows:

S1. Re-sample the three different (non-duplicated) groups of
samples from the log-normal distribution or t-distribution
with the sample size being n1 = 100, n2 = 200 and n3 = 300,
respectively, and calculate WESa by using (5) for each case.

S2. Corresponding to n1, n2 and n3, repeat S1 for 1000 times to
calculate the mean of WESa, which are denoted as sn, sn+1

and sn+2, respectively. Here, sn+2 is taken as an estimate for
WESa by the historical method.

S3. Apply the Richardson extrapolation formula (6) to obtain tn,
which is used as an estimate for WESa by the Richardson
extrapolation method.

S4. Repeat S1–S3 for 1000 times and calculate the mean values
of sn and tn, respectively.

Due to the space limitation, we only present in Table 3 the re-
sults obtained for the samples from t-distributions with a = 0.01,
k = 0.1 and different DFs. Other results have similar patterns. In Ta-
ble 3, WES�;WbESa and WbESð2Þa stand for the actual WESa value, the
WESa value estimated by the historical method, and the WESa va-
lue estimated by the Richardson extrapolation method, respec-
tively. Bias is calculated as the ratio of the difference of the mean
value of WESa obtained by the relevant method and the WES� to
the WES�. That is,



Table 3
WES estimates with a = 0.01 and k = 0.1.

WES� WbESa WbESð2Þa

t(DF = 3)
Mean 1.1007 1.097 1.1008
Bias (%) �0.34 0.0091

t(DF = 30)
Mean 1.032 1.0249 1.0319
Bias (%) �0.00688 �0.000097

t(DF = 300)
Mean 1.0192 1.0122 1.0189
Bias (%) �0.00687 �0.00029
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Bias ¼ Mean of WESa �WES�

WES�
:

The bigger the number is, the more biased the estimate is.
We can see from Table 3 that the Richardson extrapolation

method is useful for finding accurate WESa estimates for symmet-
rically distributed returns, since it works well to adjust the bias.
Nevertheless, it is well-recognized that return distributions are
skewed with fat tails. To examine the performance of the Richard-
son extrapolation method in practice, we carry out empirical tests
in the next subsection.
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3.3. Comparison of the historical method with the Richardson
extrapolation method

We use the daily return rate data of the S&P 500 Index and the
Dow Jones Industrial Average Index to empirically examine the sta-
bility and efficiency of the two estimation techniques. The former
consists of 11,800 return rates from 2 January, 1962 to 3 April,
2009; the later consists of 20,000 return rates from 1 October,
1928 to 3 April, 2009.

By setting the time-step to be 100, we randomly sample n re-
turn rate data, with n increasing from 100 to 11,800 for the S&P
500 Index and from 100 to 20,000 for the Dow Jones Index, respec-
tively. Then we calculate WESa by using (5) and (6), respectively.
To compare the accuracy and robustness of the two estimation
methods, we examine the variation of the estimated WESas with
the sample size and parameter combination. Concretely, we choose
a = 0.01 and 0.05, k = 0, 0.1, 10 and 50 for k in w(x) = exp(�kx) if
x 6 0, and w(x) � 0 if x > 0, respectively. For comparison, we draw
the scatter plot and the fitted curve of WESa obtained by the two
estimation methods in the same graph. Since the results for the
Dow Jones Index are similar to those for the S&P 500 Index, we
only show in Figs. 1–8 the empirical results for the S&P 500 Index.
In each figure, for reference, we especially show the estimates of
WESa obtained for n = 600 by using the historical method and the
Richardson extrapolation method, respectively.

The following observations can be derived from these figures:
with the increase of the sample size, the stability of the estimates
by the historical method significantly increases, compared with the
stability of the estimates by the Richardson extrapolation method;
in general, the bias of the historical method is smaller than that of
the Richardson extrapolation method; for almost all the cases, the
estimates by the historical method converge to the actual WESa va-
lue faster than those by the Richardson extrapolation method; the
accuracy and stability of the Richardson extrapolation method are
more or less the same as those of the historical method only when
the sample size and a are small.

In summary, the Richardson extrapolation method may be more
efficient than the historical method in the estimation of WESa
when the return rate distribution is symmetric or when both the
sample size and a are small. Nevertheless, these situations usually
do not occur in reality. Therefore, considering the extra computa-
tional effort required by the Richardson extrapolation method,
the usual historical method is more suitable for the estimation of
WESa in practice.



0 2000 4000 6000 8000 10000 12000
0

10

20

30

40

50

60

70

80

Number of Observations

Es
tim

at
es

 o
f W

ES

Historical Estimates
Fitting Curve by L−Statistics
Extrapolation estimates
Fitting Curve by Extrapolation

Historical(48.8818)

Extrapolation(35.3125)

Fig. 4. S&P 500 with a = 0.01 and k = 50.

0 2000 4000 6000 8000 10000 12000

0.021

0.0212

0.0214

0.0216

0.0218

0.022

0.0222

0.0224

0.0226

0.0228

Number of Observations

Es
tim

at
es

 o
f W

ES

Historical Estimates
Fitting Curve by L−Statistics
Extrapolation estimates
Fitting Curve by Extrapolation

Historical(0.0215)

Extrapolation(0.0213)

Fig. 5. S&P 500 with a = 0.05 and k = 0.

0 2000 4000 6000 8000 10000 12000
0.021

0.0212

0.0214

0.0216

0.0218

0.022

0.0222

0.0224

0.0226

Number of Observations

Es
tim

at
es

 o
f W

ES

Historical Estimates
Fitting Curve by L−Statistics
Extrapolation estimates
Fitting Curve by Extrapolation

Historical(0.0216)

Extrapolation(0.0221)

Fig. 6. S&P 500 with a = 0.05 and k = 0.1.

0 2000 4000 6000 8000 10000 12000

0.029

0.0295

0.03

0.0305

0.031

0.0315

0.032

0.0325

0.033

Number of Observations

Es
tim

at
es

 o
f W

ES

Historical Estimates
Fitting Curve by L−Statistics
Extrapolation estimates
Fitting Curve by Extrapolation

Historical(0.0305)

Extrapolation(0.0317)

Fig. 7. S&P 500 with a = 0.05 and k = 10.

0 2000 4000 6000 8000 10000 12000
0

2

4

6

8

10

12

14

16

Number of Observations

Es
tim

at
es

 o
f W

ES
Historical Estimates
Fitting Curve by L−Statistics
Extrapolation estimates
Fitting Curve by Extrapolation

Historical(9.8132)

Extrapolation(7.0980)

Fig. 8. S&P 500 with a = 0.05 and k = 50.

Z. Chen, L. Yang / Journal of Banking & Finance 35 (2011) 1777–1793 1783
4. The realistic portfolio selection model under WESa

A portfolio selection model is established here to demonstrate
the application of the proposed new risk measure WESa in the
optimal and robust investment decision-making. In order to obtain
greater realism in our portfolio selection model, several market
frictions have to be taken into account simultaneously.

Suppose that there exist n risky assets offering random return
rates and a riskless asset offering a fixed return rate. The investor
allocates his/her wealth among n risky assets and the riskless asset
and tries to minimize the risk for his/her portfolio return rate after
taxes and transaction costs are deduced. It is assumed that taxes
have to be paid on both ordinary income and capital gains. It is also
assumed that dividends and transaction costs on risky assets are
paid at the end of the investment period and are known to the
investor with certainty at the beginning of the investment period.
To make our exposition easier to follow, we list all the notations
that will appear hereafter as follows:
di
 dividend yield on risky asset i, equal to the monetary
dividend divided by the current price
ki
 (per unit trade) transaction cost rate of the ith risky
asset, ki P 0, i = 1, . . . ,n
ri
 holding period rate of return on risky asset i (i = 1, . . . ,n)

rn+1
 holding period rate of return on the riskless asset

tg
 marginal capital gains tax rate for the investor
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t0
 marginal ordinary income tax rate for the investor

xi
 proportion of wealth that the investor will invest on the

ith risky asset (i = 1, . . . ,n) or the riskless asset (i = n + 1)

x0

i

proportion of wealth that the investor already holds in
the ith risky asset (i = 1, . . . ,n) or the riskless asset
(i = n + 1)
With the above notations, the total capital gains on portfolio
x = (x1,x2, . . . ,xn,xn+1)T is then

Pn
i¼1rixi, and the total ordinary in-

come on the portfolio is expressed as
Pn

i¼1dixi þ rnþ1xnþ1.
Transaction cost is an important factor for an investor to take

into consideration in the portfolio selection. Ignoring transaction
cost in a portfolio selection model often leads to an inefficient port-
folio in practice. Here, we assume that the transaction cost ci of the
ith risky asset is a V-shaped function of the difference between the
old portfolio x0 ¼ x0

1; x
0
2; . . . ; x0

n; x
0
nþ1

� �T and the new portfolio x:

ci ¼ ki xi � x0
i

�� ��; i ¼ 1;2; . . . ; n:

Thus the total transaction cost is
Pn

i¼1ci ¼
Pn

i¼1ki xi � x0
i

�� ��.
The net return rate after excluding the tax and transaction cost

on the portfolio is

gðxÞ ¼: ð1� tgÞ
Xn

i¼1

rixi þ ð1� t0Þ
Xn

i¼1

dixi þ rnþ1xnþ1

 !

