- N

Granular Knowledge
Representation and Inference using
Labels and Label Expressions

Jonathan Lawry

j.lawy@ris. ac. uk

Dept. Engineering Mathematics,
University of Bristol,
L Bristol, BS8 1TR, UK J

Granular Knowledge Representation and Inference using Labels and Label Expressions — p. 1/37



© o o o o ©

Overview

Information granules and granular models.
Representing imprecise labels.

A prototype interpretation of labels.

Imprecise probabilities from imprecise descriptions.
Applications: Case Studies.

Conclusion.
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Information Granules

-

Fundamental to human communication is the ability to
effectively describe the continuous domain of sensory
perception in terms of a finite set of description labels.

Granular modelling permits us to process and transmit
iInformation efficiently at an appropriate level of detail.

Information Granule [Zadeh] A granule is a clump of
objects (points) which are drawn together by
Indistinguishability, similarity, proximity and functionality.

Information Granule [Lawry] An information granule is a
characterisation of the relationship between a discrete
label or expression and elements of the underlying
(often continuous) domain which it describes.

|
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Granular Models

-

Granular Modelling aims to develop formal
representations on information granules and embed
these into computational models (intelligent systems).

Granular models (Zadeh) are high-level (often
rule-based) models which incorporate concepts as
represented by information granules.

Mechanisms for representing and processing
uncertainty and linguistic vagueness are fundamental.

Model transparency and accuracy are dual goals.

Traceability of decision processes is vital in many
applications.

Key problem areas are: learning, fusion and reasoning.

|
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Deciding What to Say...
-

Describing the world requires us to make decisions
about what is the best choice of words when referring to
objects and instances, in order to convey the
Information we intend.

Suppose you are witness to a robbery, how should you
describe the robber so that police on patrol in the
streets will have the best chance of spotting him?

You will have certain labels that can be applied, for
example tall, short, medium, fat, thin, blonde, etc, but which
are more appropriate (according to convention)?

We contend that this is fundamentally an epistemic
problem (Williamson).

|
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The Epistemic Stance

-

Within a population of communicating agents, individuals assume
the existence of a set of labelling conventions for the population
governing what linguistic labels and expression can be appropriately
used to describe particular instances.

Making an assertion to describe an object or instance «
Involves making a decision as to what labels can be
appropriately used to describe x.

An individual’s knowledge of labelling conventions is
partial and uncertain.

This will result in uncertainty about the appropriateness
of labels to describe instance z.

In accordance with De Finetti it Is reasonable to model
this uncertainty using subjective probabilities. J
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Measures of Appropriateness
As a (big) simplification... T

Assume that there is a finite set of labels

LA={ly,...,L,} for describing elements of the
universe ().

LFE i1s the set of expressions generated from LA through
recursive application of the connectives A,V and —.

LA = {red, blue, green, yellow . . .}
LE = {red&blue, not yellow, green or not yellow ...}

Ford € LE, x € Q, uy () = the subjective probability
that 6 is appropriate to describe =.

|
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Mass Functions

-

D.. Is the complete set of labels appropriate to describe
X.

D, = {red, pink} means that both red and pink can be
appropriately used to describe x, and no other labels
are appropriate.

m, : 284 — [0, 1] is a probability mass function on
subsets of labels.

For I C LA m,(F) Is the subjective probability that
D, =F.

The mass function m, and the appropriateness
measure . are strongly related...

tg(x) 1s the sum of m, over those values for D,
consistent with 6. J
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General Relationships

- N

x IS ¢’ requires that D, € X () where V0, p € LE
® VLe LAXNL)={FCLA:LeF}
® AOAN@)=A0)NA(p)
® MOV )= A0) UA(p)
® \—0) = X0)
This results in the following equation relating m,. as u:
® pp(z) = P(Dy € A(0)) = X_ger) ma(S)
® \red N —pink) ={F C LA :red € F,pink ¢ I'}

< Mred/\ﬂpmk(x) — ZF:redEF,pmng miU(F)

o |
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Some LIinks ...

-

...to probability For a fixed = ug(x) forms a probability
measure on LE as 0 varies.

If =60 thenVz, ug(x) =1

If 0 = p then Vz, pp(z) = pp(z)

VO, Vr, p-g(r) =1— pg(x)

If == (0 A @) then pgy,(z) = pg(x) + pep()

...to DS Theory For conjunctions and disjunctions of
labels appropriateness measure can be interpreted as
Commonality and Plausibility functions.

.....

..... : N
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Assuming Consonance

Focal Sets F, = {F C LA : m,(F) > 0}.

Consonance For F, I’ ¢ F, then either ' C I’ or
F'CF.

Ordering Labels Assume that for each = € (2 an agent
first identifies a total ordering on the appropriateness of
labels. They then evaluate their belief values m, about
which labels are appropriate to describe x in such a
way Sso as to be consistent with this ordering.

LENY = expressions only involving the connectives A
or V.

