Granular Knowledge Representation and Inference using Labels and Label Expressions

Jonathan Lawry

j.lawry@bris.ac.uk

Dept. Engineering Mathematics, University of Bristol, Bristol, BS8 1TR, UK

Overview

- Information granules and granular models.
- Representing imprecise labels.
- A prototype interpretation of labels.
- Imprecise probabilities from imprecise descriptions.
- Applications: Case Studies.
- Conclusion.

Information Granules

- Fundamental to human communication is the ability to effectively describe the continuous domain of sensory perception in terms of a finite set of description labels.
- Granular modelling permits us to process and transmit information efficiently at an appropriate level of detail.
- Information Granule [Zadeh] A granule is a clump of objects (points) which are drawn together by indistinguishability, similarity, proximity and functionality.
- Information Granule [Lawry] An information granule is a characterisation of the relationship between a discrete label or expression and elements of the underlying (often continuous) domain which it describes.

Granular Models

- Granular Modelling aims to develop formal representations on information granules and embed these into computational models (intelligent systems).
- Granular models (Zadeh) are high-level (often rule-based) models which incorporate concepts as represented by information granules.
- Mechanisms for representing and processing uncertainty and linguistic vagueness are fundamental.
- Model transparency and accuracy are dual goals.
- Traceability of decision processes is vital in many applications.
- Key problem areas are: learning, fusion and reasoning.

Deciding What to Say...

- Describing the world requires us to make decisions about what is the best choice of words when referring to objects and instances, in order to convey the information we intend.
- Suppose you are witness to a robbery, how should you describe the robber so that police on patrol in the streets will have the best chance of spotting him?
- You will have certain labels that can be applied, for example tall, short, medium, fat, thin, blonde, etc, but which are more appropriate (according to convention)?
- We contend that this is fundamentally an epistemic problem (Williamson).

The Epistemic Stance

- Within a population of communicating agents, individuals assume the existence of a set of labelling conventions for the population governing what linguistic labels and expression can be appropriately used to describe particular instances.
- Making an assertion to describe an object or instance x involves making a decision as to what labels can be appropriately used to describe x.
- An individual's knowledge of labelling conventions is partial and uncertain.
- This will result in uncertainty about the appropriateness of labels to describe instance x.
- In accordance with De Finetti it is reasonable to model this uncertainty using subjective probabilities.

Measures of Appropriateness

- As a (big) simplification...
- Assume that there is a finite set of labels $LA = \{L_1, \ldots, L_n\}$ for describing elements of the universe Ω .
- *LE* is the set of expressions generated from *LA* through recursive application of the connectives \land, \lor and \neg .
- $LA = \{red, blue, green, yellow ...\}$ $LE = \{red \& blue, not yellow, green or not yellow ...\}$
- For $\theta \in LE$, $x \in \Omega$, $\mu_{\theta}(x)$ = the subjective probability that θ is appropriate to describe x.

Mass Functions

- \mathcal{D}_x is the complete set of labels appropriate to describe x.
- $\mathcal{D}_x = \{red, pink\}$ means that both *red* and *pink* can be appropriately used to describe x, and no other labels are appropriate.
- $m_x : 2^{LA} \rightarrow [0, 1]$ is a probability mass function on subsets of labels.
- For $F \subseteq LA \ m_x(F)$ is the subjective probability that $\mathcal{D}_x = F$.
- The mass function m_x and the appropriateness measure μ are strongly related...
- $\mu_{\theta}(x)$ is the sum of m_x over those values for \mathcal{D}_x consistent with θ .

General Relationships

'x is θ ' requires that $\mathcal{D}_{x} \in \lambda(\theta)$ where $\forall \theta, \varphi \in LE$

- $\lambda(\theta \wedge \varphi) = \lambda(\theta) \cap \lambda(\varphi)$
- $\ \, \bullet \ \, \lambda(\theta \lor \varphi) = \lambda(\theta) \cup \lambda(\varphi)$
- $\, {}^{ {}_{ { }} } \, \lambda(\neg\theta) = \lambda(\theta)^c$

This results in the following equation relating m_x as μ :

•
$$\mu_{\theta}(x) = P(\mathcal{D}_x \in \lambda(\theta)) = \sum_{S \in \lambda(\theta)} m_x(S)$$

$$\ \, \bullet \ \, \lambda(red \wedge \neg pink) = \{F \subseteq LA : red \in F, pink \not\in F\}$$

•
$$\mu_{red \wedge \neg pink}(x) = \sum_{F: red \in F, pink \notin F} m_x(F)$$

Some Links ...

