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Overview

Information granules and granular models.

Representing imprecise labels.

A prototype interpretation of labels.

Imprecise probabilities from imprecise descriptions.

Applications: Case Studies.

Conclusion.
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Information Granules

Fundamental to human communication is the ability to
effectively describe the continuous domain of sensory
perception in terms of a finite set of description labels.

Granular modelling permits us to process and transmit
information efficiently at an appropriate level of detail.

Information Granule [Zadeh] A granule is a clump of
objects (points) which are drawn together by
indistinguishability, similarity, proximity and functionality.

Information Granule [Lawry] An information granule is a
characterisation of the relationship between a discrete
label or expression and elements of the underlying
(often continuous) domain which it describes.
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Granular Models

Granular Modelling aims to develop formal
representations on information granules and embed
these into computational models (intelligent systems).

Granular models (Zadeh) are high-level (often
rule-based) models which incorporate concepts as
represented by information granules.

Mechanisms for representing and processing
uncertainty and linguistic vagueness are fundamental.

Model transparency and accuracy are dual goals.

Traceability of decision processes is vital in many
applications.

Key problem areas are: learning, fusion and reasoning.
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Deciding What to Say...

Describing the world requires us to make decisions
about what is the best choice of words when referring to
objects and instances, in order to convey the
information we intend.

Suppose you are witness to a robbery, how should you
describe the robber so that police on patrol in the
streets will have the best chance of spotting him?

You will have certain labels that can be applied, for
example tall, short, medium, fat, thin, blonde, etc, but which
are more appropriate (according to convention)?

We contend that this is fundamentally an epistemic
problem (Williamson).
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The Epistemic Stance

Within a population of communicating agents, individuals assume
the existence of a set of labelling conventions for the population
governing what linguistic labels and expression can be appropriately
used to describe particular instances.

Making an assertion to describe an object or instance x

involves making a decision as to what labels can be
appropriately used to describe x.

An individual’s knowledge of labelling conventions is
partial and uncertain.

This will result in uncertainty about the appropriateness
of labels to describe instance x.

In accordance with De Finetti it is reasonable to model
this uncertainty using subjective probabilities.
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Measures of Appropriateness

As a (big) simplification...

Assume that there is a finite set of labels
LA = {L1, . . . , Ln} for describing elements of the
universe Ω.

LE is the set of expressions generated from LA through
recursive application of the connectives ∧,∨ and ¬.

LA = {red, blue, green, yellow . . .}
LE = {red&blue, not yellow, green or not yellow . . .}

For θ ∈ LE, x ∈ Ω, µθ (x) = the subjective probability
that θ is appropriate to describe x.
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Mass Functions

Dx is the complete set of labels appropriate to describe
x.

Dx = {red, pink} means that both red and pink can be
appropriately used to describe x, and no other labels
are appropriate.

mx : 2LA → [0, 1] is a probability mass function on
subsets of labels.

For F ⊆ LA mx(F ) is the subjective probability that
Dx = F .

The mass function mx and the appropriateness
measure µ are strongly related...

µθ(x) is the sum of mx over those values for Dx

consistent with θ.
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General Relationships

‘x is θ’ requires that Dx ∈ λ (θ) where ∀θ, ϕ ∈ LE

∀L ∈ LA λ(L) = {F ⊆ LA : L ∈ F}

λ(θ ∧ ϕ) = λ(θ) ∩ λ(ϕ)

λ(θ ∨ ϕ) = λ(θ) ∪ λ(ϕ)

λ(¬θ) = λ(θ)c

This results in the following equation relating mx as µ:

µθ(x) = P (Dx ∈ λ(θ)) =
∑

S∈λ(θ) mx(S)

λ(red ∧ ¬pink) = {F ⊆ LA : red ∈ F, pink 6∈ F}

µred∧¬pink(x) =
∑

F :red∈F,pink 6∈F mx(F )
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Some Links ...

...to probability For a fixed x µθ(x) forms a probability
measure on LE as θ varies.

If |= θ then ∀x, µθ(x) = 1

If θ ≡ ϕ then ∀x, µθ(x) = µϕ(x)

∀θ,∀x, µ¬θ(x) = 1 − µθ(x)

If |= ¬(θ ∧ ϕ) then µθ∨ϕ(x) = µθ(x) + µϕ(x)

...to DS Theory For conjunctions and disjunctions of
labels appropriateness measure can be interpreted as
Commonality and Plausibility functions.