Under Consonance V6, o € LE™Y, Vo € Q it holds that
Horp(T) = min(up(x), pp(x)) and

tove(z) = max(pg(x), py(z)) o
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Consonance and Functionality

|_small medium large
0.8 /

wr, (x),...,ur, (x) ordered so that
pr,(r) > pr,,,(r)fori=1,...,n—1
my (L1, La}) = pr, (2)

My ({Llﬁ JR LZ}) — KL, (37) — KL, (x)
and my (0) =1— ur, ()
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Prototype Theory
- -

# The membership of elements in a concept is

determined by their similarity to certain prototypical
cases (Rosch 1973).

#® Prototypes may be actual exemplars of the concept
(case-based reasoning) or abstractions or aggregations
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Conceptual Spaces: NCS Colour Spindle
|7 Hue T
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Bl R
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A Prototype Interpretation
-

Let d : Q% — [0, 00) be a distance function satisfying
d(z,z)=0and d(x,y) = d(y, x).

For S, T C Qletd(T,S) =inf{d(x,y) :x € S,y € T}.

For L; € Q let P, C () be a set of prototypical elements
for L;.

Let € be a random variable into [0, oo) with density
function ¢.

L; i1s appropriate to describe z iff d(z, P;) < e.
DS ={L;:d(x, P;) < €}.

VE CQmg(F)=6{e: DS =F})

Naturally satisfies consonance.

|
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Generating D¢,

Identifying ng; 'D;l = (), D;Q = {Ll, LQ}, ’D;S = {Ll, Lo, L3, L4}

. |
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Appropriateness as Subsets of

-

VreQand Vi e LE, I[(0,z) C |0,00) IS defined
recursively by:

VL; € LA I(L;,x) = |d(z, P;), 00)

VO e LE I(—0,x) =1(6,x)°

VO, pe LEIOV p,x)=1(0,z)UI(p,x)

VO, pe LEIONp,x)=10,z)I(p,x)

Theorem: VO € LE,Vx € Q 1(0,z) ={e: DS € \(0)}
Corollary: V0 € LE,Vx € Q pg(x) = 6(1(0,x))

|
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Area under o: Appropriateness

|7](L7; A\ _'Lj,$> — [d(xapi>ad(xvpj)) —‘
d(€) !
o -
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Area under o: Mass

-

mg(F) = d(lmax{d(x, P;) : L; € F'}, min{d(x,F;): L; € F'}))

-

my({ L1, La})

d(€)

‘ d(CU,Pl) d(wap2) d(aZ‘,P3) d(a;,P4) € \
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Neighbourhood Representation

Let Ni = {r € Q:d(z, P;) < ¢}, more generally
N§ ={x: D5 € \(0)}
Satisfies Ny, , = Ng N NG, Ny, = Ng UNG,
S0 = (Nee)c-
For § € LE/Y N is nested, otherwise not in general.
Alternative characterisation: pg(x) = 0({e: x € NS})

Labels represent sets of points sufficiently similar to
prototypes (Information Granules).

|
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Example (Uniform o)

® LetQ=Randd(x,y) =||xr —yl||. Let L; = about |a, b T
where a < b, so that P; = |a, b].

® Ni =[a—¢€b+¢

# Let o be the uniform distribution on [k, r] for 0 < k < r:

k k
<> >
1
pr,(x)
r o T

a b J
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Random Sets

-

A random set is simply a set valued variable.

Random sets are known to be a unifying concept in
uncertainty theory e.g. DS theory, possibility theory,
fuzzy theory all have random set interpretations.

vz € Q D, is a random set into 24 (i.e. taking sets of
labels as values).

V0 € LE Nj is a random set into 2f (i.e. taking subsets
of the underlying universe ) as values).

Single Point Coverage (of D,) P(L; € D) = pr,.(x)
(of Njj) P(z € N) = po(z)

|
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Imprecise Probabilities

-

Suppose an agent receives the information ‘z is 8’ what
Information does this tell them about x?

According to our prototype model, the agent can infer
e Ny

From this they can define upper and lower probabillities:
For S C ()

P(S|0) = PWNSNS #£0) =06p({e: NsNS #D})
D(510) = P(Ng € 5) = 0g({e : Ng € S})

Single point coverage:
spe(x]0) = P(x € N) = 6p({e: . € N§}) o< pg(z)

|
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Possibility Measures

-

If 6 € LEMY then for 0 < e < ¢ we have that Ny C N .

In this case the resulting upper and lower probabilities

are
P(S
P(S

nossibility and necessity measures (Dubois, Prade).
0) = Pos(S|0) = sup{ug(z) : x € S}

0) = Nec(S|0) =1 — sup{ug(x) : z € S}

With properties...
Pos(SUT|0) = max(Pos(S|0), Pos(T|0))
Nec(SNT|0) =min(Nec(S|0), Nec(T|0))

Hence spc(x|0) = pg(z) IS a possibility distribution
(Zadeh)

|
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Given a Prior...

-

Suppose that agent also has knowledge in the form of a
prior distribution on €.