- ...to probability For a fixed $x \mu_{\theta}(x)$ forms a probability measure on LE as θ varies.
- If $\models \theta$ then $\forall x, \ \mu_{\theta}(x) = 1$
- If $\theta \equiv \varphi$ then $\forall x, \ \mu_{\theta}(x) = \mu_{\varphi}(x)$

- If $\models \neg(\theta \land \varphi)$ then $\mu_{\theta \lor \varphi}(x) = \mu_{\theta}(x) + \mu_{\varphi}(x)$
- …to DS Theory For conjunctions and disjunctions of labels appropriateness measure can be interpreted as Commonality and Plausibility functions.

•
$$\mu_{L_1 \land \dots \land L_k}(x) = \sum_{F:\{L_1, \dots, L_k\} \subseteq F} m_x(F) = Q(\{L_1, \dots, L_k\}|x)$$

•
$$\mu_{L_1 \vee ... \vee L_k}(x) = \sum_{F:F \cap \{L_1, ..., L_k\} \neq \emptyset} m_x(F) = Pl(\{L_1, ..., L_k\} | x)$$

Assuming Consonance

- Focal Sets $\mathcal{F}_x = \{F \subseteq LA : m_x(F) > 0\}.$
- Consonance For $F, F' \in \mathcal{F}_x$ then either $F \subseteq F'$ or $F' \subseteq F$.
- Ordering Labels Assume that for each $x \in \Omega$ an agent first identifies a total ordering on the appropriateness of labels. They then evaluate their belief values m_x about which labels are appropriate to describe x in such a way so as to be consistent with this ordering.
- LE^{∧,∨} = expressions only involving the connectives ∧ or ∨.
- Under Consonance $\forall \theta, \varphi \in LE^{\wedge, \vee}$, $\forall x \in \Omega$ it holds that $\mu_{\theta \wedge \varphi}(x) = \min(\mu_{\theta}(x), \mu_{\varphi}(x))$ and $\mu_{\theta \vee \varphi}(x) = \max(\mu_{\theta}(x), \mu_{\varphi}(x))$

Consonance and Functionality

$$\mu_{L_1}(x), \dots, \mu_{L_n}(x) \text{ ordered so that} \mu_{L_i}(x) \ge \mu_{L_{i+1}}(x) \text{ for } i = 1, \dots, n-1 m_x (\{L_1, \dots, L_n\}) = \mu_{L_n}(x) m_x (\{L_1, \dots, L_i\}) = \mu_{L_i}(x) - \mu_{L_{i+1}}(x) \text{ and } m_x (\emptyset) = 1 - \mu_{L_1}(x)$$

Prototype Theory

- The membership of elements in a concept is determined by their similarity to certain prototypical cases (Rosch 1973).
- Prototypes may be actual exemplars of the concept (case-based reasoning) or abstractions or aggregations (clustering).

Voronoi Model

Conceptual Spaces: NCS Colour Spindle

A Prototype Interpretation

- Let $d: \Omega^2 \to [0, \infty)$ be a distance function satisfying d(x, x) = 0 and d(x, y) = d(y, x).
- For $S, T \subseteq \Omega$ let $d(T, S) = \inf\{d(x, y) : x \in S, y \in T\}$.
- For $L_i \in \Omega$ let $P_i \subseteq \Omega$ be a set of prototypical elements for L_i .
- Let ϵ be a random variable into $[0,\infty)$ with density function δ .
- L_i is appropriate to describe x iff $d(x, P_i) \leq \epsilon$.

$$\mathcal{D}_x^{\epsilon} = \{ L_i : d(x, P_i) \le \epsilon \}.$$

- $\forall F \subseteq \Omega \ m_x(F) = \delta(\{\epsilon : \mathcal{D}_x^\epsilon = F\})$
- Naturally satisfies consonance.