�
Xn

i¼1

ki xi � x0
i

�� �� ¼Xn

i¼1

Rixi þ Rnþ1xnþ1 �
Xn

i¼1

ki xi � x0
i

�� ��; ð7Þ

where Ri ¼
: (1 � tg)ri + (1 � t0)di is the after-tax rate of return on ris-

ky asset i(i = 1,2, . . . ,n), and Rnþ1 ¼ Rnþ1 ¼: ð1� t0Þrnþ1 is the after-
tax rate of return on the riskless asset. The expected net return after
excluding the tax and transaction cost on the portfolio is

GðxÞ ¼: E½gðxÞ� ¼
Xnþ1

i¼1

�Rixi �
Xn

i¼1

ki xi � x0
i

�� ��;
where Ri ¼

: E½Ri� ¼ ð1� tgÞ�ri þ ð1� t0Þdi is the expected after-tax
rate of return on risky asset i and �ri ¼ E½ri� is the expected value
of ri, i = 1,2, . . . ,n.

Let

x0i ¼ xi � x0
i

� �þ
; x00i ¼ xi � x0

i

� ��
; i ¼ 1;2; . . . ;n;

and x0 ¼ x01; . . . ; x0n
� �T

; x00 ¼ x001; . . . ; x00n
� �T . Then we can re-express g(x)

and G(x) as follows:

gðx; x0; x00Þ ¼:
Xnþ1

i¼1

Rixi �
Xn

i¼1

ki x0i þ x00i
� �

; ð8Þ

Gðx; x0; x00Þ ¼:
Xnþ1

i¼1

Rixi �
Xn

i¼1

ki x0i þ x00i
� �

:

Aside from the taxes and transaction costs, other typical constraints
(Chen and Wang, 2007, 2008), such as the upper and lower bounds
on the proportion of the wealth that the investor will invest on a
certain asset, should also be considered so that real characteristics
of the practical investment environment can be modeled. The con-
straint on the lower and upper bounds, denoted as xi and �xi, respec-
tively, can be written as

xi 6 xi 6 �xi; i ¼ 1;2; . . . ;nþ 1:

The above constraint is partly imposed because of the institutional
restrictions.

In many security markets in the world, for example the Chinese
stock markets, short sales are forbidden and borrowing is either
strictly restricted or rather costly. Here, we consider the portfolio
optimization problem in the case of no-short sales of assets and
no borrowing. The investor wants to minimize the investment risk
measured by WESa while ensuring a certain level of return on
investment at the end of the investment period. Given a 2 (0,1)
and a target portfolio return rate rp, the corresponding portfolio
optimization problem can be described as the following stochastic
program:

min WESaðgðx; x0; x00ÞÞ
s:t: E½gðx; x0; x00Þ�P rp;Xnþ1

i¼1

xi ¼ 1;

x0i ¼ xi � x0
i

� �þ
; i ¼ 1;2; . . . ;n; ð9Þ

x00i ¼ xi � x0
i

� ��
; i ¼ 1;2; . . . ;n;

xi 6 xi 6 �xi; i ¼ 1;2; . . . ;nþ 1;
xi P 0; i ¼ 1;2; . . . ;nþ 1:

where WESa(g(x,x0,x00)) is the portfolio risk. The constraintPnþ1
i¼1 xi ¼ 1 implies that the initial budget is fully invested among

risky and riskless assets, and the last group of constraints xi P 0,
i = 1,2, . . . ,n + 1, are no-short selling constraints for risky assets
and the no-borrowing constraint for the riskless asset.

It should be pointed out that when tg = 0 (or t0 = 0), our model
includes the case where no taxes are imposed on capital gains
(or ordinary income). When ki = 0 for i = 1,2, . . . ,n, our model in-
cludes the case where there are no transaction costs. In addition,
when the variable xn+1 is eliminated from the model (9), the model
also includes the case where all the investment is put on risky
assets.

Due to the simultaneous occurrence of the order statistics and
the expectation operator in the objective function and the first
inequality constraint, we cannot directly use existing algorithms
to solve this stochastic programming problem. For this reason,
problem (9) will be transformed into a tractable nonlinear pro-
gramming problem by sufficiently utilizing the properties of WESa,
the problem background as well as the discrete approximation to
the joint return rate distribution of risky assets. On the other hand,
as an extension to the current discussion on the implementation of
convex risk measures, model (9) and the solution method to be
introduced provide a concrete framework for the practical applica-
tion of convex risk measures, which improve theoretical studies in
Föllmer and Schied (2002) and Lüthi and Doege (2005) from the
application point of view.

We first consider the computation of WESa(g(x,x0,x00)). Based on
the empirical results in Section 3, we use the L-statistics method to
compute WESa(g(x,x0,x00)) so that a good balance can be achieved
between the stability of estimation and the overall efficiency of
our portfolio selection method. The advantage of this computing
is that we do not make any assumption on the distribution of the
return rate vector; instead, we work directly with the historical
data. Meanwhile, through a series of transformations, we can re-
formulate the optimization problem (9) as a smooth convex opti-
mization problem, which can be efficiently solved by using current
nonlinear programming algorithms.

As the full distribution of ri is rarely known in reality, the ex-
pected return rate �ri is often estimated by the average of a set of
data {rim, m = 1,2, . . . ,M}, where rim can be either the observed his-
torical sample or the forecast return rate for security i at time m.
Therefore, we set �ri ¼ 1

M

PM
m¼1rim. The portfolio risk WESa(g(x,x0,x00))

can thus be estimated as

WbESaðgðx; x0; x00ÞÞ ¼ �
1

aM

X½aM�

m¼1

wðgðx; x0; x00ÞðmÞÞgðx; x0; x00ÞðmÞ

 
þ aM � ½aM�Þwðgðx; x0; x00Þð½aM�þ1ÞÞgðx; x0; x00Þð½aM�þ1Þ

� �
;

where
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gðx; x0; x00Þm ¼
Xn

i¼1

½ð1� tgÞrim þ ð1� t0Þdi�xi þ ð1� t0Þrnþ1xnþ1

�
Xn

i¼1

ki x0i þ x00i
� �

and g(x,x0,x00)(m) is the mth order statistic of portfolio return rates
g(x,x0,x00)m, m = 1,2, . . . ,M. Similarly, G(x,x0,x00) can be estimated by

bGðx; x0; x00Þ ¼Xn

i¼1

ð1� tgÞ
1
M

XM

m¼1

rim

 !
þ ð1� t0Þdi

" #
xi

þ ð1� t0Þrnþ1xnþ1 �
Xn

i¼1

ki x0i þ x00i
� �

¼
Xnþ1

i¼1

bRixi �
Xn

i¼1

ki x0i þ x00i
� �

;

where

bRi ¼
: ð1� tgÞ

1
M

XM

m¼1

rim

 !
þ ð1� t0Þdi; i ¼ 1;2; . . . ;n;

is an estimate of the expected after-tax rate of return on risky asset i
and bRnþ1 ¼: ð1� t0Þrnþ1.