Given ‘z Is ¢’ they should determine the posterior

p(x|Ng).

But since ¢ IS uncertain this results in second order
probabillities.

If precise probabillities are requires one solution would
be to take an expected value:

fo (z|Ng)de.
This satisfies p(S|0) € [P(S]0), P(S|0)]

|
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Example (Fuzzy Numbers)

- N

® LetQQ=Randd(x,y) = ||z — y||. Let L; = about 2 so that
Py ={2}. Inthis case Nj =[2—¢,2+¢]

# Let § be the uniform distribution on [0, 1].

# Let the prior p on €2 correspond to the uniform
distribution on |0, 10].

pr, (@) p(z|Li)

014 1 ]
0- { ; } ) 0 y ; . ) 0 { { ; .
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
Appropriateness Posterior Envelope
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Prototype-Based Rule-Learning

-

Joint work with Yongchuan Tang from Zhejiang
University.

Given a database of pairs (%, y) where y = f(Z) learn a
set of rules to represent mapping f.

For label L; on y with prototypes P; learn a rule
IF(z'Is L;) THEN (y Is L;) where P; Is determined from
the set of points {7 : (¥,y) € DB and y € P;}.

For input 2 then pr, (y) = pr,(2) = 0([d(Z, ), 00)).

Determine BetPy(L;) = > .. .cp —mfﬁéf)

» Evaluate y = ) ; BetP,(L;)c; where ¢; Is the average

of Pj.

|
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Number of Sunspots

Sunspot Database
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Decision Tree Models

Da,
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Classification of Weather-Radar Images

- N

# The use of weather radars to estimate precipitation is
an increasingly important area in hydrology.

# Brightband= region of enhanced reflexivity cause by

amplified echoes due to scattering of microwaves from
melting snow

|
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Rules for Radar Classification

-

Attributes: Z;, = Reflectivity factor, Z;,. = Differential
reflectivity, L, = Linear Depolarisation Ration, H =
Height of the measurement.

Rules: (Dyr, = {low,medium}) A (D =
{med., high}) A (Dy, = {high}) A(Dz,, = {med., high}) —
Rain : 0.998, Snow : 0.002, Brightband : 0

(Dy,,. = {medium}) A (Dg = {med., high}) N\ (Dz, =
{med., high}) N (Dg,, = {low}) —

Rain : 0.03, Snow : 0.97, Brightband : 0

(Dr,, = {high}) N (Dg = {med.}) A (Dgz, =

{high}) N (Dg,, = {high}) —
Rain : 0.02, Snow : 0, Brightband : 0.98

|
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River Severn Forecasting

The River Severn is situated in the South West of T
England with a catchment area that spans from the
Cambrian Mountains in Mid Wales to the Bristol

Channel in England.

We focus on the Upper Severn from Abermule in Powys
and its tributaries, down to Buildwas in Shropshire.

The Data consists of 13120 training examples from
1/1/1998 to 2/7/1999 and 2760 test examples from
8/9/2000 to 1/1/2001, recorded hourly.

Each example has 19 continuous attributes falling into
two categories; station (water) level measurements and
rain fall gauge measurements.

The forecasting problem is to predict the river level at
Buildwas at time ¢ + § (0 = lead time). J
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Severn Catchment Map
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River Level (m)

36 Hours Ahead Prediction
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Severn Rules

-

r# =time t level at Abermule, P = time ¢ level at Buildwas, = = time ¢ level at Meifod

Focal set {low}: low € D zA low € D, B — DB B o= = {low}
Ty

Focal set {low, medium}:
low € D, a N medium € D, B A\ low € D, Mo DB o = {low, medium}
iy

low € D zA medium € D, B A medium E D, M = D,s = {low,medium}
2 36

medium E D zA low € D, 5 /A medium € D, Mo D,s = {low, medium}
T 36

Focal set {medzum}

medium € D_ a A medium € D_ B A\ medium € D_ Mo Dmt+36 = {medium}
Focal set {medzum high}: {medzum}

high € D zA medium € D, 5 A\ medium € D, Mo DB 2B g = = {medium, high}
high € D zA A medium € D 2B A high € D =M D, s 2B g = = {medium, high}
high € D zA A high € D 2B A medzum €D =M D,_B 2B, g5 = = {medium, high}
medium E D, A A high E D, B N high € D, Mo DB 2B g = = {medium, high}
Focal set {high}: high € D, A A high € D, B A high € D, M D5 2B, g5 = = {high}

|
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Conclusions

-

Granular modelling aims to provide high-level linguistic
(rule-based) models for complex systems.

The approach balances the requirements of predictive
accuracy and model transparency.

We have proposed random set approach to model
Imprecise labels consistent with an epistemic theory of
vagueness.

A prototype theory interpretation has been also
Introduced.

A number of case study applications of granular
modelling have been described.

|
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Shameless Advertising

- N

# Modelling and Reasoning with Vague Concepts by
Jonathan Lawry, Springer 2006
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