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Abstract

Noise-induced synchronization (NIS) has evoked great research interests recently. Two uncoupled identical chaotic
systems can achieve complete synchronization (CS) by feeding a common noise with appropriate intensity. Actually,
NIS belongs to the category of external feedback control (EFC). The significance of applying EFC in secure commu-
nication lies in fact that the trajectory of chaotic systems is disturbed so strongly by external driving signal that phase
space reconstruction attack fails. In this paper, however, we propose an approach that can accurately estimate the
parameters of the chaotic systems synchronized by external driving signal through chaotic transmitted signal, driving
signal and their derivatives. Numerical simulation indicates that this approach can estimate system parameters and
external coupling strength under two driving modes in a very rapid manner, which implies that EFC is not superior
to other methods in secure communication.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Chaotic synchronization has gradually become the focus in the field of nonlinear dynamics due to its potential appli-
cation in secure communication, laser system, electronic chemistry, neurophysiology and ecology. Since Pecora and
Carroll introduced the drive-response method in 1990 [1], many chaotic synchronization schemes have been proposed
successively [2-5], among which noise-induced synchronization (NIS) has aroused great interests. In NIS, two uncou-
pled identical chaotic systems can achieve complete synchronization (CS) by feeding a common noise with appropriate
intensity. Since this phenomenon of NIS was proposed by Maritan and Banavar in 1994 [2], there have been great con-
troversies over NIS experimentally [6-8] and theoretically [9-11].

Compared to other variable feedback control (VFC) methods for achieving CS, NIS belongs to the category of
external feedback control (EFC) method actually. The significance of applying EFC in secure communication lies in
the fact that the trajectory of chaotic systems is disturbed so strongly by external driving signal that phase space
reconstruction attack fails. Consequently, several secure communication schemes based on EFC or its variations have
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been proposed [12]. Following the idea in Ref. [13], we present an approach demonstrated by Lorenz system, which can
accurately estimate the parameters of chaotic systems synchronized by external driving signal. We achieve this accurate
estimation by first transforming the driven Lorenz equation to a linear equation of parameters, into which the values of
chaotic transmitted signal, driving signal and their derivatives at different points are filled. The parameters can be
obtained through solving the final equations. Compared with adaptive control schemes [15-18] and other parameter
estimation approaches [19], the advantage of the proposed approach is that it can estimate system parameters and exter-
nal coupling strength under two driving modes in a very rapid manner, which is demonstrated through numerical sim-
ulation. Moreover, this approach can be easily applied to the parameter estimation of Chua’s circuits synchronized by
external driving signal according to Ref. [14].

2. External feedback control (EFC)

Generally, there are two driving modes in EFC governed by Egs. (1) and (2) respectively.
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Here ¢ denotes the vector of external coupling strength, and « and f denote the coupling strength.

Given that NIS was illustrated first by Lorenz system, we will use Lorenz system to explain our approach in the
following. According to the conclusion of Ref. [10], the efficient driving variable is y. Eqgs. (3) and (4) are the driven
Lorenz systems under the above two modes respectively. Since the sender systems and receiver systems are the same,
only the sender systems are given here.
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Here o, r and b are the internal parameters of the Lorenz system. The following numerical simulation indicates that CS
can be achieved under both modes with appropriately chosen coupling strength ¢, o and f.

3. Parameter estimation
3.1. Parameter estimation under the first mode
From Eq. (3) we get
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Let
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and

P = (0,02, 0321 P5:Ps) s Q= (q1,95,95:94: G5 q6)
From Eq. (5) we get

QP =g,

(6)

Chaotic transmitted signal x and driving signal f'are first sampled with high frequency. Then their derivatives x’, x”,
x""and f” can be calculated through the conventional numerical derivative. The values at different points are filled into

Eq. (6). By solving the final equations, we will obtain the parameters.

3.2. Parameter estimation under the second mode

From Eq. (4) we get
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From Eq. (7) we get
QP =g,

(8)

The estimation process in the second mode is rather similar to the first one. Chaotic transmitted signal x and driving
signal f are sampled with high frequency first. Then their derivatives x’, x”, x”, f’ and f” can be calculated through the
conventional numerical derivative. The values at different points are filled into Eq. (8). By solving the final equations,

we will obtain the parameters.
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4. Numerical simulation

In the following experiments, the internal parameters of Lorenz system are set at ¢ = 16, r = 45.6 and b = 4. Accord-
ing to Ref. [12], let f{¢) = Asin(2nvt), and change the amplitude 4 and frequency v across each period with 4 = 50¢ and
v=10.8(0.5+ ¢&’). Here £ and &’ are pseudorandom numbers in range (0, 1). The coupling coefficients are set at ¢ = 20,
o =0.9 and f =20. The sender takes [1.465,1.287,0.156] as initial conditions, and those of the receiver are set at
[—1.968 —1.345 1.453].