With the above expressions, problem (9) can be transformed
into the following realistic portfolio optimization problem:

min WbESaðgðx; x0; x00ÞÞ ð10Þ

s:t: bGðx; x0; x00ÞP rp; ð11ÞXnþ1

i¼1

xi ¼ 1; ð12Þ

x0i ¼ xi � x0
i

� �þ
; i ¼ 1;2; . . . ;n; ð13Þ

x00i ¼ xi � x0
i

� ��
; i ¼ 1;2; . . . ; n; ð14Þ

xi 6 xi 6 �xi; i ¼ 1;2; . . . ;nþ 1; ð15Þ
xi P 0; i ¼ 1;2; . . . ;nþ 1: ð16Þ

This programming problem is difficult to solve because of the pres-
ence of the order statistics g(x,x0,x00)(m), m = 1,2, . . . ,M, and the non-
smooth constraints (13) and (14). Fortunately, constraints (13) and
(14) can be equivalently re-expressed as

xi ¼ x0i � x00i þ x0
i ; x0ix

00
i ¼ 0; x0i P 0; x00i P 0; i ¼ 1;2; . . . ;n:

Furthermore, we can prove that the above portfolio optimization
problem (10)–(16) is equivalent to the following optimization
problem:

min WbESaðgðx; x0; x00ÞÞ ð17Þ

s:t: bGðx; x0; x00ÞP rp; ð18ÞXnþ1

i¼1

xi ¼ 1; ð19Þ

xi ¼ x0i � x00i þ x0
i ; i ¼ 1;2; . . . ;n; ð20Þ

x0i P 0; x00i P 0; i ¼ 1;2; . . . ;n; ð21Þ
xi 6 xi 6 �xi; i ¼ 1;2; . . . ;nþ 1; ð22Þ
xi P 0; i ¼ 1;2; . . . ;nþ 1; ð23Þ

The equivalence between the problem (10)–(16) and the problem
(17)–(23) can be established if we can show that x0ix

00
i ¼ 0 for any i

(i = 1,2, . . . ,n) in the optimal solution of the problem (17)–(23). Sup-
pose that, on the contrary, x0i0 x00i0 > 0 for some i0 (1 6 i0 6 n) in the
optimal solution (x,x0,x00) of the problem (17)–(23). Without loss
of generality, we assume that x0i0 P x00i0 > 0. Then, according to (8),
we get
gðx; x0; x00Þ ¼
Xnþ1

i¼1

Rixi �
Xn

i¼1;i–i0

ki x0i þ x00i
� �

� ki0 x0i0 � x00i0

� �
� 2ki0 x00i0 ;

bGðx; x0; x00Þ ¼Xnþ1

i¼1

bRixi �
Xn

i¼1;i–i0

ki x0i þ x00i
� �

� ki0 x0i0 � x00i0

� �
� 2ki0 x00i0 :

We can construct a new solution vector ð�x; �x0; �x00Þ by only changing
the i0th components of x0 and x00 in (x,x0,x 00) into x0i0 � x00i0 and 0,
respectively. It is obvious that ð�x; �x0; �x00Þ satisfies all the linear con-
straints in problem (17)–(23) and gð�x; �x0; �x00Þ > gðx; x0; x00Þ andbGð�x; �x0; �x00Þ > bGðx; x0; x00Þ. This means that ð�x; �x0; �x00Þ is another feasible
solution to problem (17)–(23). Meanwhile, by applying the conclu-
sion in the Remark after Proposition 3 to the discretization form of
WESa, that is WbESa, we get that WbESaðgð�x; �x0; �x00ÞÞ < WbESaðgðx;
x0; x00ÞÞ. This contradicts the optimality of (x,x 0,x 00) to the problem
(17)–(23).

It is natural from the financial point of view that the problem
(10)–(16) is equivalent with the problem (17)–(23). Due to the
transaction cost, any rational investor will either buy or sell, but
will not do both. This means that x0ix

00
i ¼ 0; i ¼ 1;2; . . . ;n, will auto-

matically hold in the optimal solution of the problem (17)–(23).
Problem (17)–(23) needs to be further transformed to avoid the

order statistics g(x,x0,x00)(m) (m = 1,2, . . . ,M) in the objective func-
tion. Since M is usually rather large, aM is often an integer in prac-
tice. Fortunately, in this situation, we have.

Proposition 8. When aM is an integer,

X½aM�

m¼1

wðgðx; x0; x00ÞðmÞÞgðx; x0; x00ÞðmÞ þ ðaM

� ½aM�Þwðgðx; x0; x00Þð½aM�þ1ÞÞgðx; x0; x00Þð½aM�þ1Þ

equals the optimal value of the following linear optimization problem

�min atM þ
XM

i¼1

yi

s:t: wðgðx; x0; x00ÞiÞgðx; x0; x00Þi þ t þ yi P 0; i ¼ 1;2; . . . ;M;

ð24Þ
yi P 0; i ¼ 1;2; . . . ;M:
Proof. First, since aM is an integer, (aM � [aM])w(g(x,x0,x00)([aM]+1))
g(x,x0,x00)([aM]+1) disappears. Let m0 = min{m:g(x,x0,x00)(m) > 0}, we
have

wðgðx; x0; x00ÞðmÞÞgðx; x0; x00ÞðmÞ P wðgðx; x0; x00Þðm0�1ÞÞgðx; x0; x00Þðm0�1Þ

for m = m0,m0 + 1, . . . ,M because w(�) is always non-negative and
monotonically non-increasing; since a� 0.50, we have g(x,x0,
x00)a 6 0, from which we get g(x,x0,x00)([aM]) 6 0. These two facts
mean that

wðgðx; x0; x00Þð1ÞÞgðx; x0; x00Þð1Þ 6 � � � 6 wðgðx; x0; x00Þð½aM�ÞÞgðx; x0; x00Þð½aM�Þ

6 � � � 6 wðgðx; x0; x00Þðm0�1ÞÞgðx; x0; x00Þðm0�1Þ < 0:

Meanwhile, if g(x,x0,x00) 6 0, w(g(x,x0,x00))g(x,x0,x00) is a non-
decreasing function of g(x,x0,x00). All the above conclusions ensure
that

X½aM�

m¼1

wðgðx; x0; x00ÞðmÞÞgðx; x0; x00ÞðmÞ þ ðaM

� ½aM�Þwðgðx; x0; x00Þð½aM�þ1ÞÞgðx; x0; x00Þð½aM�þ1Þ

equals the optimal value of the following linear program:
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min
XM

i¼1

wðgðx; x0; x00ÞiÞgðx; x0; x00Þizi ð25Þ

s:t:
XM

i¼1

zi ¼ aM; 0 6 zi 6 1; i ¼ 1;2; . . . ;M:

According to the strong duality theorem for linear programs, the
optimum of the problem (25) equals the optimal value of the fol-
lowing linear programming problem:

max ðaMÞkþ
XM

i¼1

ð�1:0Þki

s:t: k� ki 6 wðgðx; x0; x00ÞiÞgðx; x0; x00Þi; i ¼ 1;2; . . . ;M;

ki P 0; i ¼ 1;2; . . . ;M;

where the dual variables k and ki(1 6 i 6M) correspond to the
equality constraint

PM
i¼1zi ¼ aM and the inequality constraints

�zi P �1(1 6 i 6M), respectively.
Let t = �k and yi = ki. Then, we obtain

max �atM �
XM

i¼1

yi

s:t: wðgðx; x0; x00ÞiÞgðx; x0; x00Þi þ t þ yi P 0; i ¼ 1;2; . . . ;M; ð26Þ
yi P 0; i ¼ 1;2; . . . ;M:

Considering that max(h) = �min(�h), we can see that problem (26)
is actually the problem (24). h

Since

min� 1
aM

�min atM þ
XM

i¼1

yi

 ! !
is equivalent to

min t þ 1
aM

XM

i¼1

yi;

according to Proposition 8, problem (17)–(23) can be re-formulated
as

min t þ 1
aM

XM

i¼1

yi ð27Þ

s:t: wðgðx; x0; x00ÞiÞgðx; x0; x00Þi þ t þ yi P 0; i ¼ 1;2; . . . ;M; ð28ÞbGðx; x0; x00ÞP rp; ð29Þ

Xnþ1

i¼1

xi ¼ 1; ð30Þ

xi ¼ x0i � x00i þ x0
i ; i ¼ 1;2; . . . ;n; ð31Þ

x0i P 0; x00i P 0; i ¼ 1;2; . . . ;n; ð32Þ

xi 6 xi 6 �xi; i ¼ 1;2; . . . ;nþ 1; ð33Þ

xi P 0; i ¼ 1;2; . . . ; nþ 1; ð34Þ

yi P 0; i ¼ 1;2; . . . ;M: ð35Þ

What’s more important, by using the same method as that in the
proof of Proposition 1, we can prove that w(g(x,x0,x00)i)g(x,x0,x00)i is
concave with respect to (x,x0,x00) for the nonlinear weight function
w(x) specified in Definition 1. Therefore, the problem (27)–(35) is
a convex optimization problem. This and Proposition 6 ensure that
the problem (27)–(35) can be easily solved by using typical smooth
convex programming algorithms, for example, the sequential qua-
dratic programming method. Our portfolio selection model is thus
more practical and easier to solve than the models under the convex
risk measures in Föllmer and Schied (2002) and Lüthi and Doege
(2005).
5. Empirical results