Generating $\mathcal{D}^{\epsilon}_{x}$

Identifying \mathcal{D}_x^{ϵ} ; $\mathcal{D}_x^{\epsilon_1} = \emptyset$, $\mathcal{D}_x^{\epsilon_2} = \{L_1, L_2\}$, $\mathcal{D}_x^{\epsilon_3} = \{L_1, L_2, L_3, L_4\}$

Appropriateness as Subsets of ϵ

- $\forall L_i \in LA \ I(L_i, x) = [d(x, P_i), \infty)$

$$\forall \theta \in LE \ I(\neg \theta, x) = I(\theta, x)^c$$

- Theorem: $\forall \theta \in LE, \forall x \in \Omega \ I(\theta, x) = \{ \epsilon : \mathcal{D}_x^{\epsilon} \in \lambda(\theta) \}$
- Corollary: $\forall \theta \in LE, \forall x \in \Omega \ \mu_{\theta}(x) = \delta(I(\theta, x))$

Area under δ : Appropriateness

Area under δ : Mass

Neighbourhood Representation

- Let $\mathcal{N}_{L_i}^{\epsilon} = \{x \in \Omega : d(x, P_i) \le \epsilon\}$, more generally $\mathcal{N}_{\theta}^{\epsilon} = \{x : \mathcal{D}_x^{\epsilon} \in \lambda(\theta)\}$
- Satisfies $\mathcal{N}_{\theta \wedge \varphi}^{\epsilon} = \mathcal{N}_{\theta}^{\epsilon} \cap \mathcal{N}_{\varphi}^{\epsilon}$, $\mathcal{N}_{\theta \vee \varphi}^{\epsilon} = \mathcal{N}_{\theta}^{\epsilon} \cup \mathcal{N}_{\varphi}^{\epsilon}$, $\mathcal{N}_{\neg \theta}^{\epsilon} = (\mathcal{N}_{\theta}^{\epsilon})^{c}.$
- ▶ For $\theta \in LE^{\wedge,\vee} \mathcal{N}_{\theta}^{\epsilon}$ is nested, otherwise not in general.
- Alternative characterisation: $\mu_{\theta}(x) = \delta(\{\epsilon : x \in \mathcal{N}_{\theta}^{\epsilon}\})$
- Labels represent sets of points sufficiently similar to prototypes (Information Granules).

Example (Uniform δ)

• Let $\Omega = \mathbb{R}$ and d(x, y) = ||x - y||. Let $L_i = about [a, b]$ where $a \leq b$, so that $P_i = [a, b]$.

•
$$\mathcal{N}_{L_i}^{\epsilon} = [a - \epsilon, b + \epsilon]$$

▶ Let δ be the uniform distribution on [k, r] for $0 \le k < r$:

Random Sets

- A random set is simply a set valued variable.
- Random sets are known to be a unifying concept in uncertainty theory e.g. DS theory, possibility theory, fuzzy theory all have random set interpretations.
- $\forall x \in \Omega \ \mathcal{D}_x$ is a random set into 2^{LA} (i.e. taking sets of labels as values).
- $\forall \theta \in LE \ \mathcal{N}_{\theta}^{\epsilon}$ is a random set into 2^{Ω} (i.e. taking subsets of the underlying universe Ω as values).
- Single Point Coverage (of \mathcal{D}_x) $P(L_i \in \mathcal{D}_x) = \mu_{L_i}(x)$

Imprecise Probabilities

- Suppose an agent receives the information 'x is θ ' what information does this tell them about x?
- According to our prototype model, the agent can infer $x \in \mathcal{N}_{\theta}^{\epsilon}$
- From this they can define upper and lower probabilities: For $S \subseteq \Omega$
- $\overline{P}(S|\theta) = P(\mathcal{N}_{\theta}^{\epsilon} \cap S \neq \emptyset) = \delta_{\theta}(\{\epsilon : \mathcal{N}_{\theta}^{\epsilon} \cap S \neq \emptyset\})$
- $\underline{P}(S|\theta) = P(\mathcal{N}_{\theta}^{\epsilon} \subseteq S) = \delta_{\theta}(\{\epsilon : \mathcal{N}_{\theta}^{\epsilon} \subseteq S\})$
- Single point coverage: $spc(x|\theta) = P(x \in \mathcal{N}_{\theta}^{\epsilon}) = \delta_{\theta}(\{\epsilon : x \in \mathcal{N}_{\theta}^{\epsilon}\}) \propto \mu_{\theta}(x)$