Egs. (3) and (4) are solved using the Runge-Kutta method, where the step takes Az = 0.0001 (=10* Hz). In para-
meter estimation, chaotic transmitted signal x and driving signal f are sampled with 4 = 0.001 (=10° Hz). Numerical
derivatives are calculated through the conventional formulas below:

g,(to) = (53 — 952 + 45(31)/60}1
g"(to) = (213 — 27y, + 270, — 490g(10))/180K”
g”/(l()) = (—53 + 852 — 1351)/8h3

Here o6, = g(ty + ih) — g(ty — ih), and n; = g(to + ih) + g(¢y — ih).
4.1. Numerical simulation under the first mode

The numerical results of NIS determined by Eq. (3) are given here. Fig. la shows the driving signal f. Fig. 1b
shows the chaotic transmitted signal x;. The synchronizing error e = x; — x; is shown in Fig. lc, from which we can
see that the chaotic systems of sender and receiver are completely synchronized by feeding the driving signal.
Fig. 1d shows the attractor of sender system, where the driving signal disturbs the trajectory of chaotic systems to a
certain degree.

We can get {fin)}, (n=-2,—1,0,1,...,6N + 3) by sampling a segment of driving signal indicated by the distance
between dash lines shown in Fig. 1a. In the same way, we can also get {x(n)}, (n = —2,—1,0,1,...,6N + 3). Their deriv-
atives are calculated through the above numerical derivative formulas. For higher precision, filling the corresponding
values numbered by k; = (i, N+ i,2N + i,3N + i,4N + i,5N + i), (i=1,...,N) into Eq. (6), we get a full rank equations
Q(k;)P = qo(k;). Then the estimation of parameters can be written as

1 & 1
P’ :N ;Q(ki) qo(ki)

Here N = 50. We get
P* =[0.062499985181, 0.250000063957, 3.999997250595, 178.399939301600, 19.999995470932, 80.000022936896]

Then

b = (p3/p, + Do/ P+ p})/3 = 4.00000042500168 (b = 4)
o = (b*/p; + 1/p})/2 = 16.00000070028464 (5 = 16)

¥ = pi/b" + 1 = 45.59998008663346  (r = 45.6)

¢ = (pi/b" + p5)/2 = 19.99999954007369 (c = 20)

The relative estimating errors here are all less than 107°.

4.2. Numerical simulation under the second mode

The numerical results of NIS determined by Eq. (4) are given here. Fig. 2a shows the driving signal f. Fig. 2b shows
the chaotic transmitted signal x;. The synchronizing error e = x; — x; is shown in Fig. 2c, from which we can see that
the chaotic systems of sender and receiver are completely synchronized by feeding the driving signal. Fig. 2d shows the
attractor of sender system, where the driving signal strongly disturbs the trajectory of chaotic systems.

We can get {f(n)}, (n=-2,—1,0,1,...,8N + 3) by sampling a segment of driving signal indicated by dash lines
shown in Fig. la. In the same way, we can also get {x(n)}, (n = —-2,—1,0,1,...,8N + 3). Their derivatives are calculated
through the above numerical derivative formulas. For higher precision, filling the corresponding values numbered by
ki=(,N+i,2N+i,3N+ ,4N+ i SN+ i,6N+i,7N+i), (i=1,...,N) into Eq. (8), we get a full rank equations
Q(k;)P = qo(k;). Then the estimation of parameters can be written as
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Fig. 1. The numerical results of NIS determined by Eq. (3). (a) The driving signal f; (b) the chaotic transmitted signal x;, (c) the
synchronizing error e = x; — x, and (d) the attractor of sender system.

1 & y
P = N ZQ(ki) lro(ki)
i=1

Here N = 50. We get

P* = [0.069444334958, 1.173615238563, 22.222212612013, 0.062499716268, 0.277771874340, 4.694397518939,
178.400438228787, 88.888821060915]

Then
b = (ps/p} + pe/p; + Ps/p5)/3 = 3.99995530773063 (b =4)
" =1/p, = 16.00007263562793 (¢ = 16)
= p;/b" 4+ 1 =45.60060788279216 (r = 45.6)
o = p,/p; = 0.89999733320949 (« =0.9)
B = pio* =19.99993208882647 (f = 20)
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Fig. 2. The numerical results of NIS determined by Eq. (4). (a) The feeding signal f, (b) the chaotic transmitted signal x, (c) the

synchronizing error e = xg — x, and (d) the attractor of sender system.

The relative estimating errors here are all less than 10™%.

5. Conclusions

In this paper, we present an accurate approach, as illustrated by Lorenz system, which can estimate the parameters
of chaotic systems synchronized by external driving signal. We achieve this accurate estimation by first transforming the
driven Lorenz equation to a linear equation of the substitutes of parameters, into which the values of chaotic transmit-
ted signal, driving signal and their derivatives at different points are filled. The parameters can be obtained through
solving the final equations. Numerical result shows that this approach can estimate system parameters and external cou-
pling strength under two driving modes in a very rapid manner. Moreover, this approach can be easily applied to the
parameter estimation of Chua’s circuits synchronized by external driving signal according to Ref. [14].

To sum up, although driving signal may strongly disturb the trajectory of chaotic systems under EFC, and thus
destroy the possibility of phase space reconstruction attack, EFC is not superior to other VFC methods for achieving
CS in secure communication since parameters can be easily estimated by the proposed approach.
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