The detailed impact of different risk measures from WESa and
different market frictions on the optimal portfolio selection will
be investigated empirically in this section by using real trade data.
In the following experiments, the nonlinear weight function is cho-
sen to be w(x) = exp(�kx) with specific k if x 6 0 and w(x) � 0 if
x > 0. Here k > 0 can reflect the risk-averse degree. This weight
function is selected because it is highly plausible and easy to inter-
pret. For simplicity, we set the marginal capital gains tax rate to be
equal to the marginal ordinary income tax rate. According to (7),
we can directly use the daily return rate with dividend re-invested
to take the dividend yield into account. Concretely, rim is chosen as
the daily rate of return of security i on day m with dividend re-in-
vested. Without loss of generality, we assume that the investor
only holds cash at the beginning of the investment period, i.e.,
x0

i ¼ 0, i = 1,2, . . . ,n, which means that x00i ¼ 0 and xi ¼ x0i.
To demonstrate the practical effect of WESa on the optimal port-

folio selection, results obtained using our new measure is com-
pared with the corresponding results obtained using ESa. Since
ESa corresponds to the special WESa with w(x) � 1, the correspond-
ing portfolio selection model under ESa can be directly derived
from the problem (27)–(35) by setting w(�) � 1 in (28). Actually,
the resulting optimization problem is simply a linear programming
problem.

The effects of different risk measures characterized by the risk-
averse coefficient k, different transaction cost ratios k, and different
target rates of return rp on the optimal portfolio selection is exam-
ined in succession from the following perspectives: the diversifica-
tion of the optimal portfolio, the return rate, the risk magnitude
and the performance of the optimal portfolio. The portfolio diver-
sification is examined by the number of stocks actually included
in the optimal portfolio and the Herfindahl index (H-index) of con-
centration (Silver, 1985). H-index can measure concentration and
diversification at both the aggregate and market levels. The lower
the H-index is, the better the diversification of the portfolio is. In
order to comprehensively compare the performance of the optimal
portfolio from different angles, we select a group of performance
ratios to evaluate its performance. The examined ratios include
the return/WESa (R/Risk) ratio, the return/ESa (R/ES) ratio, the re-
turn/Power CVaR (R/PCVaR) ratio as well as two newly introduced
two-sided variability ratios (the generalized Rachev (G-Rachev) ra-
tio and the Farinelli–Tibiletti (F–T) ratio). Here, the power CVaR is
defined as

PCVaRða;qÞðXÞ ¼ E½ð�XÞqjX 6 �VaRaðXÞ�;

where X denotes the return rate of the portfolio and
VaRa(X) = �inf{x 2 R:P[X 6 x] P a}. The F–T ratio is defined as the
ratio of the properly weighted favorable events to the unfavorable
ones:

the F—T ratio ¼ E
1
p½ðXþÞp�

E
1
q½ðX�Þq�

:

The G-Rachev ratio is defined as the ratio of the power CVaR of the
opposite of the excess return at a given confidence level to the
power CVaR of the excess return at another confidence level:

the G-Rachev ratio ¼ E½ðXþÞcjX P �VaRaðXÞ�
E½ðX�ÞdjX 6 �VaRbðXÞ�

:

Please refer to papers such as Farinelli et al. (2006, 2008) about the
detailed definition and computation of these performance ratios.
Since all these ratios are the reward-to-risk indices, the higher the
ratio is, the more efficient the corresponding portfolio will be.

In order to show the practicality, super-performance and
robustness of our new risk measure and the corresponding portfolio
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selection model for optimal investment decision-making, we carry
out empirical studies by using trade data from both the emerging
stock markets, the Chinese stock markets, and the advanced stock
markets, the American stock markets. Moreover, in addition to the
usual in-sample test, the out-of-sample comparison is also done to
further illustrate the super-performance and robustness of our
new risk measure and the corresponding portfolio selection model.
The detailed empirical results are presented in the following two
subsections.

All the empirical tests are carried out by using the Lenovo
Personal Computer with Pentium 4, CPU 2.40 GHz and 3.00 GB
Memory. The function fmincon in the optimization toolbox of Matlab
7.0 is used to solve each convex optimization problem (27)–(35).

5.1. The Chinese stock markets

A riskless asset and 30 risky stocks are randomly selected as our
investment universe from all the A-share stocks in Chinese stock
markets. Daily return rates with dividend re-invested of these
stocks in 600 trading days from May 31, 2004 to November 16,
2006 are used to determine the values of the parameters in the
problem (27)–(35). In the experiments, we set p = c = 2, q = d = 5,
a = b = 0.05, tg = t0 = 0.00001, and rn+1 = 0.00007. Moreover, to find
out the out-of-sample performance and robustness of the optimal
Table 4
Optimal portfolios and their characteristics under different risk measures characterized by

k 0 0.1 10

000002 0.0350 0.0362 0.0307
600018 0.0917 0.0915 0.0978
600028 0.0442 0.0439 0.0545
600030 0.0002 0.00004 0
600033 0.0098 0.0097 0.0016
600036 0.1296 0.1291 0.1023
000033 0.0129 0.0129 0.0151
000527 0.0600 0.0607 0.0723
000538 0.1685 0.1686 0.167
000568 0.0730 0.0726 0.0903
600151 0.0011 0.0013 0.0022
600177 0.0738 0.0735 0.0663
Riskless 0.3000 0.3000 0.3000

IS-600
Return 0.0016 0.0016 0.0016
Risk 0.0167 0.0167 0.0201
Stk.no. 13 13 12
H-index 0.1615 0.1613 0.159
R/Risk 0.0959 0.0957 0.0794
R/ES 0.0959 0.0959 0.0955
R/PCVaR 3.64E+05 3.64E+05 4.03E+
G-Rachev 3.27E+04 3.27E+04 3.61E+
F–T 0.8655 0.8649 0.882

OS-5
Return 0.00908 0.00908 0.0091
Risk 0.0042 0.0042 0.0040
R/Risk 2.1567 2.1670 2.264
R/ES 2.1567 2.1679 2.354
R/PCVaR 6.88E+09 7.04E+09 1.04E+
G-Rachev 1.66E+08 1.71E+08 2.39E+
F–T 3.5218 3.5444 3.728

OS-20
Return 0.0075 0.0075 0.0076
Risk 0.0224 0.0224 0.0268
R/Risk 0.3350 0.3344 0.283
R/ES 0.3350 0.3352 0.352
R/PCVaR 1.34E+06 1.34E+06 1.62E+
G-Rachev 5.30E+04 5.32E+04 6.23E+
F–T 1.1015 1.1026 1.133

Here and in the following tables, Stk.no. is the number of stocks actually invested, H-in
measure, Return is the return rate, R/Risk, R/ES and R/PCVaR are the ratios of the return v
for the generalized Rachev ratio and F–T is the Farinelli–Tibiletti ratio.
portfolios determined using the above data, we examine the opti-
mal portfolios’ returns, risks and performance ratios 1 week
(5 days, OS-5) after and 4 weeks (20 days, OS-20) after the final
date November 16, 2006, respectively. Both in-sample results, IS-
600, and out-of-sample results, OS-5 and OS-20, are presented in
each test.

First, we consider the influence of different risk measures spec-
ified by k in the weight function w(x) on the optimal portfolio
selection. Considering the practical situation of Chinese stock mar-
kets, we set ki = 0.0003 for all the chosen stocks. Since the return
rates of these stocks in the adopted sample period are very low,
we set the required return rate to rp = 0.0016. Shown in Table 4
are the characteristics of the optimal portfolios obtained using dif-
ferent risk measures WES0.05 corresponding to k = 0.1, 10, 20, 40
and 60, and ES0.05, respectively. Tabled here are only those stocks
with non-zero holdings. For convenience, the column with k = 0
in Table 4 is used to present results obtained using ES0.05.

The five optimal portfolios have the same return rate 0.0016,
which equals the required rate of return. When k increases from
0 to 60, the risk value of the corresponding optimal portfolio
monotonically increases, which means that the larger the k is,
the more suitable the corresponding measure is for conservative
investors to adopt. We naturally deduce from these risk values that
the R/Risk ratio monotonically decreases with the increasing of k.
the risk-averse coefficient k–Chinese stocks.