µL1∧...∧Lk
(x) =

∑
F :{L1,...,Lk}⊆F mx(F ) = Q({L1, . . . , Lk}|x)

µL1∨...∨Lk
(x) =

∑
F :F∩{L1,...,Lk}6=∅ mx(F ) = Pl({L1, . . . , Lk}|x)
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Assuming Consonance

Focal Sets Fx = {F ⊆ LA : mx(F ) > 0}.

Consonance For F, F ′ ∈ Fx then either F ⊆ F ′ or
F ′ ⊆ F .

Ordering Labels Assume that for each x ∈ Ω an agent
first identifies a total ordering on the appropriateness of
labels. They then evaluate their belief values mx about
which labels are appropriate to describe x in such a
way so as to be consistent with this ordering.

LE∧,∨ = expressions only involving the connectives ∧
or ∨.

Under Consonance ∀θ, ϕ ∈ LE∧,∨, ∀x ∈ Ω it holds that
µθ∧ϕ(x) = min(µθ(x), µϕ(x)) and
µθ∨ϕ(x) = max(µθ(x), µϕ(x))
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Consonance and Functionality
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Prototype Theory

The membership of elements in a concept is
determined by their similarity to certain prototypical
cases (Rosch 1973).

Prototypes may be actual exemplars of the concept
(case-based reasoning) or abstractions or aggregations
(clustering).

Voronoi Model Neighbourhood Model
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Conceptual Spaces: NCS Colour Spindle
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A Prototype Interpretation

Let d : Ω2 → [0,∞) be a distance function satisfying
d(x, x) = 0 and d(x, y) = d(y, x).

For S, T ⊆ Ω let d(T, S) = inf{d(x, y) : x ∈ S, y ∈ T}.

For Li ∈ Ω let Pi ⊆ Ω be a set of prototypical elements
for Li.

Let ǫ be a random variable into [0,∞) with density
function δ.

Li is appropriate to describe x iff d(x, Pi) ≤ ǫ.

Dǫ
x = {Li : d(x, Pi) ≤ ǫ}.

∀F ⊆ Ω mx(F ) = δ({ǫ : Dǫ
x = F})

Naturally satisfies consonance.
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GeneratingDǫ
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Appropriateness as Subsets ofǫ

∀x ∈ Ω and ∀θ ∈ LE, I(θ, x) ⊆ [0,∞) is defined
recursively by:

∀Li ∈ LA I(Li, x) = [d(x, Pi),∞)

∀θ ∈ LE I(¬θ, x) = I(θ, x)c

∀θ, ϕ ∈ LE I(θ ∨ ϕ, x) = I(θ, x) ∪ I(ϕ, x)

∀θ, ϕ ∈ LE I(θ ∧ ϕ, x) = I(θ, x) ∩ I(ϕ, x)

Theorem: ∀θ ∈ LE,∀x ∈ Ω I(θ, x) = {ǫ : Dǫ
x ∈ λ(θ)}

Corollary: ∀θ ∈ LE,∀x ∈ Ω µθ(x) = δ(I(θ, x))
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Area under δ: Appropriateness

I(Li ∧ ¬Lj , x) = [d(x, Pi), d(x, Pj))

ǫd(x, Pi) d(x, Pj)

µLi∧¬Lj
(x)

δ(ǫ)
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Area under δ: Mass

mx(F ) = δ([max{d(x, Pi) : Li ∈ F}, min{d(x, Pi) : Li 6∈ F}))

ǫ

δ(ǫ)

d(x, P1) d(x, P2) d(x, P3) d(x, P4)

mx(∅)

mx({L1})

mx({L1, L2})

mx({L1, L2, L3})

mx({L1, L2, L3, L4})
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Neighbourhood Representation

Let N ǫ
Li

= {x ∈ Ω : d(x, Pi) ≤ ǫ}, more generally
N ǫ

θ = {x : Dǫ
x ∈ λ(θ)}

Satisfies N ǫ
θ∧ϕ = N ǫ

θ ∩N ǫ
ϕ, N ǫ

θ∨ϕ = N ǫ
θ ∪N ǫ

ϕ,
N ǫ

¬θ = (N ǫ
θ )c.

For θ ∈ LE∧,∨ N ǫ
θ is nested, otherwise not in general.