Possibility Measures

- If $\theta \in LE^{\wedge,\vee}$ then for $0 \le \epsilon \le \epsilon'$ we have that $\mathcal{N}_{\theta}^{\epsilon} \subseteq \mathcal{N}_{\theta}^{\epsilon'}$.
- In this case the resulting upper and lower probabilities are possibility and necessity measures (Dubois, Prade).
- $\overline{P}(S|\theta) = Pos(S|\theta) = \sup\{\mu_{\theta}(x) : x \in S\}$
- $\underline{P}(S|\theta) = Nec(S|\theta) = 1 \sup\{\mu_{\theta}(x) : x \in S^c\}$
- With properties...
- $Pos(S \cup T|\theta) = max(Pos(S|\theta), Pos(T|\theta))$
- $Nec(S \cap T|\theta) = \min(Nec(S|\theta), Nec(T|\theta))$
- Hence $spc(x|\theta) = \mu_{\theta}(x)$ is a possibility distribution (Zadeh)

Given a Prior...

- Suppose that agent also has knowledge in the form of a prior distribution on Ω .
- Given 'x is θ ' they should determine the posterior $p(x|\mathcal{N}_{\theta}^{\epsilon})$.
- But since
 e is uncertain this results in second order probabilities.
- If precise probabilities are requires one solution would be to take an expected value:
- $p(x|\theta) = \int_0^\infty p(x|\mathcal{N}_{\theta}^{\epsilon}) d\epsilon.$
- This satisfies $p(S|\theta) \in [\underline{P}(S|\theta), \overline{P}(S|\theta)]$

Example (Fuzzy Numbers)

- Let $\Omega = \mathbb{R}$ and d(x, y) = ||x y||. Let $L_i = about \ 2$ so that $P_i = \{2\}$. In this case $\mathcal{N}_{L_i}^{\epsilon} = [2 \epsilon, 2 + \epsilon]$
- Let δ be the uniform distribution on [0, 1].
- Let the prior p on Ω correspond to the uniform distribution on [0, 10].

Prototype-Based Rule-Learning

- Joint work with Yongchuan Tang from Zhejiang University.
- Given a database of pairs (\vec{x}, y) where $y = f(\vec{x})$ learn a set of rules to represent mapping f.
- Solution For label L_j on y with prototypes P_j learn a rule IF(\vec{x} is L_i) THEN (y is L_j) where P_i is determined from the set of points { \vec{x} : (\vec{x} , y) ∈ DB and y ∈ P_j}.
- For input \vec{x} then $\mu_{L_j}(y) = \mu_{L_i}(\vec{x}) = \delta([d(\vec{x}, P_i), \infty))$.
- Determine $BetP_y(L_j) = \sum_{F:L_j \in F} \frac{m_y(F)}{|F|}$
- Evaluate $\hat{y} = \sum_{L_j} Bet P_y(L_j) c_j$ where c_j is the average of P_j .

Sunspot Database

Granular Knowledge Representation and Inference using Labels and Label Expressions - p. 28/37

Decision Tree Models

Classification of Weather-Radar Images

- The use of weather radars to estimate precipitation is an increasingly important area in hydrology.
- Brightband= region of enhanced reflexivity cause by amplified echoes due to scattering of microwaves from melting snow

Rules for Radar Classification

- Attributes: $Z_h = \text{Reflectivity factor}, Z_{dr} = \text{Differential reflectivity}, L_{dr} = \text{Linear Depolarisation Ration}, H = Height of the measurement.$
- Rules: $(\mathcal{D}_{L_{dr}} = \{low, medium\}) \land (\mathcal{D}_{H} = \{med., high\}) \land (\mathcal{D}_{Z_{h}} = \{high\}) \land (\mathcal{D}_{Z_{dr}} = \{med., high\}) \rightarrow Rain : 0.998, Snow : 0.002, Brightband : 0$
- $(\mathcal{D}_{L_{dr}} = \{medium\}) \land (\mathcal{D}_{H} = \{med., high\}) \land (\mathcal{D}_{Z_{h}} = \{med., high\}) \land (\mathcal{D}_{Z_{dr}} = \{low\}) \rightarrow$ Rain: 0.03, Snow: 0.97, Brightband: 0
- $(\mathcal{D}_{L_{dr}} = \{high\}) \land (\mathcal{D}_{H} = \{med.\}) \land (\mathcal{D}_{Z_{h}} = \{high\}) \land (\mathcal{D}_{Z_{dr}} = \{high\}) \rightarrow$ Rain: 0.02, Snow: 0, Brightband: 0.98