20 40 60

0.0307 0.0349 0.0392
0.0971 0.1027 0.1056
0.0541 0.0490 0.0466
0 0 0
0.0039 0.0093 0.0106
0.1063 0.0968 0.0793
0.0167 0.0080 0.0044
0.0637 0.0674 0.0776

0 0.1691 0.1679 0.1662
0.0968 0.1075 0.1318
0.0019 0.0012 0
0.0597 0.0551 0.0388
0.3000 0.3000 0.3000

0.0016 0.0016 0.0016
0.0243 0.0359 0.0535
12 12 11

8 0.1605 0.1610 0.1638
0.0658 0.0446 0.0300
0.0955 0.0950 0.0938

05 4.19E+05 4.63E+05 5.26E+05
04 3.69E+04 4.07E+04 4.55E+04

5 0.8823 0.8967 0.9075

3 0.0089 0.00915 0.00914
0.0042 0.0043 0.0036

9 2.1001 2.1546 2.5105
5 2.2716 2.4949 3.0118

10 9.57E+09 1.38E+10 3.55E+10
08 2.12E+08 3.03E+08 7.43E+08

5 3.5789 3.8666 4.5574

0.0076 0.0078 0.0079
0.0329 0.0498 0.0655

9 0.2313 0.1571 0.1211
4 0.3552 0.3678 0.3992

06 1.68E+06 1.80E+06 2.56E+06
04 6.46E+04 6.90E+04 9.71E+04

9 1.1412 1.1658 1.2485

dex is the value of the Herfindahl index, Risk is the value of the corresponding risk
alue to the associated risk value, ES and power CVaR, respectively. G-Rachev stands
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The number of the stocks actually included in the optimal portfolio
and the H-index value presented in Table 4 indicate that the diver-
sification of the optimal portfolio decreases with the increase in k.
This decrease in diversification is due to the fact that the risk-
averse degree monotonically increases with k and the investor will
control the investment risk by concentrating his/her investment on
a few superior stocks.

To further show the advantage of our new risk measure, we
examine the performances of the optimal portfolios under four
common performance measures R/ES, R/PCVaR, G-Rachev and F–T
ratios. Naturally, the ES0.05 optimal portfolio has the largest R/ES
ratio; for the other optimal portfolios, the R/ES ratio decreases
with the increase in k. The R/PCVaR ratio and G-Rachev ratio uni-
formly and monotonically increase with respect to k. Although
oscillating slightly, the F–T ratio basically monotonically increases
with respect to k. This is due to the fact that our new risk measure
mainly concerns the lower tail risk while the F–T ratio focuses on
the positive and negative deviations from 0 simultaneously. These
results demonstrate that the performance of the optimal portfolio
obtained using WES0.05 is better than that using the current popu-
lar coherent risk measure ES0.05. Generally speaking, the larger the
k is, the more significantly the performance of the optimal portfolio
will improve.
Table 5
The characteristics of optimal portfolios under different risk measures and different trans

Risk measures k 0 0.00

IS-600 (WES) Return 0.0016 0.00
Risk 0.0182 0.01
Stk.no. 11 11
H-index 0.1566 0.16
R/Risk 0.0881 0.08
R/ES 0.1040 0.10
R/PCVaR 7.79E+05 6.20
G-Rachev 5.82E+04 4.78
F–T 0.9110 0.88

IS-600 (ES) Return 0.0016 0.00
Risk 0.0154 0.01
Stk.no. 11 11
H-index 0.1558 0.15
R/ES 0.1041 0.10
R/PCVaR 7.49E+05 5.99
G-Rachev 5.62E+04 4.62
F–T 0.9078 0.88

OS-5 (WES) Return 0.0116 0.01
Risk 0.0037 0.00
R/Risk 3.1420 2.99
R/ES 3.2560 3.09
R/PCVaR 2.02E+10 2.37
G-Rachev 5.31E+08 6.06
F–T 4.9020 4.83

OS-5 (ES) Return 0.0115 0.01
Risk 0.0037 0.00
R/ES 3.1086 3.07
R/PCVaR 1.64E+10 2.02
G-Rachev 4.32E+08 5.25
F–T 4.7024 4.76

OS-20 (WES) Return 0.0080 0.00
Risk 0.0322 0.02
R/Risk 0.2475 0.27
R/ES 0.3180 0.34
R/PCVaR 8.04E+05 1.43
G-Rachev 3.17E+04 5.56
F–T 1.0115 1.10

OS-20 (ES) Return 0.0078 0.00
Risk 0.0248 0.02
R/ES 0.3158 0.32
R/PCVaR 8.39E+05 9.39
G-Rachev 3.26E+04 3.76
F–T 1.0072 1.04
The 1-week-after and 4-week-after tests in Table 4 show that
WES0.05 optimal portfolios almost surely have higher returns than
the ES0.05 optimal portfolio. What’s more important, the out-of-
sample performance of the WES0.05 optimal portfolios is superior
to that of the ES0.05 optimal portfolio under almost all the perfor-
mance ratios (R/ES, R/PCVaR, G-Rachev and F–T). Usually, the big-
ger the k is, the better the out-of-sample performance is. Therefore,
the performances of the WES0.05 optimal portfolios for the in-
sample and out-of-sample tests often significantly increase with
the increase in k, when compared with those of the ES0.05 optimal
portfolio.

The superior performance and robustness of our portfolio selec-
tion model (27)–(35) can be explained as follows: as an extension
to ESa, our new risk measure considers losses below VaRa un-
equally. It can flexibly describe the investor’s specific risk-averse
attitude. The penalty for large losses strictly increases with the
increase in k, and the asymmetry of WESa thus monotonically
increases with respect to k. These modifications are of vital
importance for the improvement of the performance and robust-
ness of the resulting optimal portfolio. In addition to reflecting
the investor’s degree of risk aversion, the nonlinear weight func-
tion w(x) can also help us to control the fat-tail phenomenon, that
is, the occurrence of extreme losses.
action cost ratios–Chinese stocks.

01 0.0002 0.0003 0.00035

16 0.0016 0.0016 0.0016
86 0.0193 0.0201 0.0206

11 12 12
07 0.1559 0.1598 0.1644
58 0.0828 0.0794 0.0778
19 0.0990 0.0956 0.0941
E+05 4.82E+05 4.03E+05 3.43E+05
E+04 4.03E+04 3.61E+04 3.14E+04
50 0.8820 0.8825 0.8644

16 0.0016 0.0016 0.0016
57 0.0162 0.0167 0.0170

11 13 13
48 0.1557 0.1615 0.1637
17 0.0990 0.0959 0.0942
E+05 4.63E+05 3.64E+05 3.23E+05
E+04 3.87E+04 3.27E+04 3.00E+04
02 0.8732 0.8660 0.8610

05 0.0101 0.0091 0.0085
35 0.0038 0.0040 0.0044
12 2.6438 2.2649 1.9261
40 2.7430 2.3545 2.0088
E+10 1.49E+10 1.04E+10 6.40E+09
E+08 3.70E+08 2.39E+08 1.47E+08
32 4.2985 3.7285 3.3138

08 0.0102 0.0091 0.0087
35 0.0038 0.0042 0.0042
50 2.6860 2.1567 2.0813
E+10 1.31E+10 6.88E+09 6.92E+09
E+08 3.30E+08 1.66E+08 1.69E+08
55 4.2329 3.5218 3.4887

76 0.0078 0.0076 0.0073
76 0.0290 0.0268 0.0255
40 0.2680 0.2839 0.2877
18 0.3373 0.3524 0.3541
E+06 1.20E+06 1.62E+06 1.91E+06
E+04 4.71E+04 6.23E+04 7.41E+04
94 1.0832 1.1339 1.1625

78 0.0078 0.0075 0.0074
42 0.0234 0.0224 0.0215
27 0.3322 0.3350 0.3440
E+05 1.12E+06 1.34E+06 1.60E+06
E+04 4.40E+04 5.30E+04 6.35E+04
49 1.0703 1.1015 1.1385
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Next, we investigate how different transaction cost ratios affect
the diversification of the optimal portfolio and its performance. To
make comparisons on the same basis, we fix rp = 0.0016 and con-
sider five different transaction cost ratios ki (1 6 i 6 n) = k = 0,
0.0001, 0.0002, 0.0003 and 0.00035, respectively. Due to the space
limitation, we only report in Table 5 the results for WES0.05 with
k = 10 and ES0.05.