Alternative characterisation: µθ(x) = δ({ǫ : x ∈ N ǫ
θ})

Labels represent sets of points sufficiently similar to
prototypes (Information Granules).
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Example (Uniform δ)
Let Ω = R and d(x, y) = ||x − y||. Let Li = about [a, b]
where a ≤ b, so that Pi = [a, b].

N ǫ
Li

= [a − ǫ, b + ǫ]

Let δ be the uniform distribution on [k, r] for 0 ≤ k < r:

a b

r r

k k

1

µLi
(x)
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Random Sets

A random set is simply a set valued variable.

Random sets are known to be a unifying concept in
uncertainty theory e.g. DS theory, possibility theory,
fuzzy theory all have random set interpretations.

∀x ∈ Ω Dx is a random set into 2LA (i.e. taking sets of
labels as values).

∀θ ∈ LE N ǫ
θ is a random set into 2Ω (i.e. taking subsets

of the underlying universe Ω as values).

Single Point Coverage (of Dx) P (Li ∈ Dx) = µLi
(x)

(of N ǫ
θ ) P (x ∈ N ǫ

θ ) = µθ(x)
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Imprecise Probabilities

Suppose an agent receives the information ‘x is θ’ what
information does this tell them about x?

According to our prototype model, the agent can infer
x ∈ N ǫ

θ

From this they can define upper and lower probabilities:
For S ⊆ Ω

P (S|θ) = P (N ǫ
θ ∩ S 6= ∅) = δθ({ǫ : N ǫ

θ ∩ S 6= ∅})

P (S|θ) = P (N ǫ
θ ⊆ S) = δθ({ǫ : N ǫ

θ ⊆ S})

Single point coverage:
spc(x|θ) = P (x ∈ N ǫ

θ ) = δθ({ǫ : x ∈ N ǫ
θ}) ∝ µθ(x)
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Possibility Measures

If θ ∈ LE∧,∨ then for 0 ≤ ǫ ≤ ǫ′ we have that N ǫ
θ ⊆ N ǫ′

θ .

In this case the resulting upper and lower probabilities
are possibility and necessity measures (Dubois, Prade).

P (S|θ) = Pos(S|θ) = sup{µθ(x) : x ∈ S}

P (S|θ) = Nec(S|θ) = 1 − sup{µθ(x) : x ∈ Sc}

With properties...

Pos(S ∪ T |θ) = max(Pos(S|θ), Pos(T |θ))

Nec(S ∩ T |θ) = min(Nec(S|θ), Nec(T |θ))

Hence spc(x|θ) = µθ(x) is a possibility distribution
(Zadeh)
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Given a Prior...

Suppose that agent also has knowledge in the form of a
prior distribution on Ω.

Given ‘x is θ’ they should determine the posterior
p(x|N ǫ

θ ).

But since ǫ is uncertain this results in second order
probabilities.

If precise probabilities are requires one solution would
be to take an expected value:

p(x|θ) =
∫ ∞
0 p(x|N ǫ

θ )dǫ.

This satisfies p(S|θ) ∈ [P (S|θ), P (S|θ)]
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Example (Fuzzy Numbers)

Let Ω = R and d(x, y) = ||x − y||. Let Li = about 2 so that
Pi = {2}. In this case N ǫ

Li
= [2 − ǫ, 2 + ǫ]

Let δ be the uniform distribution on [0, 1].

Let the prior p on Ω correspond to the uniform
distribution on [0, 10].
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Prototype-Based Rule-Learning

Joint work with Yongchuan Tang from Zhejiang
University.

Given a database of pairs (~x, y) where y = f(~x) learn a
set of rules to represent mapping f .

For label Lj on y with prototypes Pj learn a rule
IF(~x is Li) THEN (y is Lj) where Pi is determined from
the set of points {~x : (~x, y) ∈ DB and y ∈ Pj}.

For input ~x then µLj
(y) = µLi

(~x) = δ([d(~x, Pi),∞)).