River Severn Forecasting

- The River Severn is situated in the South West of England with a catchment area that spans from the Cambrian Mountains in Mid Wales to the Bristol Channel in England.
- We focus on the Upper Severn from Abermule in Powys and its tributaries, down to Buildwas in Shropshire.
- The Data consists of 13120 training examples from 1/1/1998 to 2/7/1999 and 2760 test examples from 8/9/2000 to 1/1/2001, recorded hourly.
- Each example has 19 continuous attributes falling into two categories; station (water) level measurements and rain fall gauge measurements.
- The forecasting problem is to predict the river level at Buildwas at time $t + \delta$ (δ = lead time).

Severn Catchment Map

36 Hours Ahead Prediction

Test Data Set

Scatter Plot

Severn Rules

 x_t^A = time t level at Abermule, x_t^B = time t level at Buildwas, x_t^M = time t level at Meifod Focal set $\{low\}$: $low \in \mathcal{D}_{x_t^A} \land low \in \mathcal{D}_{x_t^B} \to \mathcal{D}_{x_{t+36}^B} = \{low\}$ Focal set {low, medium}: $low \in \mathcal{D}_{x_t^A} \land medium \in \mathcal{D}_{x_t^B} \land low \in \mathcal{D}_{x_t^M} \to \mathcal{D}_{x_{t+36}^B} = \{low, medium\}$ $low \in \mathcal{D}_{x_t^A} \land medium \in \mathcal{D}_{x_t^B} \land medium \in \mathcal{D}_{x_t^M} \to \mathcal{D}_{x_{t+36}^B} = \{low, medium\}$ $medium \in \mathcal{D}_{x_{t}^{A}} \wedge low \in \mathcal{D}_{x_{t}^{B}} \wedge medium \in \mathcal{D}_{x_{t}^{M}} \rightarrow \mathcal{D}_{x_{t+36}^{B}} = \{low, medium\}$ Focal set {medium}: $medium \in \mathcal{D}_{x_{t}^{A}} \wedge medium \in \mathcal{D}_{x_{t}^{B}} \wedge medium \in \mathcal{D}_{x_{t}^{M}} \rightarrow \mathcal{D}_{x_{t+36}^{B}} = \{medium\}$ Focal set {medium, high}: {medium}: $high \in \mathcal{D}_{x^A_t} \land medium \in \mathcal{D}_{x^B_t} \land medium \in \mathcal{D}_{x^M_t} \to \mathcal{D}_{x^B_{t+36}} = \{medium, high\}$ $high \in \mathcal{D}_{x^A_t} \wedge medium \in \mathcal{D}_{x^B_t} \wedge high \in \mathcal{D}_{x^M_t} \rightarrow \mathcal{D}_{x^B_{t+36}} = \{medium, high\}$ $high \in \mathcal{D}_{x_t^A} \land high \in \mathcal{D}_{x_t^B} \land medium \in \mathcal{D}_{x_t^M} \to \mathcal{D}_{x_{t+36}^B} = \{medium, high\}$ $medium \in \mathcal{D}_{x_{t}^{A}} \land high \in \mathcal{D}_{x_{t}^{B}} \land high \in \mathcal{D}_{x_{t}^{M}} \to \mathcal{D}_{x_{t+36}^{B}} = \{medium, high\}$ $\textbf{Focal set } \{high\}: high \in \mathcal{D}_{x_{t}^{A}} \land high \in \mathcal{D}_{x_{t}^{B}} \land high \in \mathcal{D}_{x_{t}^{M}} \to \mathcal{D}_{x_{t+36}^{B}} = \{high\}$

Conclusions

- Granular modelling aims to provide high-level linguistic (rule-based) models for complex systems.
- The approach balances the requirements of predictive accuracy and model transparency.
- We have proposed random set approach to model imprecise labels consistent with an epistemic theory of vagueness.
- A prototype theory interpretation has been also introduced.
- A number of case study applications of granular modelling have been described.

Shameless Advertising

Modelling and Reasoning with Vague Concepts by Jonathan Lawry, Springer 2006