We first examine the in-sample results IS-600 (WES) and IS-600
(ES). When k increases, the return rate of the optimal portfolio is
always equal to the required return rate 0.0016, while the value
of risk monotonically increases. Accordingly, the R/Risk ratio
decreases. Similarly, the values of the performance ratios R/ES,
R/PCVaR, G-Rachev and F–T decrease with the increase in k. There-
fore, the performance of the optimal portfolio deteriorates with
the increasing of the transaction cost ratio. Meanwhile, as k in-
creases, the number of stocks really included in the optimal port-
folio increases by, at most, 1 or 2, while the corresponding value
of the H-index basically increases. Consequently, the diversifica-
tion effect of the optimal portfolio degenerates. These results are
rather reasonable. The investment cost is a monotonically increase
function of k, therefore, in order to ensure the required investment
return rate and to control risk, the investor has to concentrate his/
her investment on the stocks with relatively higher returns but
Table 6
The characteristics of optimal portfolios under different risk measures and different requi

Risk measures rp 0.00152 0.00

IS-600 (WES) Return 0.00152 0.00
Risk 0.0193 0.01
Stk.no. 11 11
H-index 0.1549 0.15
R/Risk 0.0786 0.07
R/ES 0.0939 0.09
R/PCVaR 4.70E+05 4.37
G-Rachev 4.12E+04 3.85
F–T 0.8866 0.88

IS-600 (ES) Return 0.00152 0.00
Risk 0.0161 0.01
Stk.no. 11 11
H-index 0.1588 0.15
R/ES 0.0941 0.09
R/PCVaR 4.18E+05 3.90
G-Rachev 3.61E+04 3.44
F–T 0.8576 0.85

OS-5 (WES) Return 0.0101 0.00
Risk 0.0039 0.00
R/Risk 2.6090 2.42
R/ES 2.7085 2.51
R/PCVaR 1.38E+10 1.17
G-Rachev 3.39E+08 2.82
F–T 4.2220 3.98

OS-5 (ES) Return 0.0101 0.00
Risk 0.0039 0.00
R/ES 2.5599 2.50
R/PCVaR 1.06E+10 1.05
G-Rachev 2.80E+08 2.75
F–T 4.1447 4.08

OS-20 (WES) Return 0.0077 0.00
Risk 0.0297 0.02
R/Risk 0.2600 0.26
R/ES 0.3289 0.33
R/PCVaR 1.08E+06 1.27
G-Rachev 4.23E+04 4.96
F–T 1.0609 1.08

OS-20 (ES) Return 0.0074 0.00
Risk 0.0229 0.02
R/ES 0.3252 0.32
R/PCVaR 1.19E+06 1.20
G-Rachev 4.72E+04 4.80
F–T 1.0756 1.08
higher risks. Due to the investor’s decision, the risk of the optimal
portfolio increases and its performance deteriorates with the in-
crease in k. Our results also confirm the existing empirical conclu-
sion that the portfolio performance and diversification often
decrease with the increase in the transaction cost.

The portfolio risk basically increases and the performance ratios
(R/Risk, R/ES, R/PCVaR, G-Rachev and F–T) almost surely decrease
monotonically with the increase in k in the 1-week out-of-sample
tests (OS-5), which agrees with the in-sample results. Therefore,
the conclusions for the in-sample case still hold for the 1-week
out-of-sample situation. Nevertheless, probably due to the bull
market season, the return rates of the optimal portfolios for the
four groups of out-of-sample cases, OS-5 (WES), OS-5 (ES), OS-20
(WES) and OS-20 (ES), are all higher than the required return rate
0.0016. Interestingly, the risks of the optimal portfolios for the out-
of-sample tests after 4 weeks, OS-20 (WES) and OS-20 (ES), basi-
cally decrease with the increase in k, while all the corresponding
performance ratios R/Risk (R/ES), R/PCVaR, G-Rachev and F–T often
increase with respect to k.

Last but not least, by comparing the results obtained under the
transaction cost ratios given in Table 5, we can easily find that the
performance ratios obtained under the WES0.05 (k = 10) optimal
portfolios for both in-sample and out-of-sample cases are almost
red return rates–Chinese stocks.

155 0.00158 0.0016 0.00162

155 0.00158 0.0016 0.00162
96 0.0199 0.0201 0.0203

11 12 12
70 0.1591 0.1598 0.1627
91 0.0794 0.0794 0.0797
47 0.0954 0.0955 0.0962
E+05 4.14E+05 4.03E+05 3.53E+05
E+04 3.69E+04 3.61E+04 3.18E+04
16 0.8812 0.8825 0.8656

155 0.00158 0.0016 0.00162
63 0.0165 0.0167 0.0168

12 13 13
86 0.1619 0.1615 0.1622
49 0.0956 0.0959 0.0962
E+05 3.76E+05 3.64E+05 3.45E+05
E+04 3.39E+04 3.27E+04 3.12E+04
99 0.8706 0.8655 0.8637

97 0.0093 0.0091 0.0088
40 0.0042 0.0040 0.0043
40 2.2278 2.2649 2.0607
87 2.3185 2.3545 2.1472
E+10 9.13E+09 1.04E+10 7.52E+09
E+08 2.10E+08 2.39E+08 1.80E+08
13 3.6564 3.7285 3.5397

98 0.0094 0.0091 0.0088
39 0.0042 0.0042 0.0042
57 2.2314 2.1567 2.1124
E+10 7.09E+09 6.88E+09 6.94E+09
E+08 1.76E+08 1.66E+08 1.67E+08
58 3.6250 3.5218 3.4863

76 0.0076 0.0076 0.0074
85 0.0278 0.0268 0.0270
83 0.2731 0.2839 0.2758
67 0.3411 0.3524 0.3427
E+06 1.39E+06 1.62E+06 1.54E+06
E+04 5.41E+04 6.23E+04 6.11E+04
98 1.1034 1.1339 1.1297

75 0.0075 0.0075 0.0075
29 0.0225 0.0224 0.0220
93 0.3320 0.3350 0.3415
E+06 1.29E+06 1.34E+06 1.46E+06
E+04 5.09E+04 5.30E+04 5.79E+04
42 1.0923 1.1015 1.1216
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always significantly larger than the corresponding performance ra-
tios obtained under the ES0.05 optimal portfolio. Naturally, the
superiority and robustness of WES0.05 optimal portfolios for the
1 week out-of-sample tests are better than those in the out-
of-sample tests after 4 weeks. All the above findings strongly
demonstrate that our new risk measure shows better performance
and robustness than ES0.05 in finding optimal portfolios.

Finally, the impact of different target rates of return rp on the
optimal portfolio selection is investigated. Five different target re-
turn rates are selected here, and the associated results are pre-
sented in Table 6. Since the sample return rates of the selected
stocks are low, we set the transaction cost ratio ki (i = 1,2, . . . ,n)
to 0.0003 to ensure that meaningful optimal portfolios can be
found for large target return rates. Due to the space limitation,
we report here the results obtained with the risk measures
WES0.05 (k = 10) and ES0.05, respectively.

Both the return rate and risk value of the optimal portfolio for
the in-sample tests, IS-600 (WES) and IS-600 (ES), monotonically
increase with the increase in rp. Nonetheless, as the return rate in-
creases faster than that of the risk, the R/Risk and R/ES ratios
monotonically increase with respect to rp. On the other hand, the
R/PCVaR and G-Rachev ratios uniformly and monotonically de-
crease with respect to rp. The F–T ratio oscillates slightly, for the
same reason as the F–T ratio in Table 4 does. These conclusions
confirm the well-known fact that portfolios with higher returns
are almost surely accompanied by higher risks, measured by any
reasonable risk measure. Meanwhile, an obvious financial explana-
Table 7
Optimal portfolios and their characteristics under different risk measures characterized b

k 0 0.1 20

DUK 0.0898 0.0909 0.093
GD 0.0582 0.0565 0.052
GS 0.0491 0.0512 0.051
MET 0.0335 0.0359 0.040
NKE 0 0 0
RTP 0.0695 0.0679 0.066
TRI 0.0085 0.0079 0.007
UNH 0.0291 0.0303 0.030
WYE 0.0923 0.0904 0.084
PEP 0.0288 0.029 0.030
BA 0.0577 0.0558 0.054
MCD 0.1233 0.1232 0.123
SBUX 0.0602 0.0612 0.064
Riskless 0.3000 0.3000 0.300

IS-600
Return 0.0005 0.0005 0.0005
Risk 0.0094 0.0095 0.011
Stk.no. 13 13 13
H-index 0.1422 0.1419 0.141
R/Risk 0.0530 0.0529 0.043
R/ES 0.0530 0.0530 0.053
R/PCVaR 4.36E+06 4.38E+06 4.43E
G-Rachev 2.65E+05 2.67E+05 2.71E
F–T 0.8017 0.8044 0.808

OS-5
Return 0.0006 0.0006 0.0007
Risk 0.0035 0.0035 0.003
R/Risk 0.1735 0.1798 0.181
R/ES 0.1735 0.1798 0.195
R/PCVaR 1.10E+09 1.15E+09 1.23E
G-Rachev 1.64E+07 1.66E+07 1.69E
F–T 0.9674 0.973 0.989

OS-10
Return 0.0004 0.0004 0.0005
Risk 0.0065 0.0066 0.007
R/Risk 0.0642 0.0667 0.064
R/ES 0.0642 0.0667 0.073
R/PCVaR 3.64E+07 3.60E+07 3.87E
G-Rachev 7.69E+05 7.29E+05 7.32E
F–T 0.564 0.560 0.567
tion for the above variation in the performance ratio is that, to
achieve the required high return rate, the investor tends to concen-
trate his/her investment on the stocks with relatively high return
rate but large risk. For this reason, the diversifications of the opti-
mal portfolios determined under the two risk measures basically
decrease with the increase in rp, due to the monotonic increase
of the H-index and the small change in the number of stocks actu-
ally invested.