Determine BetPy(Lj) =
∑

F :Lj∈F
my(F )
|F |

Evaluate ŷ =
∑

Lj
BetPy(Lj)cj where cj is the average

of Pj.
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Sunspot Database
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Decision Tree Models
Dx1

Dx2
Dx3

LF1 LF2 LF3

LF4

LF5 LF6 LF7

{s}
s ∧ ¬l {s, l}

s ∧ l l ∧ ¬s

{l}

{s}
s ∧ ¬l

{s, l}
s ∧ l

{l}
l ∧ ¬s

{s}
s ∧ ¬l

{s, l}
s ∧ l

{l}
l ∧ ¬s

m(G|{s}, {s}) m(G|{s}, {s, l}) m(G|{s}, {l})

m(G|{s, l})

m(G|{l}, {s}) m(G|{l}, {s, l}) m(G|{l}, {l})
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Classification of Weather-Radar Images

The use of weather radars to estimate precipitation is
an increasingly important area in hydrology.

Brightband= region of enhanced reflexivity cause by
amplified echoes due to scattering of microwaves from
melting snow
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Rules for Radar Classification

Attributes: Zh = Reflectivity factor, Zdr = Differential
reflectivity, Ldr = Linear Depolarisation Ration, H =
Height of the measurement.

Rules: (DLdr
= {low,medium}) ∧ (DH =

{med., high})∧ (DZh
= {high})∧ (DZdr

= {med., high}) →
Rain : 0.998, Snow : 0.002, Brightband : 0

(DLdr
= {medium}) ∧ (DH = {med., high}) ∧ (DZh

=
{med., high}) ∧ (DZdr

= {low}) →
Rain : 0.03, Snow : 0.97, Brightband : 0

(DLdr
= {high}) ∧ (DH = {med.}) ∧ (DZh

=
{high}) ∧ (DZdr

= {high}) →
Rain : 0.02, Snow : 0, Brightband : 0.98
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River Severn Forecasting
The River Severn is situated in the South West of
England with a catchment area that spans from the
Cambrian Mountains in Mid Wales to the Bristol
Channel in England.

We focus on the Upper Severn from Abermule in Powys
and its tributaries, down to Buildwas in Shropshire.

The Data consists of 13120 training examples from
1/1/1998 to 2/7/1999 and 2760 test examples from
8/9/2000 to 1/1/2001, recorded hourly.

Each example has 19 continuous attributes falling into
two categories; station (water) level measurements and
rain fall gauge measurements.

The forecasting problem is to predict the river level at
Buildwas at time t + δ (δ = lead time).
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Severn Catchment Map
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36 Hours Ahead Prediction
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Severn Rules

xA
t = time t level at Abermule, xB

t = time t level at Buildwas, xM
t = time t level at Meifod

Focal set {low}: low ∈ DxA
t

∧ low ∈ DxB
t

→ DxB
t+36

= {low}

Focal set {low, medium}:
low ∈ DxA

t

∧ medium ∈ DxB
t

∧ low ∈ DxM
t

→ DxB
t+36

= {low, medium}

low ∈ DxA
t

∧ medium ∈ DxB
t

∧ medium ∈ DxM
t

→ DxB
t+36

= {low, medium}

medium ∈ DxA
t

∧ low ∈ DxB
t

∧ medium ∈ DxM
t

→ DxB
t+36

= {low, medium}

Focal set {medium}:
medium ∈ DxA

t

∧ medium ∈ DxB
t

∧ medium ∈ DxM
t

→ DxB
t+36

= {medium}

Focal set {medium, high}: {medium}:
high ∈ DxA

t

∧ medium ∈ DxB
t

∧ medium ∈ DxM
t

→ DxB
t+36

= {medium, high}

high ∈ DxA
t

∧ medium ∈ DxB
t

∧ high ∈ DxM
t

→ DxB
t+36

= {medium, high}

high ∈ DxA
t

∧ high ∈ DxB
t

∧ medium ∈ DxM
t

→ DxB
t+36

= {medium, high}

medium ∈ DxA
t

∧ high ∈ DxB
t

∧ high ∈ DxM
t

→ DxB
t+36

= {medium, high}

Focal set {high}: high ∈ DxA
t

∧ high ∈ DxB
t

∧ high ∈ DxM
t

→ DxB
t+36

= {high}
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Conclusions

Granular modelling aims to provide high-level linguistic
(rule-based) models for complex systems.

The approach balances the requirements of predictive
accuracy and model transparency.

We have proposed random set approach to model
imprecise labels consistent with an epistemic theory of
vagueness.

A prototype theory interpretation has been also
introduced.

A number of case study applications of granular
modelling have been described.
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