For the out-of-sample results, due to the superiority of WES0.05,
the return rates of the optimal portfolios for the 1-week cases (OS-
5 (WES) and OS-5 (ES)) and the 4-week cases (OS-20 (WES) and
OS-20 (ES)) are all higher than the corresponding required return
rates. Just as the variation tendencies in the in-sample cases, the
portfolio risks in the 1-week out-of-sample cases basically increase
with respect to rp, and the performance ratios (R/Risk, R/ES, R/PCVaR,
G-Rachev and F–T) almost always monotonically decrease with
respect to rp. The portfolio risks in the out-of-sample tests after
4 weeks basically decrease with the increase in rp, which results
in the monotonic increasing of the R/Risk and R/ES ratios, and more
importantly, the R/PCVaR, G-Rachev and F–T ratios with respect to
rp. These interesting changes are similar to what we have found in
the out-of-sample test after 4 weeks in Table 5. These phenomena
further show the super-performance and robustness of WES0.05 in
the optimal investment decision-making.

When the performance of the optimal portfolios obtained using
WES0.05 is compared with that of the corresponding optimal port-
folios obtained using ES0.05, conclusions similar to those derived
y the risk-averse coefficient k–American stocks.

60 80 100

3 0.0974 0.0991 0.1052
0.0459 0.0437 0.0414

3 0.0491 0.0502 0.0438
1 0.0424 0.044 0.0538

0.0024 0.0018 0.0004
5 0.066 0.062 0.058
8 0.0076 0.0083 0.004
4 0.0296 0.0293 0.0287
9 0.0796 0.0797 0.0763
8 0.0316 0.03 0.0301
8 0.0549 0.057 0.0671
7 0.1246 0.1236 0.1221
5 0.0688 0.0713 0.069
0 0.3000 0.3000 0.3000

0.0005 0.0005 0.0005
5 0.0171 0.0209 0.0256

14 14 14
6 0.1417 0.1418 0.1427
5 0.0293 0.0239 0.0196
0 0.0529 0.0529 0.0529
+06 4.49E+06 4.53E+06 4.58E+06
+05 2.79E+05 2.82E+05 2.82E+05
0 0.8180 0.8194 0.8134

0.0008 0.0008 0.0008
8 0.0044 0.0044 0.0042
8 0.1747 0.1726 0.2009
1 0.216 0.2263 0.2729
+09 1.39E+09 1.72E+09 3.10E+09
+07 1.77E+07 2.13E+07 3.58E+07

1.0088 1.0365 1.1512

0.0005 0.0005 0.0005
5 0.0097 0.0113 0.0121
3 0.0555 0.0474 0.0411
4 0.0824 0.0805 0.0780
+07 4.42E+07 4.15E+07 4.67E+07
+05 7.73E+05 7.26E+05 9.97E+05

0.578 0.570 0.670
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from the previous two situations in Tables 4 and 5 can be obtained
for both in-sample and out-of-sample cases. Concretely, for any gi-
ven rp, the performance ratio, under most examined performance
measures, of the optimal portfolio determined under WES0.05 is
usually higher than that of the corresponding optimal portfolio ob-
tained with ES0.05. Therefore, our new risk measure is better than
ES0.05 in helping investors to find more efficient and robust invest-
ment strategy.

5.2. The American stock markets

In this subsection, we further investigate the performance and
robustness of our new risk measure and the corresponding portfo-
lio selection model in advanced stock markets. As comparison, a
riskless asset and 30 risky stocks are randomly selected from the
American stock markets as our investment universe. Daily returns
with dividend re-invested on these stocks in 600 trading days,
from May 28, 2004 to October 13, 2006, are used to determine
the values of the parameters in the problem (27)–(35). In
the experiments, we set p = c = 2, q = d = 5, a = b = 0.05, tg = t0 =
0.00001, and rn+1 = 0.00007.

To check the out-of-sample performance and robustness of the
optimal portfolios determined using the above data and under dif-
Table 8
The characteristics of optimal portfolios under different risk measures and different trans

Risk measures k 0.0002 0.00

IS-600 (WES) Return 0.0005 0.00
Risk 0.0102 0.01
Stk.no. 16 13
H-index 0.1383 0.14
R/Risk 0.0587 0.05
R/ES 0.0587 0.05
R/PCVaR 7.51E+06 4.43
G-Rachev 3.72E+05 2.71
F–T 0.8038 0.80

IS-600 (ES) Return 0.0005 0.00
Risk 0.0085 0.00
Stk.no. 16 13
H-index 0.1394 0.14
R/ES 0.0587 0.05
R/PCVaR 7.26E+06 4.36
G-Rachev 3.57E+05 2.65
F–T 0.7935 0.80

OS-5 (WES) Return 0.0012 0.00
Risk 0.0023 0.00
R/Risk 0.5265 0.18
R/ES 0.5506 0.19
R/PCVaR 2.19E+10 1.23
G-Rachev 2.33E+08 1.69
F–T 1.6366 0.98

OS-5 (ES) Return 0.0012 0.00
Risk 0.0024 0.00
R/ES 0.4865 0.17
R/PCVaR 1.40E+10 1.10
G-Rachev 1.53E+08 1.64
F–T 1.5500 0.96

OS-10 (WES) Return 0.0007 0.00
Risk 0.0069 0.00
R/Risk 0.1008 0.06
R/ES 0.1139 0.07
R/PCVaR 8.22E+07 3.87
G-Rachev 1.33E+06 7.32
F–T 0.7225 0.56

OS-10 (ES) Return 0.0007 0.00
Risk 0.0059 0.00
R/ES 0.1143 0.06
R/PCVaR 9.36E+07 3.64
G-Rachev 1.55E+06 7.69
F–T 0.7440 0.56
ferent situations, we examine their return rates, risks and perfor-
mance indices 1-week (5 days, OS-5) after and 2-week (10 days,
OS-10) after the final date October 13, 2006, respectively. Both
the in-sample results, IS-600, and the out-of-sample results, OS-5
and OS-10, are given in each following table.

We examine in succession the influence of the risk-averse coef-
ficient, transaction cost ratio and target return rate on the config-
uration and performance of the optimal portfolio in the American
stock markets. The detailed results are given in Tables 7–9, respec-
tively. By comparing the results in Tables 4–6 with the correspond-
ing results in Tables 7–9, respectively, we find similar variation
patterns and draw similar conclusions with regard to the three
parameters k, k and rp and the risk measures WES0.05 and ES0.05.
Generally speaking, the performance of the WES0.05 optimal portfo-
lio in the American stock markets increases with the increase in k,
while the performance of the WES0.05 optimal portfolio tends to
deteriorate with the increase in k or rp. For any given value of each
of the three parameters, the WES0.05 optimal portfolio almost
surely shows better performance than the ES0.05 optimal portfolio
under considered performance ratios.

Considering the space limitation, we will not analyze in detail
the empirical results in Tables 7–9 which are similar to those in Ta-
bles 4–6. Here, we just point out some new features deduced from
action cost ratios–American stocks.

03 0.00035 0.0004 0.00045

05 0.0005 0.0005 0.0005
15 0.0123 0.0132 0.0145

13 10 10
16 0.149 0.1514 0.1626
3 0.0502 0.0471 0.0437
3 0.0502 0.0472 0.0437
E+06 3.22E+06 2.35E+06 1.63E+06
E+05 2.26E+05 1.82E+05 1.42E+05
80 0.8190 0.8134 0.8070

05 0.0005 0.0005 0.0005
94 0.0100 0.0106 0.0114

12 11 10
22 0.1484 0.1513 0.1623
30 0.0502 0.0471 0.0437
E+06 3.23E+06 2.35E+06 1.62E+06
E+05 2.24E+05 1.81E+05 1.41E+05
17 0.8140 0.8121 0.8050

07 0.0005 0.0004 0.0007
38 0.0046 0.0052 0.0065
18 0.1048 0.0784 0.1025
51 0.1141 0.0862 0.115
E+09 3.49E+08 1.73E+08 1.05E+08
E+07 7.56E+06 5.32E+06 2.23E+06
90 0.8632 0.8447 0.7472

06 0.0005 0.0004 0.0007
35 0.0043 0.0048 0.0058
35 0.1064 0.0836 0.1169
E+09 3.23E+08 1.60E+08 1.05E+08
E+07 7.32E+06 4.91E+06 2.21E+06
74 0.8512 0.8298 0.7503

05 0.0004 0.0007 0.0010
75 0.0071 0.0077 0.0065
43 0.0570 0.0875 0.1559
34 0.0646 0.1001 0.1749
E+07 4.17E+07 4.85E+07 1.60E+08
E+05 1.09E+06 1.05E+06 2.86E+06
70 0.6273 0.6831 0.8052

04 0.0004 0.0007 0.0010
65 0.0064 0.0067 0.0058
42 0.0646 0.1000 0.1745
E+07 3.95E+07 4.90E+07 1.56E+08
E+05 1.02E+06 1.05E+06 2.79E+06
40 0.6208 0.679 0.8062



Table 9
The characteristics of optimal portfolios under different risk measures and different required return rates–American stocks.

Risk measures rp 0.00035 0.0005 0.00065 0.00075 0.0009

IS-600 (WES) Return 0.00035 0.0005 0.00065 0.00075 0.0009
Risk 0.0092 0.0115 0.0158 0.0194 0.0264
Stk.no. 17 13 10 10 6
H-index 0.1311 0.1417 0.1178 0.1172 0.1800
R/Risk 0.0381 0.0435 0.0411 0.0386 0.0341
R/ES 0.0448 0.0530 0.0531 0.0522 0.0498
R/PCVaR 8.35E+06 4.43E+06 1.49E+06 7.80E+05 3.08E+05
G-Rachev 4.74E+05 2.71E+05 1.20E+05 7.49E+04 3.68E+04
F–T 0.789 0.808 0.821 0.821 0.808

IS-600 (ES) Return 0.00035 0.0005 0.00065 0.00075 0.0009
Risk 0.0078 0.0094 0.0122 0.0144 0.0181
Stk.no. 17 13 10 10 6
H-index 0.1311 0.1422 0.1182 0.1156 0.1774
R/ES 0.0448 0.0530 0.0531 0.0523 0.0498
R/PCVaR 8.35E+06 4.36E+06 1.49E+06 7.75E+05 3.07E+05
G-Rachev 4.73E+05 2.65E+05 1.20E+05 7.36E+04 3.66E+04
F–T 0.789 0.802 0.819 0.814 0.805

OS-5 (WES) Return 0.0017 0.0007 0.0005 0.0007 0.0012
Risk 0.0012 0.0038 0.0060 0.0070 0.0136
R/Risk 1.3812 0.1818 0.0901 0.1013 0.0870
R/ES 1.4139 0.1951 0.1004 0.1147 0.1083
R/PCVaR 7.48E+11 1.23E+09 1.17E+08 7.86E+07 7.62E+06
G-Rachev 7.12E+09 1.69E+07 3.73E+06 2.56E+06 2.64E+05
F–T 3.4769 0.9890 0.8688 0.8807 0.6728

OS-5 (ES) Return 0.0016 0.0006 0.0005 0.0007 0.0011
Risk 0.0012 0.0035 0.0055 0.0063 0.0112
R/ES 1.3600 0.1735 0.0905 0.1057 0.0988
R/PCVaR 6.41E+11 1.10E+09 9.90E+07 6.80E+07 6.21E+06
G-Rachev 6.17E+09 1.64E+07 3.44E+06 2.41E+06 2.32E+05
F–T 3.3335 0.9674 0.8532 0.8735 0.6582

OS-10 (WES) Return 0.0008 0.0005 0.0008 0.0011 0.0022
Risk 0.0078 0.0075 0.0090 0.0109 0.0136
R/Risk 0.1074 0.0643 0.0933 0.0989 0.1617
R/ES 0.1230 0.0734 0.1088 0.1186 0.2012
R/PCVaR 5.85E+07 3.87E+07 3.07E+07 1.73E+07 1.42E+07
G-Rachev 6.62E+05 7.32E+05 7.33E+05 4.47E+05 3.51E+05
F–T 0.5650 0.5665 0.6993 0.7030 0.8145

OS-10 (ES) Return 0.0008 0.0004 0.0008 0.0011 0.0021
Risk 0.0068 0.0065 0.0078 0.0091 0.0112
R/ES 0.1216 0.0642 0.1074 0.1159 0.1838
R/PCVaR 5.75E+07 3.64E+07 2.93E+07 1.67E+07 1.15E+07
G-Rachev 6.59E+05 7.69E+05 7.11E+05 4.46E+05 3.02E+05
F–T 0.5646 0.5638 0.6960 0.7028 0.7967
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these empirical results. The out-of-sample performance of the
WES0.05 optimal portfolio for both OS-5 and OS-10 is almost always
superior to the performance of the corresponding ES0.05 optimal
portfolio. However, the uniformity and significance of the WES0.05

optimal portfolios for the American stock markets are not so good
as those for the Chinese stock market data. For instance, the R/PCVaR,
G-Rachev and F–T ratios of the WES0.05 optimal portfolio with
k = 0.1 for the 2-week-after results (OS-10) in Table 7 are smaller
than the corresponding ratios of the ES0.05 optimal portfolio.
Meanwhile, the stability of the superior performance of the
WES0.05 optimal portfolios for the 2-week-after out-of -sample
results is more or less the same as that of the ES0.05 optimal port-
folios, but is not so good as that for the Chinese stock market
4 weeks after the final sample date. These phenomena are easy
to understand. With the buy-and-hold strategy, investors can
hardly earn high returns constantly in advanced markets such as
the American stock markets. Therefore, investors should adjust
their investment strategy more frequently in advanced markets
than in emerging markets.

In summary, the in-sample and out-of-sample results for both
Chinese stock markets and American stock markets sufficiently
show the practicality, efficiency and robustness of our new risk
measure and the corresponding portfolio selection model. They
can be useful for investors to make efficient and robust investment
decisions in both emerging stock markets and developed stock
markets.

6. Conclusion

By adaptively penalizing large losses using a nonlinear weight
function, this paper introduces a new class of generalized convex
risk measures (WESa). The new measure satisfies convexity and
monotonicity, which are well-accepted by academicians and prac-
titioners as the two axioms a reasonable, realistic risk measure
should satisfy. The well known fat-tail phenomenon and the asym-
metry of the loss distribution can be suitably controlled through
the proper selection of the weight function; the investor’s risk atti-
tude can be reflected elaborately; more importantly, due to its
remarkable mathematical properties, our new risk measure can
be more easily applied to practical investment decision-making
than the existing convex measures.

A realistic portfolio selection model is established based on the
proposed risk measure. This model takes into account typical trad-
ing frictions such as taxes and transaction costs. What’s more
important, instead of using the current solution methods for sto-
chastic programs, our portfolio selection model is specifically
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transformed into a convex optimization problem, which can be
easily solved. Detailed empirical results for both in-sample and
out-of-sample cases with real trade data from the Chinese stock
markets and American stock markets show that our new risk mea-
sure and the established portfolio selection model are helpful for
the determination of a robustly optimal investment strategy. They
can reasonably reflect the influence of different market constraints,
and can be used to find optimal portfolios with specific character-
istics such as the return-risk pattern. The optimal portfolio deter-
mined under WESa is generally better than the corresponding
optimal portfolio obtained under ESa in terms of the diversification
degree and typical performance measures. Thus, WESa is more suit-
able for the optimal portfolio selection in financial management.

When applying our new risk measure to insurance, one might
be interested in calculating WESa for a, which is so small that
aM < 1. Then, an important issue is how to reasonably estimate
WESa by using the extreme value method. Meanwhile, we only
examine the exponential-type weight function. Other weight func-
tions can also be used in WESa. What influences do different weight
functions have on the practical risk control and portfolio selection?
Can we establish some practical rules about the proper selection of
the weight function? All these issues are left for future research.
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